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A B S T R A C T  

In this study, an analytical solution is presented for the conductive heat transfer of a plate 

made of composite materials at stable conditions with energy generation and radiation flux 

within the composite plate. The proposed exact solution is useful for studying heat transfer 

in tanks and composite panels. In addition, the coefficient of thermal conductivity tensor for 

composite materials is introduced and a method for determining the coefficient based on the 

properties of the matrix is introduced. The heat transfer equation in the Cartesian coordinate 

system for composite materials is obtained when the fibers in each layer are wrapped around 

the plate. Then, using the method of separating the variables, an exact solution for this 

equation is presented under certain boundary conditions.
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1. Introduction 

Today, the use of composite materials for the construction of 

equipment, machinery and structures has developed 

significantly. The use of these materials results in lightening 

of equipment and structures (while maintaining mechanical 

strength) and lowering costs. The use of these materials in 

some industries (chemical industry, gas turbine blades, 

military industry, aerospace and so on) is unrivaled with 

isotropic materials. Scientific studies have focused more on 

the behavior of these materials than on their mechanical and 

thermal properties and less on other phenomena such as heat 

transfer in these materials. So far, some activities have been 

carried out in the field of heat transfer analysis in non-

isotropic materials. Initial analyzes focused mainly on one-

dimensional heat transfer in non-isotropic crystals. So far, 

activities have been carried out in the field of heat transfer 

analysis in non-isotropic materials. Preliminary analyzes 

mainly focused on one-dimensional heat transfer in non-

isotropic crystals [1, 2]. 

Gradually, with the development of knowledge of composite 

materials, heat transfer in these materials has also been 

considered. Mulholland's paper on the phenomenon of 

intermittent diffusion in orthotropic cylinders is one of the 

first activities in this field [3]. Today, continuous activities 

are carried out to present new formulations and to study heat 

transfer in composite materials. 

Today, Golovchan [4] and Shi-qiang [5] have conducted 

research in pursue of introducing new formulations and to 

study heat transfer in composite materials. Greengard 

examined the theory of heat transfer and the determination 

of conductive properties in composites in his article [6]. 

The examination of heat transfer in the production process of 

composite materials is also of great importance. For 
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example, the application of heat transfer in non-isotropic 

materials made by Newnham [7] has been done by the finite 

element method. As an example of a one-dimensional 

analytical heat transfer solution, a study by San [8] offers a 

non-permanent solution in a composite block. 

Oseloka [9] obtained a response for heat transfer at 

composite interfaces using Green's functions and integral 

formulation of the heat transfer equation . In another study, 

Lu et al. [10] and Halpin et al. [11] developed exact solutions 

for the discontinuous heat transfer in a composite structure 

in radius and axis directions and under different boundary 

and initial conditions. 

In this study, three-dimensional stable heat transfer in a 

compound cube was investigated. In addition, an analytical 

solution for the temperature distribution of the cube is 

obtained under the simultaneous influence of solar radiation 

and a constant temperature from inside and outside, and 

natural heat transfer is investigated. In this study, the method 

of separation of variables was used to better solve heat 

transfer equations. 

2. Modeling, Equations and Boundary 

Conditions 

In this study, stable conduction heat transfer in the composite 

plate was investigated. Figure 1 shows a plate at x, y and z 

positions. 

 

Figure 1 3D coordinate systems 

It is also assumed that the internal energy production is a 

function of r and is defined as follows: 

 �̇� =
𝛾

𝑟2
�̇� ( 1 ) 

Here (γ) is a constant coefficient. A cubic element similar to 

Figure 1 should be considered to determine the heat transfer

 equation. In the Cartesian coordinate system, the Fourier 

equation hip in the orthotropic material is as follows: 
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The following equations are written for a better 

understanding of heat transfer in orthotropic materials: 
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In the above equations: 
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( 4 ) 

Plugging Equation 3 in Equation 4, we get: 
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( 5 ) 

If the boundary conditions are not a function of z and the 

temperature gradient of z is zero and the steady-state 

temperature gradient term is zero, then: 
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Outside the plate, there is a boundary condition for both 

natural convection and solar radiation, therefore: 

 
−𝑘22

𝜕𝑇

𝜕𝑧
= −𝑄 + ℎ(𝑇 − 𝑇∞) ( 7 ) 

where 𝑇∞ is the ambient temperature, h is the heat transfer 

coefficient on the outer surface of the plate at ambient 

temperature, and Q is the radiative flux from the sun, and the 

following equation hip is obtained: 

 𝑄 = 𝜀𝜎𝐴𝑇𝑠
4 ( 8 ) 
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Figure 2 Placing of the plate in the composite material 

Figure 2 shows a composite plate made up of several layers,

 where the direction of the fibers in each layer may be 

different from the adjacent layer. Therefore, Equation 4 will 

be different for each of the layers and there will be continuity 

of temperature and continuity of temperature flux between 

layers with new boundary conditions. If i and i+1 are the 

boundaries between the two layers r=ri, then: 

 
𝑇(𝑖) = 𝑇(𝑖 +1)& − 𝑘22

𝜕𝑇(𝑖)

𝜕𝑟
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 ( 9 ) 

2.1. Analytical Conductivity Solution in Composite 

Plate Material 

In this section, the analytical solution of the conduction heat 

transfer equation of Equation (4) in the conditions described 

in the previous section presents the stable temperature 

distribution with energy generation in the cylinder and the 

boundary case of simultaneous displacement and radiation 

inside the cylinder. By writing Equation (4) again, Equation 

(8) will be obtained 12: 
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Here, the decomposition method is used to solve Equation 

(8). 
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By applying Equation (10) to Equation (8) the heat transfer 

equation is split by the following two equation s: 
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In this equation, the parameter (µ) represents the eigenvalues 

of the heat transfer equation and its value is calculated from 

the application of boundary conditions. Equation 11 is also 

called the Cauchy-Euler differential equation. 
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Here: 
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In this study, the response of the Euler part of the Fourier 

series with respect to the internal elongation (ro) is measured 

to equate all the Fourier series coefficients (with the 

temperature dimension) of the temperature distribution. To 

homogenize the boundary condition inside the cube by 

applying the variable (τ =T-Tin) to Equation (9), the 

following equation for the temperature distribution is 

obtained: 
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( 16 ) 

In the above equation hip, the coefficients (an, bn, cn, and dn) 

are constant coefficients (in terms of temperature) of the 

Fourier series. Also, in Equation (14), the headings and 

indices represent layer (i) of the composite sheet. Boundary 

conditions are necessary to determine the Fourier 

coefficients. Since the temperature in the cylinder is assumed 

to be a constant value (Tin) in this study, this situation appears 

as (
0( , ) 0r r   ) in Equation (14), and by applying it, the 

following equation s are obtained for the Fourier coefficients 

of the first layer: 
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Boundary conditions of temperature continuity and heat flux 

continuity Equation 14 are established between the layers. 

By plugging Equations 15, 16 and 17 in Equation 14, the 

following results are obtained at the boundary of the layers 

at the composite interface (radius r=ri) [12]: 
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(18,19,20,21,22 and 23) It should be noted that their equation 

hip is valid only at the boundary between layers and has no 

validity outside the plate. On the outer surface of the plate, 

the boundary condition of natural displacement and radiation 

is established simultaneously and must be placed in relation 

to Equations (14), (5) for it to be applied. In this case, the 

following equations were obtained: 
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( 28 ) 

According to Equations (15) - (24) it is concluded that the 

sum (ao and bo) is equal in all layers and its values can be 

calculated from Equations (25 and 26). The coefficients in 

this study are determined using the Gaussian elimination 

method and the cross-coefficient matrix, and the same 

method can be used to determine the coefficients (an, bn, cn 

and dn). 

3. Conclusion 

In this study, the equation hip of tensor and heat transfer in 

composite materials is introduced and the method of 

determining the conductivity coefficients of these materials 

is discussed, and then an analytical solution for the heat 

transfer of the composite plate in two-dimensional Cartesian 

coordinates is presented. The proposed definitive solution 

can be used directly on vehicles or machines for clothing 

with composite materials. The equation hips obtained for 

stable conductive heat transfer in a composite plate (25 and 

26) are the general form of heat transfer for this plate and can 

be used for all thermal boundary conditions. Boundary 

conditions are only effective in the amount of Fourier 

coefficients of the above equation hip, and these coefficients 

can be obtained using any desired boundary condition inside 

and outside the plate. It should also be noted that the 

interlayer thermal conditions related to temperature and heat 

flux continuity are independent of the boundary conditions 

inside and outside the plate. In this study, a boundary 

condition where the temperature inside the plate is constant 

and the outer surface is constant under the simultaneous 

effect of free transfer heat transfer and solar radiation is 

investigated. 
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