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ABSTRACT

The rotational embedded submanifolds of En+d were first studied by N. Kuiper. The special
examples of this type are generalized Beltrami submanifolds and toroidals submanifold.
The second author and et. all recently have considered 3−dimensional rotational embedded
submanifolds in E5. They gave some basic curvature properties of this type of submaifolds.
Self-similar flows emerge as a special solution to the mean curvature flow that preserves the
shape of the evolving submanifold. In this article we consider self-similar submanifolds in
Euclidean spaces. We obtained some results related with self-shrinking rotational submanifolds
in Euclidean 5−space E5. Moreover, we give the necessary and sufficient conditions for these type
of submanifolds to be homothetic solitons for their mean curvature flows.
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1. Introduction

Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the
(n+ d)−dimensional Euclidean space En+d. The position vector x of M is determined by x = −→op from a
point p ∈ M to an arbitrary reference point o ∈ En+d. The position vector field x of the submanifolds M has
the decomposition

x = xT + xN , (1.1)

where xT and xN are the tangential and normal components of x, respectively [9].
The mean curvature vector field

−→
H is one of the most important invariants of the submanifold M . The mean

curvature flow is the gradient flow of the area functional on the space of the submanifold M . Self-similar flows
arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold
[26]. The most important mean curvature flow is the self-similar flow obtained from the following non-linear
elliptical system:

−→
H + xN = 0. (1.2)

For complete self-shrinkers with constant norm of the second fundamental form see [11].
Another important mean curvature flow is inverse mean curvature flow. Homothetic solitons are the

solutions of the inverse mean curvature flow defined by

−
−→
H∥∥∥−→H∥∥∥2 = cx⊥. (1.3)

where, x⊥ is the normal component of the position vector x. Here, the solutions of equation (1.3) form
homothetic solitons for constant speed c ̸= 0 inverse mean curvature flow. If c < 0, the inverse mean curvature
flow is said to have contracting solutions, if c > 0 , it is said to have expanding solutions [7].
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This paper is organized as follows: In section 2, some basic concepts, theorems and definitions which will be
used in the other sections are given. In particular, the basic concepts of differentiable maps, submanifolds and
their second fundamental form, Gauss and Weingarten equations, and mean curvature are given. In Section
3, the materials and methods used in obtaining the results are given. This section consists of four parts. In
the first part, the properties of the mean curvature flow are examined and some examples are given. In the
second part, the inverse mean curvature flow is discussed. In the third part, the basic properties of the mean
curvature flow preserving the weighted volume are given. In the last part homothetic solitons are examined.
In the final section we considered 3−dimensional rotational submanifolds in E5. Further, we give some results
of two types of rotational submanifolds E5 satisfying the self-similarity condition. Further, we obtained some
results related with the 3-dimensional rotational homothetic submanifolds in E5. We also give some examples
of these type of submanifolds.

2. Basic concepts

Let x : M −→ En+d be an immersed submanifold in the Euclidean space En+d. Denote by χ(M) and χ⊥(M)
the space of the smooth vector fields tangent and normal to M , respectively. Given any orthonormal local
vector fields e1, e2, ..., en tangent to M , one considers the second fundamental map h : χ(M)× χ(M) → χ⊥(M)
given by

h(ei, ej) = ∇̃e
i
e
j
−∇e

i
e
j
; 1 ≤ i, j ≤ n, (2.1)

where ∇ and ∇̃ are the induced connection of M and the Riemannian connection of En+d, respectively. This
map is well-defined, symmetric and bilinear [8].

For any arbitrary orthonormal frame field {n1, n2, ..., nd} of M , recall the shape operator A : χ⊥(M)×
χ(M) → χ(M) given by

Anα
ek = −∇̃eknα +Deknα, 1 ≤ α ≤ d, 1 ≤ k ≤ n, (2.2)

where D is the connection of the normal bundle of M . The shape operator is bilinear, self-adjoint and satisfies
the following equation:

⟨Anα
ej , ei⟩ = ⟨h(ei, ej), nα⟩ = hα

ij , 1 ≤ i, j ≤ n; 1 ≤ α ≤ d, (2.3)

where hα
ij are the coefficients of the second fundamental form. The equations (2.1) and (2.2) are called Gaussian

formula and Weingarten formula respectively. In addition,

h(ei, ej) =

d∑
α=1

hα
ijnα, 1 ≤ i, j ≤ n (2.4)

holds. The mean curvature vector
−→
H is defined by

−→
H =

1

n

n∑
i=1

h(ei, ei). (2.5)

The norm H =
∥∥∥−→H∥∥∥ is called the mean curvature of Mn [8]. The submanifold M is called minimal if the the mean

curvature H of M vanishes identically.

3. Material and Method

In the present section we consider mean curvature flow and homothetic solitons in En+d. We give some
well-known results and examples regarding these concepts.

3.1. Mean Curvature Flow

Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the Euclidean space
En+d. Define the family of smooth immersions

x(p, t) : M → En+d, x(p, 0) = x(p). (3.1)
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Then the mean curvature flow of x is a family xt : M → En+d that satisfies

(
∂

∂t
xt(p)

)⊥

= H(p, t), x0 = x, (3.2)

where H(p, t) is the mean curvature vector of xt(M) at xt(p) and υ⊥ denotes the projection of υ into the normal
space of xt(M) [26]. The mean curvature flow was studied in [31] and [30]. For higher order submanifolds, see
[13] and [32]. However, the mean curvature flow of all graphs was also analyzed [17]. For detailed information
about the mean curvature flow see also [28].

The area functional of the isometric immersion x : M → En+1 for the n−dimensional hypersurface M is
calculated by A(x) =

∫
M

dµ, where µ is the canonical measure with respect to the induced metric g of the

Euclidean space En+1. The first variation of the area functional becomes

d

dt
A(x(p, t)) =

d

dt

∫
M

dµt = −
∫
M

Hdµt. (3.3)

Therefore, the change in area is non-increasing. In other words, there will be no increase in surface area of the
family Mt along the mean curvature flow, but a decrease may be possible.

Example 3.1. Let Bn+1
r (x) =

{
y ∈ En+1 : |y − x| ≤ r

}
be an open ball in En+1. Denote by Mt = Bn+1

r(t) , t ∈ R a
family of the concantrix sphere in En+1 with the radius of r(t). As it is known, since the mean curvature
remains invariant under the isometries of En+1, equation (3.2) turns into an ordinary differential equation
d
dtr(t) = − n

r(t) of the radius function r(t). In this case, for r(0) = ρ, M0 = ∂Bρ a non-trivial solution of equation

(3.4) is r(t) =
√

ρ2 − 2nt, t ∈ (−∞, ρ2

2n ) (see, ([16])). Consequently, for t 7→ ρ2

2n the hypersphere shrinks to a point
(see Figure 1).

Figure 1. The hypersphere shrinks to a point

Example 3.2. Let Mt = Bn+1−k
r(t) × En+1, t ∈ I, 0 ≤ k ≤ n be a hypercylinder in En+1. Then equation (3.2) turns

into an ordinary differential equation of the radius function r(t) of the form d
dtr(t) = −n−k

r(t) . In this case, for

r(0) = ρ, M0 = ∂Bρ a non-trivial solution of equation is r(t) =
√

ρ2 − 2(n− k)t, t ∈ (−∞, ρ2

2(n−k) ) (see, ([16])). In

this case, for t 7→ ρ2

2(n−k) the hypercylinder shrinks to a line (see Figure 2).
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Figure 2. The hypercylinder shrinks to a line

Example 3.3. Let M0 ⊂ E3 be torus defined as the locus of the points at a distance of ρ units from the unit circle.
In this case, the mean curvature H0 of M0 should be positive for or ρ < 1

2 . Suppose the region formed by Mt

is Ωt. Thus, according to the maximum principle, as t increases, the mean curvature Ht of Mt will increase.
Furthermore, the torus shrinks into a circle [16] (see Figure 3).

Figure 3. The torus shrinks to a circle

Definition 3.1. A submanifold M in the Euclidean space Rn+d is called self-shrinker if the curvature vector
field

−→
H of M satisfies the following non-linear elliptic system:

−→
H + λxN = 0, (3.4)

where xN is the normal component of x and λ is a positive real valued function. The submanifold is self-
expander if λ < 0.

The case of vanishing λ is the well-known case of minimal submanifold, which of course is stationary under
the action of the flow [17]. Infact, self-similar submanifolds are spacial type of self-shrinker submanifolds with
λ = 1 [20].

The classification and analysis of low-index mean curvature flow and automatic shrinkage are considered
in [25]. For the exact surfaces that shrink themselves, see [29]. Recently, self-similar surfaces have also been
studied in [18]. A review article [14] on closed hypersurfaces that shrinks and includes symmetry is noteworthy.
Results on spontaneous contraction and singularity of the mean curvature flow [21] can also be seen.

In the plane M = Γ ⊂ E2 is a curve then the all solutions of (3.4) have been classified by Abresch and Langer
[1]. They showed that if a planar curve Γ ⊂ E2 is self-shrinking, then there is a constant cΓ such that κe−

|γ|
2 = cΓ

holds on all of Γ, where κ is the curvature of Γ.
In [32] K. Smooczyk proved the following results:

Theorem 3.1. Let x : M → En+d be a closed self-shrinker then M is a minimal submanifold of the sphere Sn+d−1(
√
n)

if and only if
−→
H ̸= 0 and ∇⊥υ = 0, where υ =

−→
H∥∥∥−→H∥∥∥ is the principal normal of the submanifold M .

Theorem 3.2. Let x : M → En+d be a compact self-shrinker. Then M is spherical submanifold if and only if
−→
H ̸= 0 and

∇⊥υ = 0 holds identically.

Theorem 3.3. Let x : M → En+d be a complete non compact connected self-shrinker with
−→
H ̸= 0 and ∇⊥υ = 0. Then

M must belong to one of the followings:
Γ× En−1, Nk × En−k.
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Here, Γ is one of the Abresch-Langer curves and Nk is a complete minimal submanifold of the sphere Sk+d−1 ⊂ Ed+k,
0 ≤ k ≤ n.

Later, C. Arezzo and J. Sun proved the following result in [3].

Theorem 3.4. A complete submanifold M ⊂ Sn+d−1(r) ⊂ En+d is minimal submanifold of Sn+d−1(r) if and only if it
is a self-shrinker in En+d for λ = n

r2 , where λ is a real constant.

In [5] H-D Cao ad H. Li listed the following examples of self-shrinkers.

Example 3.4. For any positive integers m1, ...,md such that m1 + ...+md = n, the submanifold M =

Sm1(
√
m1)× ...× Smd(

√
md) is an n-dimensional compact self-shrinker in En+d with

−→
H = −x,

∥∥∥−→H∥∥∥ = n, ∥A∥2 =

d. Here Sri(ri) =
{
xi ∈ Emi+1 : ∥xi∥2 = r2i

}
, 1 ≤ i ≤ d, is mi−dimensional round sphere with radius ri.

Example 3.5. For any positive integers m1, ...,md, q ≤ 1 with m1 + ...+md + q = n, the submanifold M =
Sm1(

√
m1)× ...× Smd(

√
md)× Eq ⊂ En+d is an n-dimensional complete non-compact self-shrinker in Rn+d

with
−→
H = −x⊥ and ∥∥∥−→H∥∥∥2 =

n∑
i=1

mi, ∥A∥2 = d.

3.2. Homothetic Solitons

Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the Euclidean space
En+d. Define the family of smooth immersion x(p, t) : M → En+d, x(p, 0) = x(p). Then the inverse mean curvature
flow of x is a family xt : M → En+d that satisfies(

∂

∂t
xt(p)

)⊥

=
H(p, t)

∥H(p, t)∥
, x0 = x, (3.5)

where H(p, t) is the mean curvature vector of xt(M) at xt(p) and υ⊥ denotes the projection of υ into the normal
space of xt(M) [6], [15].

A lot of work has been done on the inverse mean curvature flow when M a is hypersurface, see for example
[23] and [24]. Under the inverse mean curvature flow of an immersion x : M → En+d, the change of flow
relative to homothety will be of the form F (p, t) = ectx(p), c ̸= 0, t < 0, where the immersion x satisfies the
equation

−
−→
H∥∥∥−→H∥∥∥2 = cx⊥,

∥∥∥−→H∥∥∥ ̸= 0. (3.6)

Here, the solutions of equation (3.6) form homothetic solitons for constant speed c ̸= 0 inverse mean curvature
flow. If c < 0, the inverse mean curvature flow is said to have contracting solutions, if c > 0, it is said to have
expanding solutions [7]. The solution of equation (3.6) for planar curves is also given in [14]. In particular, the
involutes of the classical logarithmic spiral and circle are shown to be expanding solutions of the inverse mean
curvature flow.

Remark 3.1. For a homothetic soliton, M ⊂ En+d the condition (3.6) transforms into the form∥∥∥−→H∥∥∥2 =
〈−→
H,

−→
H
〉
= −

〈
c
∥∥∥−→H∥∥∥2 x⊥,

−→
H

〉
= −c

∥∥∥−→H∥∥∥2 〈x⊥,
−→
H
〉
. (3.7)

However, since
∥∥∥−→H∥∥∥ ̸= 0, the relations

〈
x,

−→
H
〉
= −1

c
, or ⟨∆gx, x⟩ = −1

c
,or ∆g ∥x∥2 = 2

(
n− 1

c

)
, (3.8)

can be obtained with the help of the equation (3.7). Here, g is the metric of M induced from En+d [15].

With the help of previous remark and using [7] one can get the following result.
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Proposition 3.1. Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the Euclidean
space En+d. Then M is a homothetic soliton of the inverse mean curvature flow if and only if〈

x,
−→
H
〉
= −1

c

holds, where c is constant speed of inverse mean curvature flow.

As can be seen from the definition, the homothetic soliton is the self-similar solution of the inverse mean
curvature flow.

Definition 3.2. Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the
Euclidean space En+d. For any smooth vector field Z ∈ T (M) if the equation div(Z) = 0 holds then Z is called
an incompressible vector field [10].

The following result is due to [10].

Proposition 3.2. Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the Euclidean
space En+d. Then the tangent component xT of the position vector field x is incompressible if and only if

〈
x,

−→
H
〉
= − 1

c

holds, where c is constant speed of inverse mean curvature flow.

As a consequence of the previous propositions one can get the following result.

Corollary 3.1. Let x : M → En+d be an isometric immersion of an n−dimensional submanifold M in the Euclidean
space En+d. If M is a homothetic soliton of the inverse mean curvature flow with c = 1 then the tangent component xT

of the position vector field x is incompressible.

4. Results and Discussion

The mean curvature flow is the gradient flow of the functional field of the n−dimensional M submanifold.
From the point of view of analysis, this flow is produced by a non-linear parabolic equation. Although the
classified results of the analysis indicate the short-term existence of the mean curvature flow, understanding the
long-term behavior is a difficult problem that requires controlling for possible singularities that may arise along
the flow. The mean curvature vector field H is one of the most important invariants of the M submanifold. In
physics, the mean curvature vector field is the torsion field applied to the submanifold originating from the
destination space. Self-similar flows arise as a special solution of the mean curvature flow that preserves the
shape of the submanifold [22]. The most important mean curvature flow is the self-similar flow obtained when
the change becomes a homothety. The mean curvature vector H of such self-similar submanifold satisfies the
following nonlinear elliptic system given in (3.4).

In [18], the present authors and E. Etemoğlu investigated self-similar surfaces in Euclidean 4−space E4.
Additionally, we give necessary and sufficient conditions of spherical product surfaces and surfaces with
Monge patch in E4 to become self-similar. In the current work, as a generalization of this work, we obtain
some results regarding the self-similarity of 3−dimensional rotational submanifolds in Euclidean space E5.

Let f : Nd → Er; f(x) = (f1(x), ..., fr(x)) , x ∈ Nd be an isometric immersion of d−dimensional Riemannian
manifold Nd into r-dimensional Euclidean space Er. Consider the standard immersion g : Sq−1 → Eq onto unit
sphere Sq−1. By rotating the submanifold Nd around Sq−1 one can obtain a rotational submanifold M given
with the isometric immersion

φ : M → Er+q−1; φ(x, y) = (f1(x), ..., fr−1(x), fr(x)g(y)) , (4.1)

where the last component g(y), being the position vector in Eq and fr(x) > 0 for all x ∈ Nd, y ∈ Sq−1 [27]. If we
choose Nd as the regular curve γ(I), I ⊂ R, in r−dimensional Euclidean space Er then the resultant rotational
submanifold M which lies in ambient space Er+q−1 will be represented by the isometric immersion

φ(s, y) = (f1(s), ..., fr−1(s), fr(s)g(y)) . (4.2)

where the last component g(y) represents either a unit speed spherical curve or a spherical submanifold of Eq.
Specifically, if fr(s) = e−s is taken, the curve

γ(s) =
(
f1(s), ..., fr−1(s), e

−s
)
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indicates a generalized tractrix and the submanifold obtained by isometric immersion φ = φ(x, y) is called
generalized Beltrami submanifold [19]. In the same study, the authors showed that the generalized Beltrami
submanifold is pseudo-spherical, its sectional curvature is K = −1.

In [4] the authors studied 3-dimensional rotational submanifolds in 5-dimensional Euclidean space E5. They
considered the following spacial case:

For p = 2 and q = 4, the isometric immersion

X(s, u, v) = (f1(s), f2(s)g(u, v)) , (4.3)

with
g(u, v) = (0; a1 cosu, a1 sinu, a2 cos v, a2 sin v), (4.4)

describes a rotational submanifold M in 5-dimensional Euclidean space E5 [4]. The surface given with the
position vector (4.4) is a Clifford torus T 2 in E4, such that a1, a2 ∈ R are real constants satisfying a21 + a22 = 1.
From now on we assume that M is a rotational submanifold in 5-dimensional Euclidean space E5.

We choose a moving frame {e1, e2, e3, e4, e5} such that e1, e2, e3 are tangent to M and e4, e5 are normal to M
in the following (see [4]);

e1 =
xs

∥xs∥
, e2 =

xu

∥xu∥
, e3 =

xv

∥xv∥

e4 =
1

κ
(f

′′

1 , a1f
′′

2 cosu, a1f
′′

2 sinu, a2f
′′

2 cos v, a2f
′′

2 sin v) (4.5)

e5 = (0, a2 cosu, a2 sinu,−a1 cos v,−a1 sin v)

where κ > 0 is the curvature of the unit speed profile curve γ defined by

κ2 = ∥γ′′(s)∥2 =
(f ′′

2 (s))
2

1− (f ′
2(s))

2 . (4.6)

With respect to this frame we can obtain the second fundamental maps (see [4]);

h(e1, e1) = κe4,

h(e2, e2) = − f ′′
2

κf2
e4 −

a2
a1f2

e5, (4.7)

h(e3, e3) = − f ′′
2

κf2
e4 +

a1
a2f2

e5,

h(e1, e2) = h(e1, e3) = h(e2, e3) = 0.

Consequently, by the use of (2.5) with (4.7) the mean curvature vector
−→
H of M becomes

−→
H =

1

3

{(
κ− 2f ′′

2

κf2

)
e4 +

(
a21 − a22
a1a2f2

)
e5

}
. (4.8)

As a consequence of (4.8) with (4.6) one can get the following result.

Corollary 4.1. [4] Let M be a rotational submanifold in E5 given with the parametrization (4.3). Then M is minimal if
and only if

f2(s)f
′′
2 (s) + 2(f ′

2(s))
2 − 2 = 0 and a1 = a2 =

1√
2
. (4.9)

We obtain the following result:

Proposition 4.1. Let M ⊂ E5 be a the rotational submanifold given by the parametrization (4.3). Then M is a homothetic
soliton of the inverse mean curvature flow if and only if

(f1f
′′
1 + f2f

′′
2 )

(
f2f

′′
2 − 2

(
1− (f ′

2)
2
)

f2f ′′
2

)
= −3

c
. (4.10)
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Proof. With the help of (4.3) and (4.5) we get

⟨e4, x⟩ =
f1f

′′
1 + f2f

′′
2

κ
, ⟨e5, x⟩ = 0. (4.11)

Further, by the use of (4.3) with (4.8) we obtain

〈−→
H,x

〉
= (f1f

′′
1 + f2f

′′
2 )

(
f2f

′′
2 − 2

(
1− (f ′

2)
2
)

3f2f ′′
2

)
. (4.12)

Assume that M is a homothetic solution of the inverse mean curvature flow then equation
〈
x,

−→
H
〉
= − 1

c is
satisfied. Thus, the desired result is obtained by using the equation (4.12).

From the orthogonal decomposition (1.1) of the position vector x of M1 we obtain

xN = x− ρ′(s)e1, (4.13)

where ρ(s) = 1
2 ∥x∥

2 is the square norm of the distance function of the position vector x such that

ρ′(s) = f1(s)f
′
1(s) + f2(s)f

′
2(s). (4.14)

Due to [9] we obtain the following results.

Theorem 4.1. Let M be a rotational submanifold in E5 given with the parametrization (4.3). Then x = xN holds
identically if and only if M is a spherical submanifolds of E5.

Proof. Assume that M is a rotational submanifold in E5 given with the parametrization (3.4). If x = xN holds
identically, then we get ρ′(s) = 0. Further, the the meridian curve γ has arc-length parameter we have the
system of differential equations

(f ′
1(s))

2
+ (f ′

2(s))
2

= 1, (4.15)
f1(s)f

′
1(s) + f2(s)f

′
2(s) = 0, (4.16)

which has a nontrivial solution

f1(s) =
c1
2
sin

(
2(c2 − s)

c1

)
, f2(s) =

c1
2
cos

(
2(c2 − s)

c1

)
, c1, c1 ∈ R. (4.17)

Consequently, it is a parametrization of a circle of radius r = c1
2 . Thus the rotational submanifold M1 with this

meridian curve is a spherical submanifolds of E5. The converse is clear.

Example 4.1. If the meridian curve of the rotational submanifold M ⊂ E5 is taken as a unit circle, then the
submanifold M becomes a spherical submanifold with parameterization

x(s, u, v) = (cos s, a1 sin s cosu, a1 sin s sinu, a2 sin s cos v, a2 sin s sin v).

Since c = −1, M is a shrinking homothetic soliton of the inverse mean curvature flow.

In [12] Q-M Cheng and Y. Peng considered complete proper self-shrinkers of 3 dimension.

Theorem 4.2. Let x : M → E5 be an isometric immersion of an 3−dimensional proper self-shrinker submanifold without
boundary and with H > 0. If the principal normal υ =

−→
H∥∥∥−→H∥∥∥ is parallel in the normal bundle of M and the squared norm

of the second fundamental form is constant, then M is one of the following:
i) Sk(

√
k)×R3−k, 1 < k < 3, with ∥h∥2 = 1,

ii) S1(1)× S1(1)×R, with ∥h∥2 = 2,
iii) S1(1)× S2(

√
2), with ∥h∥2 = 2,

iv) The 3-dimensional minimal isoparametric Cartan hypersurface with ∥A∥2 = 3.

We have the following result.
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Proposition 4.2. Let M be a rotational submanifold in E5 given with the parametrization (4.3). If M is a self self-shrinker
submanifold of E5 then

1

3

{(
κ− 2f ′′

2

κf2

)2

+

(
a21 − a22
a1a2f2

)2
}

+ λ

(
f2f

′′
2 − 2

(
1− (f ′

2)
2
)

f2f ′′
2

)
(f1f

′′
1 + f2f

′′
2 ) = 0, (4.18)

holds, where κ > 0 is the curvature of the profile curve γ.

Proof. Assume that M is a rotational submanifold in E5 given with the parametrization (4.3). If M is a self-
shrinker then by Definition 3.1 〈−→

H,
−→
H
〉
+ λ

〈−→
H,x

〉
= 0; λ > 0, (4.19)

holds identically. Furthermore, substituting (4.8) and (4.11) into (4.19) we obtain the desired result.

5. Conclusion

In the 1970s, physicists and mathematicians began to seriously study the classical field equation in its
purely nonlinear form and to interpret some solutions as candidates for particles of the theory. In this study,
mean curvature flow and inverse mean curvature flow of isometric immersions of Euclidean submanifolds.
Homothetic solitons are solutions of the inverse mean curvature flow. Especially rotational submanifolds,
which have wide application areas, are discussed. Necessary and sufficient conditions are obtained for such
submanifolds in E5 to be homothetic solitons and self-similar. Also, some examples are given to support the
results obtained. We think that these results can be attributed to future studies on Ricci and Yamebe solitons of
rotational submanifolds.
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