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Abstract. In this paper, we consider optimal control systems with continuous-time which is governed by systems
of ordinary differential equation including max-type functions. We derive some properties concerning nonsmooth
concepts, and a special form of adjoint condition involved in the maximum principle giving necessary conditions
of optimality for optimal control problems of these systems.
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1. Introduction and Preliminary

Nonsmooth (dynamical) systems governed by differential equations including a discontinuous function or a nondif-
ferentiable function or a deviating argument, have been usually used for mathematical modeling of dynamic behavior
in many different disciplines. Nonsmooth electrical circuits with diode elements, mechanical systems with Coulomb
friction and impact, automatic control systems, switching systems and networked control systems are major exam-
ples of these systems [3, 5, 8, 15, 17]. The class of nonsmooth systems is a more comprehensive class because it also
includes smooth differential equations. Optimal control of these systems has an important place in optimal control
theory [8, 9, 11, 21].

Since functions called max-type functions are frequently encountered in nonsmooth optimization, there are many
studies and results about the properties of these functions related to various notions defined in nonsmooth analysis and
convex analysis [6,8,9,11,18]. These functions can be in the form as the maximum of the functions with finite number,
or more generally, they can be depending on a parameter on a compact set. A classic example is an simple electrical
circuit with diode element consisting a capacitor and impressed voltage as expressed by McClamroch [8, 15]. This
system is a nonsmooth control system governed by following differential equation including the max-type function on
its right-hand side

ẏ(t) = max {r1 (u (t) − y (t)) , r2 (u (t) − y (t))} ,
where the control u denotes the impressed voltage and r1, r2 are positive constant such that r1 > r2, and y is the voltage
across the capacitor. Another classic example is a regulator model constructed so that it responds to the maximum
deviation of voltage on the certain time interval. The system describing the action of the regulator is governed by
following differential equation

ẏ(t) = −δy(t) + p max
s∈[t−h,t]

y(s) + f0(t),

where δ and p are constants, y is the voltage, and f0 is the perturbed effect [17].
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In this paper, we consider the following general optimal control system

ẋ(t) = ψ (t, x(t), u(t)) a.e., u(t) ∈ U(t) a.e., (1.1)

where ”a.e.” means ”for almost all t ∈ [0, 1]” (Lebesgue measure), U : [0, 1] ⇒ Rm is a set-valued function. In [13],
we worked a vector-valued max-type function in the system (1.1) such that its component functions have the form as
the maximum of the functions with finite number. Differently, we deal with the component functions as the max-type
(or min-type) functions depending on parameters on compact sets in this paper.

Let Qi and Ri be compact sets in Rk and let φi : Qi × [0, 1] ×Rn ×Rm → R, ϕi : Ri × [0, 1] ×Rn ×Rm → R be upper
semicontinuous (u.s.c.) and lower semicontinuous (l.s.c.) in (t, u) ∈ [0, 1] × Rm, respectively for each i = 1, ..., n. As
usual, vector-valued max-type and min-type functions ψmax,ψmin : [0, 1] × Rn × Rm → Rn defined by

ψmax =
(
(ψmax)1 , ... (ψmax)n

)
, (ψmax)i (t, s, u) = max

q∈Qi
φi(q, t, s, u),

ψmin =
(
(ψmin)1 , ... (ψmin)n

)
, (ψmin)i (t, s, u) = min

r∈Ri
ϕi(r, t, s, u).

Now, we deal with the system (1.1) such that ψ : [0, 1] × Rn × Rm → Rn is defined by

ψ = (ψ1, ..., ψn) , ψi = αi (ψmax)i + βi (ψmin)i . (1.2)

Dynamic systems and equations similar to above forms are frequently studied in automatic control theory and boundary
value problems [1, 3, 4, 10, 12, 14, 17, 20].

The problem we are mainly concerned with is that of minimizing the objective functional of Lagrange type∫ 1

0
L (t, x(t), u(t)) dt (1.3)

over (1.1), where L : [0, 1] × Rn × Rm → R. We call this problem problem (1.1)-(1.3). In this paper, we derive some
nonsmooth properties of ψ and a special form of adjoint condition involved in the maximum principle giving necessary
conditions of optimality under weak hypotheses.

We organize this paper as follows. First, we obtain some results about the generalized Jacobian of ψ in s. After
that, combining together these with the result in [7], we obtain the special form of adjoint condition for optimal control
problems of these systems. We now state some nonsmooth concepts, the basic elements of optimal control theory, and
some auxiliary results used throughout this paper. Details in the same notation may be found in [7, 8, 13, 18].

Let us consider any scalar-valued function f : Rn → R and let s0 ∈ R
n; let d be a direction of Rn.

Definition 1.1 ( [8,13]). The one-sided directional derivative of f at s0 in the direction d, denoted f ′(s0; d), is defined
as:

f ′(s0; d) = lim
λ↓0,λ,0

f (s0 + λd) − f (s0)
λ

. (1.4)

In addition, it is considered that f ′(s0; 0) = 0. f is called one-sided directionally differentiable at s0 if limit (1.4) exists
for all d. In particular, if the condition λ ↓ 0 in (1.4) is replaced with λ → 0 and the limit exists and is finite for all d,
then f is called two-sided directionally differentiable at s0.

Definition 1.2 ( [8]). It is assumed that f is Lipschitz near s0. If the one-sided directional derivative f ′(s0; d) exist and
is equal to f 0(s0; d) for each d, then f is called Clarke regular at s0, where by f 0(s0; d) it is denoted the generalized
directional derivative of f at s0 in the direction d.

Lemma 1.3. If f is two-sided directionally differentiable at s0 ∈ R
n, then (− f ) is too and the property that f ′(s0; kd) =

k f ′(s0; d) holds, where k is any real number and d is any direction in Rn; if f is two-sided directionally differentiable
at s0, Lipschitz near s0 and regular at s0, then (− f ) is too.

Proof. Under the directionally differentiability hypothesis stated in the lemma, it is easy to see from Definition 1.1
that properties that (− f )′ (s0; d) = − f ′(s0; d) and f ′(s0; kd) = k f ′(s0; d) hold. It is clear that, if f is Lipschitz near
s0, then (− f ) is too. Moreover, under the directionally differentiability and the Lipschitz hypotheses stated in the
lemma, it follows from Proposition 2.1.1 in [8] that (− f )0 (s0; d) = f 0(s0;−d) = f ′(s0;−d) = − f ′(s0; d) = − f 0(s0; d).
Consequently, under the corresponding hypotheses in the lemma, combining the last relations we derive the desired
results. □
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Let Rn×n denotes the set of all n×n matrices with real elements. For a given A in Rn×n and ζ in Rn; by A∗ζ we denote
the matrix product of the transpose of A and ζ where it is viewed ζ as n×1. In particular, we write A ∈ Rn×n in the form
(ai), where ai is the ith row of A. If x and y are elements in Rn, then by x ·y we mean the standard inner-product between
x and y. By ∥·∥ we denote the euclidian norm on Rn. By ϑi for each i, we denote max

r∈Ri

(−ϕi) (i.e., ϑi := − (ψmin)i. For a

given nonempty set C in Rn; by σC we denote the support function of C. By ”co” we mean ”convex hull”. By Ω f we
denote all the points at which f fails to be differentiable in s where f is any of the functions in (1.1) and (1.2).

Lemma 1.4 ( [19]). Let C and D be nonempty, convex and compact sets inRn. Then, C ⊆ D if and only ifσC(r) ≤ σD(r)
for all r ∈ Rn.

Lemma 1.5. Let {Aα : α ∈ I)} be a family of compact sets in Rn such that A :=
⋃
α∈I

Aα is compact. Then, σcoA (·) =

max
α∈I

(
σAα (·)

)
.

Proof. Note that, it is easily obtain the result in the lemma from the following relation [9]:

σcoA (r) = max
a∈coA

(a · r) = max
a∈A

(a · r) , ∀r ∈ Rn.

□

The following basic result is easily obtained as a consequence of Carathéodory’s Theorem [18].

Lemma 1.6 ( [9]). Let A and B be nonempty sets in Rn. Then, the following properties hold: co [A + B] = coA + coB,
co [kA] = kcoA, where k is any real number.

Let L and Bm be the collection of Lebesgue measurable subsets of [0, 1] and Borel subsets of Rm, respectively.
The smallest σ−algebra of subsets of [0, 1] × Rm generated by Cartesian products of sets in L and Bm is denoted by
L × Bm. A Lebesgue measurable function u : [0, 1] → Rm satisfying ”u(t) ∈ U(t) a.e.” is called a control for problem
(1.1)-(1.3). x ∈ AC ([0, 1] ,Rn) satisfying differential equation in (1.1) such that x(0) ∈ C0 and x(1) ∈ C1, is called a
trajectory corresponding to the control u, where AC ([0, 1] ,Rn) denotes the space of absolutely continuous functions
from [0, 1] into Rn, and C0, C1 are given closed sets in Rn. Any control-trajectory pair (u, x) is called an admissible
pair. We denote the admissible pair (v, z) as solution to the problem; that is, (v, z) minimizes the functional over all
admissible pair (u, x). By B(z (t) , δ) we denote the δ-neighborhood of z (t) for each t.

We consider that φi(q, t, ·, u) is Lipschitz and regular, and that (ψmax)i (t, ·, u) is directionally differentiable, in the
following senses, respectively: there exists a function (Kmax)i in L1 [0, 1] such that

|φi (q, t, s1, u) − φi (q, t, s2, u)| ≤ (Kmax)i (t) |s1 − s2| , ∀s1, s2 ∈ B(z (t) , ε), (1.5)

where t ∈ [0, 1] , u and q are any elements of U(t) and Qi, respectively; for each t, q, φi (q, t, ·, v(t)) is Clarke regular at
z (t) ; (ψmax)i (t, ·, v(t)) is two-sided directionally differentiable at z (t). In addition, we consider that L (t, ·, u) is Lipschitz,
and that (−ϕi) (r, t, ·, u) is Lipschitz (with rank (Kmin)i) and regular, and that (ψmin)i (t, ·, u) is directionally differentiable,
analogously as above.

Definition 1.7. Let f be defined similar to φi such that f (q, t, ·, u) be Lipschitz near a given s0 ∈ R
n for fixed (q, t, u).

The generalized gradient set of f (q, t, ·, u) at s0, denoted ∂s f (q, t, s0, u), is defined as:

∂s f (q, t, s0, u) = co
{

p : p = lim
k→∞
▽s f (q, t, sk, u), sk → s0, sk < Ω f

}
,

under the Lipschitz condition, the generalized Jacobian set of ψmax (t, ·, v(t)) at z (t), denoted Jsψmax(t, z (t) , v(t)), is
defined as:

Jsψmax(t, z (t) , v(t)) = co
{

A : A = lim
k→∞

Jsψmax(t, sk, v(t)), sk → z (t) , sk < Ωψmax

}
,

where by ▽s and Js we mean classical gradient and classical Jacobian in s, respectively [8]. Similary, Jsψmin and Jsψ
are obtained by replacing ψmax with ψmin and ψ, respectively. For fixed t, r, u; ∂sϕi(r, t, s0, u)) is defined analogously.

Lemma 1.8. Let f (t, ·, u) be Lipschitz near s0 ∈ R
n, Clarke regular and two-sided directionally differentiable at s0 for

fixed (t, u). Then, we have σλ∂s f (t,s0,u) (·) = λσ∂s f (q,t,s0,u) (·) = λ f 0(t, s0, u; ·), where the directional derivative is taken
with respect to s-variable, λ is any real number.



Some Results On Nonsmooth Systems including Max-type Functions 150

Proof. It follows from Proposition 1.4 in [6] thatσ∂s f (t,s0,u) (·) = f 0(t, s0, u; ·). From this property we haveσλ∂s f (t,s0,u) (·) =
σ∂s(λ f (t,s0,u)) (·) = (λ f )0 (t, s0, u; ·). We derive from all this, in view of Lemma 1.3, the desired results. □

We put

Mi,u(s) :=
{
q ∈ Qi : (ψmax)i (t, s, u) = φi(q, t, s, u)

}
,

mi,u(s) :=
{
r ∈ Ri : (ψmin)i (t, s, u) = ϕi(r, t, s, u)

}
,

(where (t, u) is fixed and i = 1, ..., n) and use notations for the following sets for t ∈ [0, 1] and i = 1, ..., n:

Wi,1(t) =
{

p : p ∈ ∂sφi (q, t, z(t), v(t)) , q ∈ Mi,v(t)(z(t))
}
,

Wi,2(t) =
{

p : p ∈ ∂sϕi (r, t, z(t), v(t)) , r ∈ mi,v(t)(z(t))
}
.

After, by Wi(t) we denote the following set{
p : p ∈ αi∂sφi (q, t, z(t), v(t)) + βi∂sϕi (r, t, z(t), v(t)) , q ∈ Mi,v(t)(z(t)), r ∈ mi,v(t)(z(t))

}
.

2. Main Results

Lemma 2.1. (a) If φi (·, t, ·, u) and (q, s) → ∂sφi(q, t, s, u) are u.s.c., and that φi(q, t, ·, u) is Lipschitz and regular, then
(ψmax)i (t, ·, u) is Lipschitz and regular in the same senses, and then Wi,1(t) is compact, and then ∂s (ψmax)i (t, z (t) , v(t)) =
coWi,1(t).

(b) If ϕi (·, t, ·, u) and (r, s) → ∂sϕi(r, t, s, u) are l.s.c., and that (−ϕi) (r, t, ·, u) is Lipschitz and regular, and that
(ψmin)i (t, ·, u) is directionally differentiable, then (ψmin)i (t, ·, u) is Lipschitz and regular, and then Wi,2(t) is compact,
and then ∂s (ψmin)i (t, z (t) , v(t)) = coWi,2(t).

Proof. For t ∈ [0, 1], u ∈ U(t), s1, s2 ∈ B(z (t) , ε), q′ ∈ Mi,u(s1) (here, it used the property that Mi,u(s1) is nonempty
due to the hypotheses of (a)) by using (1.5), we have

(ψmax)i (t, s1, u) = φi(q′, t, s1, u) ≤ φi(q′, t, s2, u) + (Kmax)i (t) |s1 − s2|

≤ (ψmax)i (t, s2, u) + (Kmax)i (t) |s1 − s2| .

We may similarly obtain the same inequality with s1 and s2 switched. So, we have
∣∣∣(ψmax)i (t, s1, u) − (ψmax)i (t, s2, u)

∣∣∣ ≤
(Kmax)i |s1 − s2|. Besides, for (a), by writing (ψmin)i = −ϑi from the definition of ϑi, we easily have∣∣∣(ψmin)i (t, s1, u) − (ψmin)i (t, s2, u)

∣∣∣ ≤ (Kmin)i |s1 − s2| .

Under the hypotheses of concerning (ψmax)i in (a), by applying Theorem 2.1 in [6], we obtain that (ψmax)i(t, ·, u) is
Lipschitz and regular, and that ∂s (ψmax)i (t, z (t) , v(t)) = coWi,1(t). Moreover, it follows from Theorem 2.1 in [6] that
Wi,1(t) is contained in ∂s (ψmax)i (t, z (t) , v(t)). Thus, Wi,1(t) is bounded. Now, suppose that we have a convergent
sequence of points p j in ∂sφi

(
q j, t, z(t), v(t)

)
where q j ∈ Mi,v(t)(z(t)) and p j → p0 as j → ∞. We may suppose that q j

converges to some q0 in Mi,v(t)(z(t)), since Mi,v(t)(z(t)) is compact subset of Qi (see, Theorem 2.43 in [2]). p0 must be in
the set ∂sφi (q0, t, z(t), v(t)), since (q, s)→ ∂sφi(q, t, s, u) is u.s.c.. Thus, Wi,2(t) is bounded and closed, so it is compact.
Taking into account Lemma 1.3 for −ϕi and the hypotheses of concerning ϑi (i.e., ϑi = max

r∈Ri

(−ϕi) = − (ψmin)i) in (b), it

is easily seen that the hypotheses in Theorem 2.1 in [6] are satisfied. Thus, it follows from the theorem that ϑi(t, ·, u) is
Lipschitz and regular, and that

∂sϑi(t, z (t) , v(t)) =
{

p : p ∈ ∂s (−ϕi) (r, t, z(t), v(t)) , r ∈ mi,v(t)(z(t))
}
.

From the well-known property of the generalized gradient set regarding the scalar multiplier (see, Proposition 2.3.1
in [8]), ∂sϑi = ∂s(− (ψmin)i) = −∂s (ψmin)i = −coWi,2. Consequently, it is obtained that (ψmin)i (t, ·, u) is Lipschitz and
regular, and that ∂s (ψmin)i (t, z (t) , v(t)) = coWi,2(t). □

Let Ki := |αi| (Kmax)i + |βi| (Kmin)i. Observe that Ki ∈ L1 [0, 1]. In this case, It easily follows from the proof of
Lemma 2.1 that the following.

Corollary 2.2. If for each i, φi (·, t, ·, u) and ϕi (·, t, ·, u) are u.s.c. and l.s.c., respectively, and that φi(q, t, ·, u) and
ϕi(r, t, ·, u) are Lipschitz then for each i, ψi(t, ·, u) is Lipschitz (so is ψ(t, ·, u)) (with rank Ki for ψi ) in the same senses.
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Lemma 2.3. Assume that for each i, the hypotheses of both statements of Lemma 2.1 are satisfied, and that (ψmax)i (t, ·, u)
is directionally differentiable. Then, for arbitrary ζ, r , 0n in Rn, for each t, we have

lim
s→z(t)
s<Ωψ

 n∑
i=1

riψ
′
i(t, s, v(t); ζ)

 = n∑
i=1

[αiri max
q∈Mi,v(t) (z(t))

(
φ′i(q, t, z(t), v(t); ζ)

)
+ βiri min

γ∈mi,v(t) (z(t))

(
ϕ′i(γ, t, z(t), v(t); ζ)

)
], (2.1)

where the directional derivatives are taken with respect to s-variable.

Proof. Under the hypotheses of the theorem; combining the properties of scalar multiples and finite sums about the
generalized gradients in [8] with results in Lemma 2.1, Wi(t) can be written in the following form: αiWi,1(t)+ βiWi,2(t).
It follows from Lemma 1.6 that coWi(t) = αicoWi,1(t)+βicoWi,2(t). It follows from Lemma 1.3, Lemma 1.8 and Lemma
2.1 that σcoWi,1(t) (riζ) = (ψmax)′i (t, z(t), v(t); riζ) = ri (ψmax)′i (t, z(t), v(t); ζ) = riσcoWi,1(t) (ζ). Consequently, by using all
this, Lemma 1.3, Lemma 1.5, Lemma 1.8, Lemma 2.1, and the facts that both the convex hull and any scalar multiple
of a compact set in Rn are compact, we have

n∑
i=1

[αiri max
q∈Mi,v(t) (z(t))

(
φ′i(q, t, z(t), v(t); ζ)

)
+ βiri min

γ∈mi,v(t) (z(t))

(
ϕ′i(γ, t, z(t), v(t); ζ)

)
]

=

n∑
i=1

[αiri max
q∈Mi,v(t) (z(t))

(
σ∂sφi(q,t,z(t),v(t))(ζ)

)
+ βiri max

γ∈mi,v(t) (z(t))

(
σ∂s(−ϕi)(γ,t,z(t),v(t))(ζ)

)
]

=

n∑
i=1

[αiσcoWi,1(t) (riζ) + βiσcoWi,2(t) (riζ)]

=

n∑
i=1

σcoWi(t) (riζ) .

Moreover, note that it follows from Lemma 2.1 and Corollary 2.2 that ∂s (ψ)i (t, z (t) , v(t)) = coWi(t). Thus, in view of
Lemma 1.3 and Lemma 2.1, it follows from (2.2) that

n∑
i=1

σcoWi(t) (riζ) =
n∑

i=1i

riψ
′
i(t, z(t), v(t); ζ). (2.2)

The following is a special form of inequality (6) in [13]. It was showed in [13] that the inequality holds. Thus, the
following holds for ζ, r , 0n,

lim

 n∑
i=1

ri
[
▽sψi(t, s, v(t)) · ζ

]
: s→ z(t), s < Ωψ

 ≥ n∑
i=1

riψ
′
i(t, z(t), v(t); ζ). (2.3)

In addition, it is clear from the definition of limit superior that reverse of (2.3) always holds for ζ, r , 0n. Combining
the above results completes the proof. □

Theorem 2.4. Assume that the hypotheses of of Lemma 2.3 are satisfied. Then, for an arbitrary ζ ∈ Rn, for each t, we
have

(Jsψ(t, z(t), v(t)))∗ ζ = {A∗ζ : ai ∈ coWi(t), i = 1, ..., n} . (2.4)

Proof. For convenience, we denote by (Jψ) ζ and W, respectively, the left and right sides of the equality (2.4). First
we note that these sets are nonempty, convex and compact, as easily seen from the basic properties of the generalized
gradient and Jacobian in [8] and [11] (see [13]). We now try to determine the support functions of these sets. After we
apply Lemma 1.4.

For any r = (r1, ..., rn) in Rn, the support function of (Jψ) ζ is determined in the following form [8]:

σ(Jψ)ζ(r) = lim
{
r · ((Jsψ(t, s, v(t)))∗ ζ) : s→ z(t), s < Ωψ

}
= lim

 n∑
i=1

ri
[
▽sψi(t, s, v(t)) · ζ

]
: s→ z(t), s < Ωψ

 ,
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σW (r) = max
A∗ζ∈W

r · (A∗ζ) = max

 n∑
i=1

[
ri (ai · ζ)

]
: ai ∈ coWi(t)


=

n∑
i=1

max
ai∈coWi(t)

(ri (ai · ζ)) =
n∑

i=1

max
ai∈coWi(t)

(ai · (riζ))

=

n∑
i=1

σcoWi(t) (riζ) .

It follows from (2.1) and (2.2) that σ(Jψ)ζ(r) = σW (r). Thus, by applying Lemma 1.4 we obtain (2.4). □

Theorem 2.5. Let the admissible pair (v, z) solve problem (1.1)-(1.3). Assume that the hypotheses of Theorem 2.4 and
the followings are satisfied for each i = 1, ..., n, for each s in B(z (t) , ε), (ψmax)i (·, s, ·) , (ψmin)i (·, s, ·) and L (·, s, ·) are
L × Bm-measurable; U has L × Bm-measurable graph; L is Lipschitz. Then, there exist a function p̄ ∈ AC ([0, 1] ,Rn)
together with a scalar λ equal to 0 or −1 satisfying condition that |λ| + ∥p̄(t)∥ , 0, for t ∈ [0, 1] ,and the following
condition called the adjoint condition:

− ˙̄p(t) ∈ { p̄(t)A + λξ : ai ∈ coWi(t), ξ ∈ ∂sL (t, z(t), v(t)) , i = 1, ..., n} a.e.. (2.5)

Proof. Under the hypotheses of the theorem; ψ (·, s, ·) ) is L × Bm-measurable for each s in B(z (t) , ε). Moreover,
by observing Corollary 2.2, Theorem 2.4, and that it is viewed p̄ = (p̄1, ..., p̄n) as 1 × n, where p̄i is ith component
function of p̄, we see that the hypotheses of Corollory 2 in [7] are satisfied. Thus, combining results in Theorem 2.4
and Corollory 2 in [7], we obtain the results in this theorem. □

Example 2.6. Let us consider the system of the form (1.1) such that n = 2, ψ1 = max
q∈[0,1]

q(s2 − s2
1), ψ2 = u. Let U(t) ⊆

[0, 1], where it is considered that the graph of U is equal to [0, 1] × [0, 1]. And also, let L = 1
2 u2, x(0) = x(1) = (0, 0).

We check that for all t ∈ [0, 1] , (z, v) = (0, 0) is optimal.
Observe that ψ1 is not differentiable at (t, (0, 0) , u) in s. Hence, this system is nonsmooth. ψ2 can be written the

following form in (1.2): ψ2 = min
r∈R2

u, where R2 is any compact set in R. φ1 = q(s2 − s2
1) is continuously differentiable

in s. Hence, it is Lipschitz, regular and ∂sφ1(q, t, z, v) = {▽sφ1(q, t, z, v)} = {(0, q)} . It can be easily verified that the
rest of the hypotheses of both statements of Lemma 2.1 are satisfied. It follows from Lemma 2.1 that ∂sψ1(t, z, v) =
{(0, a) : a ∈ [0, 1]} and (ψ1)0 (t, z, v; d) = max

a∈[0,1]
(d · a), ∀d ∈ R2. In addition, it can be easily verified that ψ1 (t, ·, v)

is two-sided directionally differentiable at z, and that (ψ1)′ (t, z, v; d) = max
a∈[0,1]

(d · a), where d ∈ R2 and the directional

derivatives are taken with respect to s-variable, and hence that hypotheses in Theorem 2.4 and Theorem 2.5 are satisfied.
From these theorems, we derive the followings:

(Jsψ(t, z, v))∗ ζ = {(0, aζ1) : a ∈ [0, 1]} for ζ = (ζ1, ζ2) ∈ R2 ,(
− ˙̄p1(t),− ˙̄p2(t)

)
∈ {(0, ap̄1(t)) : a ∈ [0, 1]} a.e..

From here, it is easy to see that λ = −1 and p̄(t) = ( p̄1(t), p̄2(t)) = (c1,−ac1t + c2) which satisfy the condition in
Theorem 2.5, where a ∈ [0, 1] and c1, c2 ∈ R.

3. Concluding Remarks

In this paper, nonsmooth systems with continuous-time which is governed by systems of ordinary differential equa-
tion including max-type (or min-type) functions depending on parameters on compact sets are studied. An optimality
condition regarding the adjoint condition involved in the maximum principle giving necessary conditions of optimality
for optimal control problems of these systems, has been obtained. In general, the optimality condition (6) in Corollory
2 in [7] is also valid for these problem. The optimality condition (2.5) in Theorem 2.5 in this paper, unlike the condition
associated with the generalized Jacobian set of the vector-valued function in [7], can be directly expressed with the
functions φi and ϕi in max-type and min-type component functions in (1.2). In this sense, it can provide an easier and
more practically calculable criterion for determining the optimal solution to the problem. In addition, Example 2.6,
which is a simple application of the results presented here, proves that Theorem 2.5 can be applied to nonsmooth cases.
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