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Oz

Bu makalede, F,R halkasi Uzerinde skew constacyclic kodlar
olarak adlandirilan 6zel bir dogrusal kod sinifini olan galisiyoruz,
burada R = F, + vF,, p tek asal sayidir ve v? = v. Bu kodlar
F'R™ halkasinin bir alt kimesi olarak tamimlanir. R nin bir 6
otomorfizmasi igin, R[x,8] skew polinom halkasinin yapisal
ozelliklerini arastiriyoruz. Ayrica, F,R halkasi Uzerinde skew
constacyclic kodlarin treteg polinomlarini ve Gray gorintulerini
belirliyoruz.

Anahtar Kelimeler: Lineer kodlar; Skew polinom halkalari; Skew
constacyclic kodlar; Skew devirli kodlar.

© Afyon Kocatepe Universitesi

Abstract

In this paper, we study a special class of linear codes, called skew
constacyclic codes, over the ring F,R, where R = F, + vE,, pis
an odd prime number and v? = v. These codes are defined as a
subset of the ring EJ"R™. For an automorphism 6 of R, we
investigate the structural properties of skew polynomial ring
R[x,0]. We also determine the generator polynomials and the
Gray images of the skew constacyclic codes over the ring F,R.

Keywords: Linear codes; Skew polynomial rings; Skew constacyclic
codes; Skew cyclic codes.

1. Introduction

Codes over finite rings have attracted considerable
interest for several decades. One of the significant
class of linear codes is known as cyclic codes. Since
cyclic codes have very rich algebraic structures, these
codes have been examined by many researchers (Zhu
et al. 2010, Siap et al. 2011, Dinh et al 2020).

Recently, Bouncher et al. investigated skew cyclic
codes over finite fields (Bouncher et. al 2007). These
codes were obtained through non-commutative
polynomial rings. They showed that skew cyclic codes
have many advantages over well-known linear codes
of the same dimension and length. Inspired by this
study, there are numerous papers on skew cyclic
codes over finite fields. For instance; Gursoy et al.
considered skew cyclic codes over F, + vF, (Gursoy et
al. 2014). Siap et al. studied skew cyclic codes for
arbtrary length and obtained optimal linear codes
over finite fields (Siap et al. 2011).

Mixed alphabets were first introduced by Delsarte
(Delsarte 1973).
alphabet codes were studied (Aksoy and Caliskan
2021, Li et al. 2021, Dinh et al. 2020, Caliskan et al.
2023). The most striking among these studies is the

Later, many papers over mixed

skew cyclic codes over the mixed alphabets.

Benbelkacem et al. considered skew cyclic codes over
F,R (Benhelkacem et al. 2022). Li, Gao and Fu
presented linear skew cyclic codes on F;R (Li et al.
2021). Besides, Abualrub and Aydin introduced skew
cyclic codes over F, + vF, (Abualrub and Aydin 2012).
Gao defined skew cyclic codes over F, + vF, and
showed that obtained results are equivalent to
either cyclic codes or quasi-cyclic codes (Gao 2013).
As a generalization of skew cyclic codes, skew
constacyclic codes over various rings have been
widely studied (Jitman and Ling 2012, Li et al. 2020,
Melakhesson et al. 2019). Al- Ashker et al. studied
skew constacyclic codes over F, + vF, (Al-Ashker et
al. 2021). Melakhesson et al. defined linear skew
constacyclic codes over Z,(Z, + uZ,) (Melakhessou
et al. 2019).

The aim of this paper is to present and study skew
constacyclic codes over the ring FpR, where p is an odd
prime and R = F, + vE, with v?2 = v. The ring ER is a
finite semi-local and not a chain ring. The paper is
organized as follows: Section 2 starts with some basic
properties of the ring R and give brief description of the
linear codes over the ring R. Then, it continues by
introducing the algebraic structure of skew polynomial
rings as well as the basic results of skew constacyclic
codes over the ring R. In section 3, linear codes are
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generalized to the skew constacyclic codes and examine
the algebraic structures of these codes. In section 4, we
describe the generator polynomials of the linear skew
constacyclic codes over the ring F,R. In section 5, we
determine the Gray images of skew constacyclic codes
over the ring F,R.

2. Preliminaries

Consider the ring R = F, + vF,, where vi=vandpisa
number of odd prime. The ring R has two maximal
ideals which are < v > and <1 — v > such that both
R/<v >and R/<1—v > are isomoprhic to F,. These
ideals are maximal ideals in the ring R. Thus, R is not a
chain ring. By the Chinese Remainder Theorem, one gets
R=<v> ® <1-—v> (Lac, 2008). So, each element
of R can be state as

a+vb=vd+ (1-ve, (1)
where a,b,d, e € E,.

A code C of lenght n over R is a non-empty subset of R™
and also it is a linear code if it is a submodule of the R-
module R™. If (cy,cy,...,c_1) € C, then its polynomial
representation is defined as o(C) = Y14 ¢;x". In the
rest of the paper, we assume that all the codes are

linear codes.

The Euclidean inner product on R is defined as

<xy >= X150 %y (2)
for x = (xo, X1, -*+, Xn-1) and y = (yo, y1, ***, Yn-1) in R™.

The dual code of C, denoted by C*, is also R-linear code
and defined as

Ci={y eR"| < x,y>=0,Vx € C}. (3)

2.1 Skew polynomial rings over R

First, we recall the construction of the non-commutative
ring R[x, 8] and some of its basic properties (Gao 2013).
The skew polynomial set R[x, 8] is defined by

R[x,0] = {f(x) =1 + 1yx + 1502 + -+ +1,x™}, (4)

where 1, € F, for all

automorphism 6 of R is defined as

i=0,1,---,n and the

O(vd + (1 —v)e) = (1 —v)d + ve, (5)

where d, e € F,. Note that 0%(r) =rforallr €R,and 8

is a ring homomorphism with order 2.

The skew polynomial ring R[x,0] is the set of

polynomials over the ring R in which the additon is the

usual adddition of polynomials and multiplicaton is
defined as

(ax?)(bx}) = abi(b)xi* . (6)
Multiplication can be extended to all elements in R[x, 6]
by the laws of distribution and association. If 8 is not an
identity automorphism on R, then the ring R[x, 8] is not
a commutative ring. Thus, we have the following results:

Theorem 2.1. (Gao 2013). The center Z([R,0]) of
R[x,6]is E, [x2], where 2 is the order of 6.

Corollary 2.2. (Gao 2013). Let f(x) =x™—1. Then
f(x) € Z([R,0]) if and only if n is even.

Let g(x), f(x) € [R, 8], then g(x) is called a right (resp.
left) divisor of f(x) if there exists q(x) € [R, 8] such that
fG) = q()g(x) (resp. f(x) = g(x)q(x)).

Lemma 2.3. (Gao 2013). Let f(x), g(x) € [R, 8] such that
the leading coefficient of g(x) is a unit. Then, there exists
unique q(x),r(x) € [R, 8] such that f(x) = g(x)g(x) +
r(x), where r(x) = 0 or deg(r(x)) < deg(g(x)).

Definition 2.4. Let 6 be an automorphsm of R. A code C
is an R —linear skew cyclic code (or 8-cyclic code) of
length n if

(i) Cisan R-submodule of R",
(ii) Cis closed under the Ty-cyclic shift, i.e.,
T9 (C) = (Q(Cn—l)l H(CO)J ey Q(Cn—Z))l (7)

where ¢ = (¢y, ¢4, ..., Cn-1) € C.

Lemma 2.5. (Al-Ashker and Abu-Jazar 2016) Let A = a +
v be an element in the ring R, then A is a unit of R if and
onlyifa # 0anda + f # 0, where a, § € E,.

2.2 Skew constacyclic codes over R

In this part, we firstly introduce definition of skew
constacyclic codes and then continue with its basic results
over the ring R. Since we follow (Al-Ashker and Abu-Jazar
2016), the proofs of the theories will be omitted.
Throughout the study, we denote a +vf as A for
simplicity, where a, 8 € F,.

Definition 2.6. A subset C of R"™ is called skew

constacyclic code, or (6, 1)-constacyclic code of length n
over R if

(i) Cisan R-submodule of R",
(i) C is closed under the skew constacyclic shift,
i.e.,

TG,A(C) = (’19 (Cn—l): 9(60)' (y Q(Cn—Z))' (8)
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where Ais unitin R and ¢ = (¢y, ¢4, .r,Cp1) € C.

In particular, if is 1 or -1, then C is a skew-cyclic code or
skew negacyclic code over R, respectively.

In general, a code C of lenght n over R is skew constacyclic
code if and only if o(C) is an ideal of R[x]/ < x™ — A >.
Thus, skew constacyclic code can be define as left ideals
in[R,0]/< x™— A >.

Theorem 2.7. (Al-Ashker and Abu-Jazar 2016). A code C
of lenght n over R is skew constacyclic if and only if the
skew polynomial representaton of C is a left ideal in
[R,0]/< x™— A >.

3. F,R-Linear Skew Constacyclic Codes

In this section, we generalize our studies to the skew
constacyclic codes over the ring F,R.

Definition 3.1. Define
FE,R ={(d,a+vb)|d € F,,(a+vb) €R}. (9)

Let C be a skew cyclic code over F,R and m (resp. n) is
the set of F, (resp. R) coordnate positons.

Throughout the paper, we assume that m and n are odd
positive integers.

Any codeword ¢ € C has the form
¢ =(do,dy, .., dm_1,€0,€1,...,€n_1) € E,"R™. (10)
Fore; = (a; + vby) foralli =0,1,...,n— 1.

The ring homomorphism map is defned as

6:R - F,

a+vbh »a (11)
For any r € R, a scalar multiplication * defined by
r=(d,a+ vb) = (6(r)a,r(a + vbh)), (12)

where d € F, and a + vb € R. It inherently extends to
E,""R™ as follows:

r«x = (8()dy, §(r)dy, ..., S(r)dm,—q, Teq,
T€1, e, T€h_1), (13)

where x=(dg, dy, ..., dm-1,€9,€1, ., €n—1 ) € F,'R" for

m,n € N.

A non-empty subset C of Fme" is called F,R-linear code
if Cis an R-submodule of E,"R™.

Lemma 3.2. The set Fme" is an R-module with respect
to the addition and scalar multiplcation.

Proof. Clear.

Definiton 3.3. The Euclidean inner product over the ring
E,™R™ is defined as

<xy>=v It ny + X0 Xyl (14)
where x = (Xg, X1, e ) Xine1) X0» X1, ) Xpp_1) and y =
Vor Y1 s Ym=1Y0r Vi» s Yn—1) in B, R™.

The dual code of Cis also F,R-linear and defined as
ct={y € F;"R"| <x,y >=0,vx € C}. (15)

Definition 3.4. Let Y be an automorphism of the finite

field F,. For any two elements ax',bx/ € Flx,

], multiplication is defined as
(ax))(bx)) = ayi(b)x*. (16)

In polynomial representation, a linear code of lenght m
over F, is a skew constacyclic code if and only if it is a left
E,[x, ]-submodule of E,[x, ]/<x™ — (1) >.

For shortly, Ry, == E,[x, b]/<x™ — 6(A) >X R[x, 6]/<
x"—A>.

We can define the polynomial representation of each
codeword of skew constacylic codes as follows:
Definition.3.5. An element

(do,dy, o) d—1,€0, €1, ., €n_1) € F,"R™ (17)

can be defined with a module element consisting of two
polynomials:

c(x) = (d(x),e(x)) € Ryn (18)
where d(x) =dy +dix + -+ dp_x™ ! and e(x) =

e+ e x + -+ e x™ L

Let fx)=fo+ fix+-+ fix* €[R,0] and
(d(x),e(x)) € Ryn, then multiplication operator on
F,R is defined as

fOO) * (A, e() = (5(f())d(x), f(x) * e(x)), (19)

where S(f(x)) =06(fo) +6(fi)x + -+ 5(f)x5. This
multiplication is well-defined on R, ,,. Also, 6(f(x))d(x)
and f(x) = e(x) are defined in F,[x, $]/<x™ —5§(1) >
and R[x, 0]/< x™ — A >, respectively.

Lemma 3.6. R,,, is a left R[x, 8]-module under the *
multiplcation.

Proof. Clear.

Now, we are ready to introduce the skew constacyclic
codes over the ring F,” R™.
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Definition 3.7. Let 8 and { be automorphsms of R and

E,

skew constacyclic code if

respectively. A linear code C over Fme" is called

(i) Cisan E,R-submodule of F,”R",
(i) C is closed under the skew constacyclic shift,

i.e.,

SG,Z.(C) = (S(A)lp(dm—l)v l-I'I(dO)v AR l'I'I(dm—Z)f

Ag(en—l)v 9(60)' LR g(en—Z)) (20)
where A is unit in R andc =

(dg,dq, e, dp_1,€0, €1y - €1 ) € C.

Lemma 3.8. Let C be a code over F,R with lenght m+n. C
is skew constacyclic code if and only if C is a left
R[x, 0] —submodule of Ry, ,,.

Proof. Let C be a skew constacyclic code over F,R and
¢ =(dy,dq, .., dpp_1,€0,€1, e, €n_1 ) €EC, such that
c(x) = (d(x), e(x)) be a codeword of Ry, ,. Then

x*c(x) = (EDW(dm-1) +
Y(dp)x+ ...+ Y(dpm_z)x™ 2, 18(e,_1) + 0(ep)x +
ot Be,_)x™ 1) €C (21)

Also, x% = c¢(x) € C and so on. Since C is a linear code,
one gets f(x)* c(x) € C, forany f(x) € R[x,8]. Thus, Cis
a left R[x, 6]-submodule of R, ,,.

On the other hand, assume that C is a left R[x,8]-
submodule of R, ,, then for any c(x) € C, we have x' *
c(x) €C,i € N.Hence, Cis a skew constacyclic code.

Let C be a linear code over F,R with length m+n. Then C
is called seperable if C = C,, X C,, while considering
C,, and C, as punctures codes of C by erasing the
coordinates outside the m and n components,
respectively. If C = C,, X C,, is seperable, then C1=C} x

Ct.

Theorem 3.9. Let C = C,,, X C,, be a linear code over
F,R, where C,, and C,, are linear codes over F, (with
length m) and R (with length n), respectively. Then, Cis a
skew constacyclic code if and only if C,, is a 6(1)-
constacyclic code over F, and C,, is a skew A-constacyclic
code over R.

Proof. Let (dy, d4, ..., dm—1) € Cp, and (eg, €1, ..., €7_1) €
C,. Asume that C is a skew constacyclic code, then we

have

(S(A)qj(dm—l)' lll(do): ey ‘lJ(dm—z),

20(ey_1),0(ep), ..., 0(en_s)) €C. (22)
Thus, (§(DY(dm-1),¥(do), ..., ¥(dp-2)) € Cpy  and

(A6(en—1),0(ep), ..., 0(€n—2)) € Cy, as desired.

Conversely, by the hypothesis we have

MDY (dn-1), W(do), ..., W(dp-2)) € Cy and
(A6(e,—1),0(eg), ..., 0(€n_3)) € Cy.Since C = Cp, X Cp,
the proof holds.

4. The Generator Set For F),R Skew Constacyclic Codes

Let C; and C; be two linear codes over F, and defined as

(1-v)b+vace€cC,
—_ m
€= {a €h for some b € ;" }’ (23)
and
(1-v)b+vace€c,
—_ m
2= {b €k for some a € FJ" } (24)

So, C can be uniquely state as C = vC;®(1 — v)C, (Al-
Ashker and Abu-Jazar 2016). Also, FpR is a non-zero left
ideal in R[x, 0]/ < x™ — 1 >. In this section, we consider
fi(x)(i = 1,2) as a set of all non-zero skew polynomials
with minimal degree in F,.

Theorem 4.1. (Al-Ashker and Abu-Jazar 2016) Let C be a
A — constacyclic code over R of length n. If C =<

vfi(x0), (1 —v)fa(x) > with f(x0)|(x" — (a + B)) and
0)|(x™ —a), then C;, =<fi(x)> and C(; =<

fa(x) >.

Theorem 4.2. Let C be a linear skew constacyclic code of
lenght m+n over E,R.Then,

€ =<(@(x),0), (), h(x) >, (25)

where g(x)|(xm — S(A)),h(x) =vfi(x)+ (1 -
V) f2(x) with f;(x)|(x" — (a + B)) and fL(x)[(x™ — a).

Proof. Let C be an F,R-linaer skew constacyclic code of
lenght m+n. Define

w:C > R[x,0]/<x™—21>

(fl(x)'fz(x)) — f,(x), (26)

where fi(x) € Ey[x, $l/<x™—6(4) > and fr(x) €
R[x,0]/< x™ — A >. For any r(x) € R[x,0], one has

o (r@) * (RO, £())) = 7() * 0(f @), £,()). So,
w is a left R[x, 8]-module homomorphism whose image
is a left R[x,0]-submodule of R[x,8]/< x™ — A >. By
Lemma 3.8 and Theorem 4.1, we have w(C) =< h(x) >
=< f1(x) + (1 = v)f2(x) > with f; ()| (x" — (a + B))

and f,(x)|(x™ — a). Define a set I as
I={g(x) € Flx vl/<x™—-38() >[(g(x),0)€
ker(w)}. (27)

Obviously, I'is an ideal of F,[x, b]/< x™ — §(4) >. Thus,
E,[x, $l/<x™ —8(A) > which
implies that I =< g(x) >, where g(x) is a divisor of

I is a cyclic code in
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x™ — 6(A). For any element (k(x), 0) € ker(w), one has
k(x) el =< g(x) >. So, there exists a polynomial
I(x) € R[x,0] such that k(x)=8((x))g(x).Thus,
(k(x),0) = 1(x) * (g(x), 0) and this implies that ker(w)
is a submodule of C generated by an element of the form
(g(x),0), such that ker(w) =< (g(x),0) >, where
g(x) € Elx, ¢] and g(x)|(x™ —5(2)). By the first
isomorphism theorem,

C/ker(w) = < h(x) >. (28)

Let (j(x),h(x))EC such that w(j(x),h(x)) =
h(x).Then, C can be generated as a left R[x,0]-
submodule of R, ,, by two elements of the form

((g(x),0)) and (j(x), h(x)). So, any element in C can be
written as

() * ((g(x),0)) +711(x) * (j(x), h(x)), (29)
where 1, (x), ,(x) € R[x, 8]. Hence,

€ =<(g(),0),(x),h(x)) >, (30)
where g@)|(x™ = 8(), h(x) = vfi(x) + (1 —

v)f>(x) with fi ()| (x™ = (a + ) and f(x)|(x™ — a).

Lemma.4.3. If C =< (g(x),0), (j(x), h(x)) > is a linear
skew constacyclic code of lenght m+n over F,R,then

deg(j(x)) < deg(g(x)).

Proof. Assume that deg(j(x)) > deg(g(x))and
deg(j(x) — g(x)) = s € N. Let

D =< (g(x),0),(j(x) — x°g(x),h(x)) >. (31)
Then, one gets D C C. Also,
(), k() = (j(x) — x°g(x), h(x)) + x* * (g(x), 0)).

Thus, C = D and so D = C. This implies a contradiction.
So, deg(j(x)) < deg(g(x)).

5. Gray Images of Skew Constacyclic Codes Over F,R
The Gray map between F,R and Fp3 is defined as

{: F,R > F,?

(((d, a+ vb)) =(d,—b,2a + b), (32)

where (d,a + vb) € F,R.This map can be extended to

the map {: F,"R"™ > F,™**" such that

C((do, dy,...,dpm_q,a09 + Vby,ay + Vby, ..., ap_1 +
vbn_l)) = (do,dy, .., dpy—1, —bg, —bq, ..., —bp_1, 2a, +
by,2a; + by, ...,2a,_1 + by_4), (33)

forall (dy,dy, ..., dm-1) € E," and (ay + vby, a; +
vby, ...,ay_4 + Vb,_;) ER™

If Cis an F,R-linear codes, then {(C) is also F,-linear.
The Hamming weight of a codeword c in Fme” is the
number of non-zero coordinates in ¢ and denoted by
wy (c). The Hamming distance between two codewords
¢y and ¢, in E,R™ is defined as dy (¢, ¢;) = wy(c; —
¢,) and Hammng distance for a code C is defined by
dy(€) = min{dy (cy, ;)| ¢; # ¢,V ¢y, ¢, € ChL

The Lee weight of (d, a + vb) € F,R can be defined as
wi((d, a + vb))=wy(d) + wy (=b) + wy(2a + b). (34)

The Lee weigth of a codeword is the rational sum of Lee
weigths of its components. The Lee distance between two
codewords ¢; and ¢, in Fme" is defined as

dy(c1,c3) = wp(c; —c3). (34)

Proposition 5.1. The Gray map ¢ is an F,-linear distance
preserving map from F,”*R™ to F,™**",
Proof. Let x = (d,,d4, ...
(dg, ds, .
E,”"R™, where e; = a; + v b; and e; = a; + vb; for i =
0,1, ..,n — 1. By the definiton,

{(x +y) = ¢((do, dy, ..., din—1, €0, €1, onr, 1) +
(dg, i, ., Ay, €5, €], . €h1)) = (do +

dy,d, +di, ., dpm_q +dpy_q,—boy — by, —b1 —

by, ...,—bp_1 —bj_1,2(ag + ay) + by +

by, 2(a; +ay)+ by + by, ..., 2(ap_1 +an_4) +
bp_1+bpy,) =

(do,dq, ooy A1, —bg, —=b1, e.c), —bp_1, Z(ao +
bo),2(ay + by), e, 2(@n_q + bn_1)) +

(do, dy, ..., dju_1,—bb, —b1, ..., —bp_q, 2(ay +
bo),2(ay + by), ..., 2(ap_q + br’l—l)) = {(x)+
¢). (35)

'dm—lﬁ eo, 61, ...,en_l) and y =
,dm_1,€0,€1, -, €n_q1) be two elements in

Also, for any element s € F,,

{(sx) = {(sdgy, sd, ...,SApm_1,5€0,S€1, r) €p_q) =
(sdo, sdq, ...,Sdpy_1, —Sbg, —Sby, ..., —Sb,_1,5(2ay +
bO)l S(Zal + bl)! ...,S(Zan_l + bn—l)) = S{(X). (36)

Hence, {is an F,-linear map. Moreover, we can show
that ¢ is an F,-linear distance preserving map as follows:
dy(x,y) = wy(x — ¥) = wy(d — d") + wy({(e -
e") = wy(d — d) +wy(C(e) — {(e)) =
dy(d,d") + dy(3(e),{(eN) (37)

Corollary 5.2. If Cis an F,R-linear code with parameters
[m+n, M, d;], then {(C) is a g-ary linear code with
parameters [m+2n, log, M, d,], where M denotes the
number of codewords in C.
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Proof. Clear.

Theorem 5.3. Let C be a linear code over F,R. Then
q(CH =¢O*

Proof. Let ¢; = (dy,a, +vb;) €C and ¢, = (dy,a, +
vh,) € C*. By the definiton, one gets d;d, = a;a, =
a;b, + ayb, + byb, = 0. Thus,

< {(c1),¢(cr) >=<(dy,—by,2a; +
bl)' (dz, _bz, 2(12 + bz) >= d1d2 + 4(11(12 + 2(a1b2 +
azbl + ble) = 0 (38)

Hence, {(c,) € C* and this gives that {(C1) € {(O)*.
Since F,R is a Frobeniues ring,

m+2n m+2n
p

HESIE =L

— 1
1Z(0)] Ic| ¢, (39)

and the result follows.

If a code Cis equal to its dual, then C s called self-dual
code.

Corollary 5.4. Let C be a linear code over F,R. If Cis a
self-dual code, so is {(C).
Proof. Clear.
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