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Öz 
Bu makalede,  𝐹𝑝𝑅 halkası üzerinde skew constacyclic kodlar 

olarak adlandırılan özel bir doğrusal kod sınıfını olan çalışıyoruz, 
burada 𝑅 = 𝐹𝑝 + 𝑣𝐹𝑝,  p tek asal sayıdır ve 𝑣2 = 𝑣. Bu kodlar 

𝐹𝑝
𝑚𝑅𝑛 halkasının bir alt kümesi olarak tanımlanır. 𝑅 nin bir 𝜃 

otomorfizması için,  𝑅[𝑥, 𝜃] skew polinom halkasının yapısal 
özelliklerini araştırıyoruz. Ayrıca, 𝐹𝑝𝑅 halkası üzerinde skew 

constacyclic kodların üreteç polinomlarını ve Gray görüntülerini 
belirliyoruz. 
 
Anahtar Kelimeler: Lineer kodlar; Skew polinom halkaları; Skew 
constacyclic kodlar; Skew devirli kodlar.

Abstract 
In this paper, we study a special class of linear codes, called skew 
constacyclic codes, over the ring 𝐹𝑝𝑅, where 𝑅 = 𝐹𝑝 + 𝑣𝐹𝑝,  p is 

an odd prime number and 𝑣2 = 𝑣. These codes are defined as a 
subset of the ring 𝐹𝑝

𝑚𝑅𝑛.  For an automorphism 𝜃 of 𝑅,  we 

investigate the structural properties of skew polynomial ring 
𝑅[𝑥, 𝜃].  We also determine the generator polynomials and the 
Gray images of the skew constacyclic codes over the ring 𝐹𝑝𝑅. 

 
 
Keywords: Linear codes; Skew polynomial rings; Skew constacyclic 

codes; Skew cyclic codes.

  

 

1. Introduction 

Codes over finite rings have attracted considerable 

interest for several decades. One of the significant 

class of linear codes is known as cyclic codes. Since 

cyclic codes have very rich algebraic structures, these 

codes have been examined by many researchers (Zhu 

et al. 2010, Siap et al. 2011, Dinh et al 2020). 

 

Recently, Bouncher et al. investigated skew cyclic 

codes over finite fields (Bouncher et. al 2007). These 

codes were obtained through non-commutative 

polynomial rings.  They showed that skew cyclic codes 

have many advantages over well-known linear codes 

of the same dimension and length. Inspired by this 

study, there are numerous papers on skew cyclic 

codes over finite fields. For instance; Gursoy et al. 

considered skew cyclic codes over 𝐹𝑞 + 𝑣𝐹𝑞 (Gursoy et 

al. 2014). Siap et al. studied skew cyclic codes for 

arbtrary length and obtained optimal linear codes 

over finite fields (Siap et al. 2011). 

 

Mixed alphabets were first introduced by Delsarte 

(Delsarte 1973).  Later, many papers over mixed 

alphabet codes were studied (Aksoy and Caliskan 

2021, Li et al. 2021, Dinh et al. 2020, Caliskan et al. 

2023). The most striking among these studies is the 

skew cyclic codes over the mixed alphabets.  

Benbelkacem et al. considered skew cyclic codes over 

𝐹4𝑅 (Benhelkacem et al. 2022). Li, Gao and Fu 

presented linear skew cyclic codes on 𝐹𝑞𝑅 (Li et al. 

2021). Besides, Abualrub and Aydin introduced skew 

cyclic codes over 𝐹2 + 𝑣𝐹2 (Abualrub and Aydin 2012). 

Gao defined skew cyclic codes over 𝐹𝑝 + 𝑣𝐹𝑝 and 

showed that obtained results are equivalent  to 

either cyclic codes or quasi-cyclic codes (Gao 2013). 

As a generalization of skew cyclic codes, skew 

constacyclic codes over various rings have been 

widely studied (Jitman and Ling 2012, Li et al. 2020, 

Melakhesson et al. 2019). Al- Ashker et al. studied 

skew constacyclic codes over 𝐹𝑝 + 𝑣𝐹𝑝 (Al-Ashker et 

al. 2021). Melakhesson et al. defined linear skew 

constacyclic codes over 𝑍𝑞(𝑍𝑞 + u𝑍𝑞) (Melakhessou 

et al. 2019). 

 

The aim of this paper is to present and study skew 

constacyclic codes over the ring FpR, where p is an odd 

prime and 𝑅 = 𝐹𝑝 + 𝑣𝐹𝑝 with 𝑣2 = 𝑣. The ring 𝐹𝑝𝑅 is a 

finite semi-local and not a chain ring. The paper is 

organized as follows: Section 2 starts with some basic 

properties of the ring 𝑅 and give brief description of the 

linear codes over the ring 𝑅. Then, it continues by 

introducing the algebraic structure of skew polynomial 

rings as well as the basic results of skew constacyclic 

codes over the ring 𝑅. In section 3, linear codes are 
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generalized to the skew constacyclic codes and examine 

the algebraic structures of these codes. In section 4, we 

describe the generator polynomials of the linear skew 

constacyclic codes over the ring 𝐹𝑝𝑅. In section 5, we 

determine the Gray images of skew constacyclic codes 

over the ring 𝐹𝑝𝑅.  

 

2. Preliminaries 

Consider the ring 𝑅 = 𝐹𝑝 + 𝑣𝐹𝑝, where v2 = v and p is a 

number of odd prime. The ring 𝑅 has two maximal 

ideals which are < 𝑣 > and < 1 − 𝑣 > such that both 

𝑅/< 𝑣 > and 𝑅/< 1 − 𝑣 > are isomoprhic to 𝐹𝑝. These 

ideals are maximal ideals in the ring 𝑅. Thus, 𝑅 is not a 

chain ring. By the Chinese Remainder Theorem, one gets 

𝑅 =< 𝑣 >  ⨁ < 1 − 𝑣 >  (Lac, 2008). So, each element 

of 𝑅 can be state as 

𝑎 + 𝑣𝑏 = 𝑣𝑑 + (1 − 𝑣)𝑒,                                                       (1) 

where 𝑎, 𝑏, 𝑑, 𝑒 ∈  𝐹𝑝. 

A code 𝐶 of lenght 𝑛 over 𝑅 is a non-empty subset of 𝑅𝑛 

and also it is a linear code if it is a submodule of the 𝑅-

module 𝑅𝑛. If (𝑐0, 𝑐1, … , 𝑐−1) ∈ 𝐶, then its polynomial 

representation is defined as 𝜚(𝐶) = ∑ 𝑐𝑖𝑥𝑖𝑛−1
𝑖=0 . In the 

rest of the paper, we assume that all the codes are 

linear codes.  

The Euclidean inner product on 𝑅 is defined as  

< 𝑥, 𝑦 >= ∑ 𝑥𝑖𝑦𝑖
𝑛−1
𝑖=0 ,                                                           (2) 

for x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) in 𝑅𝑛. 

The dual code of 𝐶, denoted by  𝐶⊥, is also 𝑅-linear code 

and defined as 

 𝐶⊥={𝑦 ∈ 𝑅𝑛| < 𝑥, 𝑦 >= 0, ∀ 𝑥 ∈ 𝐶}.                           (3) 

2.1 Skew polynomial rings over 𝑹  

First, we recall the construction of the non-commutative 

ring 𝑅[𝑥, 𝜃] and some of its basic properties (Gao 2013). 

The skew polynomial set 𝑅[𝑥, 𝜃] is defined by  

𝑅[𝑥, 𝜃] = {𝑓(𝑥) = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥2 + ⋯ +𝑟𝑛𝑥𝑛},           (4) 

where 𝑟𝑖 ∈  𝐹𝑝 for all 𝑖 = 0, 1, ⋯ , 𝑛 and the  

automorphism θ of 𝑅 is defined as 

θ(𝑣𝑑 + (1 − 𝑣)𝑒) = (1 − 𝑣)𝑑 + 𝑣𝑒,                                (5) 

where 𝑑, 𝑒 ∈  𝐹𝑝. Note that 𝜃2(𝑟) = 𝑟 for all 𝑟 ∈ 𝑅, and 𝜃 

is a ring homomorphism with order 2. 

 

The skew polynomial ring 𝑅[𝑥, 𝜃] is the set of 

polynomials over the ring 𝑅 in which the additon is the  

usual adddition of polynomials and multiplicaton is 

defined as 

 

(𝑎𝑥𝑖)(𝑏𝑥𝑖) = 𝑎𝜃𝑖(𝑏)𝑥𝑖+𝑗  .                                                (6) 

Multiplication can be extended to all elements in 𝑅[𝑥, 𝜃] 

by the laws of distribution and association. If 𝜃 is not an 

identity automorphism on 𝑅, then the ring 𝑅[𝑥, 𝜃] is not 

a commutative ring. Thus, we have the following results: 

 

Theorem 2.1. (Gao 2013). The center 𝑍([𝑅, 𝜃] ) of 

𝑅[𝑥, 𝜃] 𝑖𝑠 𝐹𝑝[𝑥2], where 2 is the order of 𝜃. 

Corollary 2.2. (Gao 2013). Let 𝑓(𝑥) = 𝑥𝑛 − 1. Then 

𝑓(𝑥) ∈  𝑍([𝑅, 𝜃]) if and only if n is even. 

Let 𝑔(𝑥), 𝑓(𝑥) ∈ [𝑅, 𝜃], then 𝑔(𝑥) is called a right (resp. 

left) divisor of 𝑓(𝑥) if there exists 𝑞(𝑥) ∈ [𝑅, 𝜃] such that 

𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) (resp. 𝑓(𝑥) = 𝑔(𝑥)𝑞(𝑥)). 

Lemma 2.3. (Gao 2013). Let 𝑓(𝑥), 𝑔(𝑥) ∈  [𝑅, 𝜃] such that 

the leading coefficient of 𝑔(𝑥) is a unit. Then, there exists 

unique 𝑞(𝑥), 𝑟(𝑥) ∈ [𝑅, 𝜃] such that 𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) +

𝑟(𝑥), where 𝑟(𝑥) = 0 or deg(𝑟(𝑥)) < deg(𝑔(𝑥)). 

Definition 2.4. Let 𝜃 be an automorphsm of 𝑅. A code 𝐶 

is an 𝑅 −linear skew cyclic code (or 𝜃-cyclic code) of 

length n if  

(i) 𝐶 is an 𝑅-submodule of 𝑅𝑛, 

(ii) 𝐶 is closed under the 𝑇𝜃-cyclic shift, i.e., 

𝑇𝜃(𝑐) = (𝜃(𝑐𝑛−1), 𝜃(𝑐0), … , 𝜃(𝑐𝑛−2)),                (7) 

        where 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) ∈ 𝐶. 

Lemma 2.5. (Al-Ashker and Abu-Jazar 2016) Let 𝜆 = 𝛼 +

𝑣𝛽 be an element in the ring 𝑅, then 𝜆 is a unit of 𝑅 if and 

only if 𝛼 ≠ 0 and 𝛼 + 𝛽 ≠ 0, where 𝛼, 𝛽 ∈ 𝐹𝑝. 

 

2.2 Skew constacyclic codes over 𝑹  

In this part, we firstly introduce definition of skew 

constacyclic codes and then continue with its basic results 

over the ring 𝑅. Since we follow (Al-Ashker and Abu-Jazar 

2016), the proofs of the theories will be omitted. 

Throughout the study, we denote 𝛼 + 𝑣𝛽 as 𝜆 for 

simplicity, where 𝛼, 𝛽 ∈ 𝐹𝑝. 

Definition 2.6. A subset 𝐶 of  𝑅𝑛 is called skew 

constacyclic code, or (𝜃, 𝜆)-constacyclic code of length n 

over 𝑅 if 

(i) 𝐶 is an 𝑅-submodule of 𝑅𝑛, 

(ii) 𝐶 is closed under the skew constacyclic shift, 

i.e., 

𝑇𝜃,𝜆(𝑐) = ( 𝜆𝜃(𝑐𝑛−1), 𝜃(𝑐0), … , 𝜃(𝑐𝑛−2)),                      (8) 
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      where 𝜆 is unit in 𝑅 and 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) ∈ 𝐶.  

In particular, if 𝜆 is 1 or -1, then 𝐶 is a skew-cyclic code or 

skew negacyclic code over 𝑅, respectively. 

 

In general, a code 𝐶 of lenght n over 𝑅 is skew constacyclic 

code if and only if 𝜚(𝐶) is an ideal of 𝑅[𝑥]/ < 𝑥𝑛 − 𝜆 >. 

Thus, skew constacyclic code can be define as left ideals 

in [𝑅, 𝜃]/< 𝑥𝑛 − 𝜆 >. 

 

Theorem 2.7. (Al-Ashker and Abu-Jazar 2016). A code 𝐶 

of lenght n over 𝑅 is skew constacyclic if and only if the 

skew polynomial representaton of 𝐶 is a left ideal in 

[𝑅, 𝜃]/< 𝑥𝑛 − 𝜆 >. 

 

3. 𝑭𝒑𝑹-Linear Skew Constacyclic Codes 

In this section, we generalize our studies to the skew 

constacyclic codes over the ring 𝐹𝑝𝑅.  

 

Definition 3.1. Define  

 𝐹𝑝𝑅 = {(𝑑, 𝑎 + 𝑣𝑏)| 𝑑 ∈  𝐹𝑝, (𝑎 + 𝑣𝑏) ∈ 𝑅}.                (9) 

Let 𝐶 be a skew cyclic code over  𝐹𝑝𝑅 and m (resp. n) is 

the set of  𝐹𝑝 (resp. 𝑅) coordnate positons. 

Throughout the paper, we assume that m and n are odd 

positive integers. 

Any codeword 𝑐 ∈ 𝐶 has the form 

𝑐 = (𝑑0, 𝑑1, … , 𝑑𝑚−1, 𝑒0, 𝑒1, … , 𝑒𝑛−1 )  ∈ 𝐹𝑝
𝑚𝑅𝑛.         (10) 

For 𝑒𝑖 = (𝑎𝑖 + 𝑣𝑏𝑖) for all 𝑖 = 0, 1, … , 𝑛 − 1. 

The ring homomorphism map is defned as 

𝛿: 𝑅 →   𝐹𝑝      

𝑎 + 𝑣𝑏 ↦ 𝑎                                                                         (11) 

For any 𝑟 ∈ 𝑅, a scalar multiplication ∗ defined by   

𝑟 ∗ (𝑑, 𝑎 + 𝑣𝑏) = (𝛿(𝑟)𝑎, 𝑟(𝑎 + 𝑣𝑏)),                          (12) 

where  𝑑 ∈ 𝐹𝑝 and 𝑎 + 𝑣𝑏 ∈ 𝑅. It inherently extends to 

 𝐹𝑝
𝑚𝑅𝑛 as follows: 

𝑟 ∗ 𝑥 = (𝛿(𝑟)𝑑0, 𝛿(𝑟)𝑑1, … ,  𝛿(𝑟)𝑑𝑚−1,  𝑟𝑒0,

𝑟𝑒1, … , 𝑟𝑒𝑛−1),                                                                     (13) 

where x=(𝑑0, 𝑑1, … , 𝑑𝑚−1, 𝑒0, 𝑒1, … , 𝑒𝑛−1 )  ∈  𝐹𝑝
𝑚𝑅𝑛 for 

𝑚, 𝑛 ∈  ℕ. 

A non-empty subset C of  𝐹𝑝
𝑚𝑅𝑛 is called  𝐹𝑝𝑅-linear code 

if C is an 𝑅-submodule of  𝐹𝑝
𝑚𝑅𝑛 . 

 

Lemma 3.2. The set  𝐹𝑝
𝑚𝑅𝑛 is an 𝑅-module with respect 

to the addition and scalar multiplcation. 

Proof. Clear. 

Definiton 3.3. The Euclidean inner product over the ring 

 𝐹𝑝
𝑚𝑅𝑛 is defined as 

 

< 𝑥, 𝑦 >= 𝑣 ∑ 𝑥𝑖𝑦𝑖
𝑚−1
𝑖=0 + ∑ 𝑥𝑖

′𝑦𝑖
′𝑛−1

𝑗=0 ,                             (14) 

where 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑚−1, 𝑥0
′ , 𝑥1

′ , … , 𝑥𝑛−1
′ ) and  𝑦 =

(𝑦0, 𝑦1, … , 𝑦𝑚−1, 𝑦0
′ , 𝑦1

′ , … , 𝑦𝑛−1
′ ) in  𝐹𝑝

𝑚𝑅𝑛 . 

The dual code of C is also  𝐹𝑝𝑅-linear and defined as  

 𝐶⊥={𝑦 ∈  𝐹𝑝
𝑚𝑅𝑛| < 𝑥, 𝑦 >= 0, ∀ 𝑥 ∈ 𝐶}.                 (15) 

Definition 3.4. Let ψ be an automorphism of the finite 

field 𝐹𝑝. For any two elements 𝑎𝑥𝑖 , 𝑏𝑥𝑗 ∈ 𝐹[𝑥,

𝜓], multiplication is defined as  

(𝑎𝑥𝑖)(𝑏𝑥𝑗) = 𝑎𝜓𝑖(𝑏)𝑥𝑖+𝑗.                                              (16) 

In polynomial representation, a linear code of lenght m 

over  𝐹𝑝 is a skew constacyclic code if and only if it is a left 

 𝐹𝑝[𝑥, ψ]-submodule of  𝐹𝑝[x, ψ]/<𝑥𝑚 − 𝛿(𝜆) >. 

For shortly, 𝑅𝑚,𝑛 ≔  𝐹𝑝[x, ψ]/<𝑥𝑚 − 𝛿(𝜆) >× 𝑅[𝑥, 𝜃]/<

𝑥𝑛 − 𝜆 >. 

We can define the polynomial representation of each 

codeword of skew constacylic codes as follows:  

Definition.3.5. An element 

(𝑑0, 𝑑1, … , 𝑑𝑚−1, 𝑒0, 𝑒1, … , 𝑒𝑛−1 )  ∈  𝐹𝑝
𝑚𝑅𝑛                (17) 

can be defined with a module element consisting of two 

polynomials: 

𝑐(𝑥) = (𝑑(𝑥), 𝑒(𝑥)) ∈ 𝑅𝑚,𝑛,                                           (18) 

where 𝑑(𝑥) = 𝑑0 + 𝑑1𝑥 + ⋯ + 𝑑𝑚−1𝑥𝑚−1 and 𝑒(𝑥) =

𝑒0 + 𝑒1𝑥 + ⋯ + 𝑒𝑛−1𝑥𝑛−1. 

Let 𝑓(𝑥) = 𝑓0 + 𝑓1𝑥 + ⋯ + 𝑓𝑠𝑥𝑠 ∈ [𝑅, 𝜃] and 

(𝑑(𝑥), 𝑒(𝑥)) ∈ 𝑅𝑚,𝑛, then multiplication operator on 

 𝐹𝑝𝑅 is defined as 

𝑓(𝑥) ∗ (d(x), e(x)) = (𝛿(𝑓(𝑥))𝑑(𝑥), 𝑓(𝑥) ∗ 𝑒(𝑥)),   (19) 

where 𝛿(𝑓(𝑥)) = 𝛿(𝑓0) + 𝛿(𝑓1)𝑥 + ⋯ + 𝛿(𝑓𝑠)𝑥𝑠. This 

multiplication is well-defined on 𝑅𝑚,𝑛. Also, 𝛿(𝑓(𝑥))𝑑(𝑥) 

and f(𝑥) ∗ 𝑒(𝑥) are defined in  𝐹𝑝[x, ψ]/< 𝑥𝑚 − 𝛿(𝜆) >

 and 𝑅[𝑥, 𝜃]/< 𝑥𝑛 − 𝜆 >, respectively. 

 

Lemma 3.6. 𝑅𝑚,𝑛 is a left 𝑅[𝑥, 𝜃]-module under the * 

multiplcation. 

 

Proof. Clear. 

Now, we are ready to introduce the skew constacyclic 

codes over the ring  𝐹𝑝
𝑚𝑅𝑛. 
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Definition 3.7. Let 𝜃 and ψ be automorphsms of 𝑅 and 

 𝐹𝑝, respectively. A linear code C over  𝐹𝑝
𝑚𝑅𝑛 is called 

skew constacyclic code if  

(i) 𝐶 is an  𝐹𝑝𝑅-submodule of  𝐹𝑝
𝑚𝑅𝑛, 

(ii) 𝐶 is closed under the skew constacyclic shift, 

i.e., 

𝑆𝜃,𝜆(𝑐) = (𝛿(𝜆)ψ(𝑑𝑚−1), ψ(𝑑0), . . . , ψ(𝑑𝑚−2),

𝜆𝜃(𝑒𝑛−1), 𝜃(𝑒0), … , 𝜃(𝑒𝑛−2))                           (20) 

where 𝜆 is unit in 𝑅 and 𝑐 =

(𝑑0, 𝑑1, … , 𝑑𝑚−1, 𝑒0, 𝑒1, … , 𝑒𝑛−1 ) ∈ 𝐶. 

Lemma 3.8. Let C be a code over  𝐹𝑝𝑅 with lenght m+n. C 

is skew constacyclic code if and only if C is a left 

𝑅[𝑥, 𝜃] −submodule of 𝑅𝑚,𝑛. 

Proof. Let C be a skew constacyclic code over  𝐹𝑝𝑅 and 

𝑐 = (𝑑0, 𝑑1, … , 𝑑𝑚−1, 𝑒0, 𝑒1, … , 𝑒𝑛−1 ) ∈ 𝐶, such that 

𝑐(𝑥) = (𝑑(𝑥), 𝑒(𝑥)) be a codeword of 𝑅𝑚,𝑛 . Then 

𝑥 ∗ 𝑐(𝑥) = (𝛿(𝜆)ψ(𝑑𝑚−1) +

 ψ(𝑑0)𝑥+ . . . + ψ(𝑑𝑚−2)𝑥𝑚−1, 𝜆𝜃(𝑒𝑛−1) +  𝜃(𝑒0)𝑥 +

 … +  𝜃(𝑒𝑛−2)𝑥𝑛−1)  ∈ 𝐶                                             (21) 

Also, 𝑥2 ∗ 𝑐(𝑥)  ∈ 𝐶 and so on. Since C is a linear code, 

one gets f(x)∗ 𝑐(𝑥)  ∈ 𝐶, for any 𝑓(𝑥) ∈ 𝑅[𝑥, 𝜃]. Thus, C is 

a left 𝑅[𝑥, 𝜃]-submodule of 𝑅𝑚,𝑛. 

On the other hand, assume that C is a left 𝑅[𝑥, 𝜃]-

submodule of 𝑅𝑚,𝑛, then for any 𝑐(𝑥)  ∈ 𝐶, we have 𝑥𝑖 ∗

𝑐(𝑥)  ∈ 𝐶, 𝑖 ∈ ℕ. Hence, C is a skew constacyclic code. 

Let C be a linear code over  𝐹𝑝𝑅 with length m+n. Then C 

is called seperable if 𝐶 = 𝐶𝑚 × 𝐶𝑛, while considering 

𝐶𝑚 and 𝐶𝑛 as punctures codes of C by erasing the 

coordinates outside the m and n components, 

respectively. If 𝐶 = 𝐶𝑚 × 𝐶𝑛 is seperable, then  𝐶⊥=𝐶𝑚
⊥ ×

𝐶𝑛
⊥. 

 
Theorem 3.9. Let 𝐶 = 𝐶𝑚 × 𝐶𝑛 be a linear code over 

 𝐹𝑝𝑅, where 𝐶𝑚 and 𝐶𝑛 are linear codes over  𝐹𝑝 (with 

length m) and 𝑅 (with length n), respectively. Then, C is a 

skew constacyclic code if and only if 𝐶𝑚 is a 𝛿(𝜆)-

constacyclic code over  𝐹𝑝 and 𝐶𝑛 is a skew 𝜆-constacyclic 

code over 𝑅. 

Proof. Let (𝑑0, 𝑑1, … , 𝑑𝑚−1) ∈ 𝐶𝑚 and (𝑒0, 𝑒1, … , 𝑒𝑛−1) ∈

𝐶𝑛. Asume that C is a skew constacyclic code, then we 

have  

(𝛿(𝜆)ψ(𝑑𝑚−1), ψ(𝑑0), . . . , ψ(𝑑𝑚−2),

𝜆𝜃(𝑒𝑛−1), 𝜃(𝑒0), … , 𝜃(𝑒𝑛−2))  ∈ 𝐶.                                (22) 

Thus, (𝛿(𝜆)ψ(𝑑𝑚−1), ψ(𝑑0), . . . , ψ(𝑑𝑚−2)) ∈ 𝐶𝑚 and 

(𝜆𝜃(𝑒𝑛−1), 𝜃(𝑒0), … , 𝜃(𝑒𝑛−2))  ∈ 𝐶𝑛, as desired. 

Conversely, by the hypothesis we have 

(𝛿(𝜆)ψ(𝑑𝑚−1), ψ(𝑑0), . . . , ψ(𝑑𝑚−2)) ∈ 𝐶𝑚 and 

(𝜆𝜃(𝑒𝑛−1), 𝜃(𝑒0), … , 𝜃(𝑒𝑛−2))  ∈ 𝐶𝑛. Since 𝐶 = 𝐶𝑚 × 𝐶𝑛, 

the proof holds. 

4. The Generator Set For 𝑭𝒑𝑹 Skew Constacyclic Codes 

Let 𝐶1 and 𝐶2 be two linear codes over  𝐹𝑝 and defined as  

𝐶1 = {𝑎 ∈ 𝐹𝑝
𝑚|

(1 − 𝑣)𝑏 + 𝑣𝑎 ∈ 𝐶,
 for some 𝑏 ∈ 𝐹𝑝

𝑚 },                              (23) 

and  

𝐶2 = {𝑏 ∈ 𝐹𝑝
𝑚|

(1 − 𝑣)𝑏 + 𝑣𝑎 ∈ 𝐶,
 for some 𝑎 ∈ 𝐹𝑝

𝑚 }.                              (24)  

So, C can be uniquely state as 𝐶 = 𝑣𝐶1⨁(1 − 𝑣)𝐶2 (Al-

Ashker and Abu-Jazar 2016). Also,  𝐹𝑝𝑅 is a non-zero left 

ideal in 𝑅[𝑥, 𝜃]/ < 𝑥𝑛 − 𝜆 >. In this section, we consider 

𝑓𝑖(𝑥)(𝑖 = 1, 2) as a set of all non-zero skew polynomials 

with minimal degree in  𝐹𝑝. 

Theorem 4.1. (Al-Ashker and Abu-Jazar 2016) Let C be a 

𝜆 − constacyclic code over 𝑅 of length n. If 𝐶 =<

𝑣𝑓1(𝑥), (1 − 𝑣)𝑓2(𝑥) > with 𝑓1(𝑥)|(𝑥𝑛 − (𝛼 + 𝛽)) and 

𝑓2(𝑥)|(𝑥𝑛 − 𝛼), then 𝐶1 =< 𝑓1(𝑥) > and 𝐶2 =<

𝑓2(𝑥) >. 

Theorem 4.2. Let C be a linear skew constacyclic code of 

lenght m+n over  𝐹𝑝𝑅. Then, 

𝐶 =< (𝑔(𝑥), 0), (𝑗(𝑥), ℎ(𝑥)) >,                                     (25) 

where 𝑔(𝑥)|(𝑥𝑚 −  𝛿(𝜆)), ℎ(𝑥) = 𝑣𝑓1(𝑥) + (1 −

𝑣)𝑓2(𝑥) with 𝑓1(𝑥)|(𝑥𝑛 − (𝛼 + 𝛽)) and 𝑓2(𝑥)|(𝑥𝑛 − 𝛼). 

Proof. Let C be an  𝐹𝑝𝑅-linaer skew constacyclic code of 

lenght m+n. Define 

𝜔: 𝐶 →  𝑅[𝑥, 𝜃]/< 𝑥𝑛 − 𝜆 > 

(𝑓1(𝑥), 𝑓2(𝑥)) ⟼ 𝑓2(𝑥),                                                   (26) 

where 𝑓1(𝑥) ∈  𝐹𝑝[x, ψ]/< 𝑥𝑚 − 𝛿(𝜆) > and 𝑓2(𝑥) ∈ 

𝑅[𝑥, 𝜃]/< 𝑥𝑛 − 𝜆 >. For any 𝑟(𝑥) ∈ 𝑅[𝑥, 𝜃], one has 

𝜔 (𝑟(𝑥) ∗ (𝑓1(𝑥), 𝑓2(𝑥))) = 𝑟(𝑥) ∗ 𝜔(𝑓1(𝑥), 𝑓2(𝑥)). So, 

𝜔 is a left 𝑅[𝑥, 𝜃]-module homomorphism whose image 

is a left 𝑅[𝑥, 𝜃]-submodule of 𝑅[𝑥, 𝜃]/< 𝑥𝑛 − 𝜆 >. By 

Lemma 3.8 and Theorem 4.1, we have 𝜔(𝐶) =< ℎ(𝑥) >

=< 𝑓1(𝑥) + (1 − 𝑣)𝑓2(𝑥) >  with 𝑓1(𝑥)|(𝑥𝑛 − (𝛼 + 𝛽)) 

and 𝑓2(𝑥)|(𝑥𝑛 − 𝛼). Define a set 𝐼 as  

𝐼 = {𝑔(𝑥) ∈   𝐹𝑝[x, ψ]/< 𝑥𝑚 − 𝛿(𝜆) > |(𝑔(𝑥), 0) ∈

ker (𝜔)}.                                                                              (27) 

Obviously, 𝐼 is an ideal of  𝐹𝑝[x, ψ]/< 𝑥𝑚 − 𝛿(𝜆) >. Thus, 

𝐼 is a cyclic code in   𝐹𝑝[x, ψ]/< 𝑥𝑚 − 𝛿(𝜆) > which 

implies that 𝐼 =< 𝑔(𝑥) >, where 𝑔(𝑥) is a divisor of 
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𝑥𝑚 − 𝛿(𝜆). For any element (𝑘(𝑥), 0) ∈ ker (𝜔), one has 

𝑘(𝑥) ∈ 𝐼 =< 𝑔(𝑥) >. So, there exists a polynomial 

𝑙(𝑥) ∈ 𝑅[𝑥, 𝜃] such that 𝑘(𝑥) = 𝛿(𝑙(𝑥))𝑔(𝑥). Thus, 

(𝑘(𝑥), 0) = 𝑙(𝑥) ∗ (𝑔(𝑥), 0) and this implies that ker (𝜔) 

is a submodule of C generated by an element of the form 

(𝑔(𝑥), 0), such that ker(𝜔) =< (𝑔(𝑥), 0) >, where 

𝑔(𝑥) ∈  𝐹𝑝[x, ψ] and 𝑔(𝑥)|(𝑥𝑚 − 𝛿(𝜆)). By the first 

isomorphism theorem,  

C/ker(𝜔) ≅ < ℎ(𝑥) >.                                                     (28) 

Let (𝑗(𝑥), ℎ(𝑥)) ∈ 𝐶 such that 𝜔(𝑗(𝑥), ℎ(𝑥)) =

ℎ(𝑥). Then, C can be generated as a left 𝑅[𝑥, 𝜃]-

submodule of 𝑅𝑚,𝑛 by two elements of the form 

((𝑔(𝑥), 0)) and (𝑗(𝑥), ℎ(𝑥)). So, any element in C can be 

written as 

𝑟1(𝑥) ∗ ((𝑔(𝑥), 0)) + 𝑟1(𝑥) ∗ (𝑗(𝑥), ℎ(𝑥)),                  (29) 

where 𝑟1(𝑥), 𝑟2(𝑥) ∈ 𝑅[𝑥, 𝜃]. Hence, 

𝐶 =< (𝑔(𝑥), 0), (𝑗(𝑥), ℎ(𝑥)) >,                                     (30) 

where 𝑔(𝑥)|(𝑥𝑚 −  𝛿(𝜆)), ℎ(𝑥) = 𝑣𝑓1(𝑥) + (1 −

𝑣)𝑓2(𝑥) with 𝑓1(𝑥)|(𝑥𝑛 − (𝛼 + 𝛽)) and 𝑓2(𝑥)|(𝑥𝑛 − 𝛼). 

Lemma.4.3. If 𝐶 =< (𝑔(𝑥), 0), (𝑗(𝑥), ℎ(𝑥)) > is a linear 

skew constacyclic code of lenght m+n over  𝐹𝑝𝑅, then 

𝑑𝑒𝑔(𝑗(𝑥)) < deg(𝑔(𝑥)). 

Proof. Assume that d𝑒𝑔(𝑗(𝑥)) ≥ deg(𝑔(𝑥)) and 

d𝑒𝑔(𝑗(𝑥) − 𝑔(𝑥)) = 𝑠 ∈ ℕ. Let  

𝐷 =< (𝑔(𝑥), 0), (𝑗(𝑥) − 𝑥𝑠𝑔(𝑥), ℎ(𝑥)) >.                  (31) 

Then, one gets 𝐷 ⊑ 𝐶. Also, 

(𝑗(𝑥), ℎ(𝑥)) = (𝑗(𝑥) − 𝑥𝑠𝑔(𝑥), ℎ(𝑥)) + 𝑥𝑠 ∗ (𝑔(𝑥), 0)). 

Thus, 𝐶 ⊑ 𝐷 and so 𝐷 = 𝐶. This implies a contradiction. 

So, 𝑑𝑒𝑔(𝑗(𝑥)) < deg(𝑔(𝑥)). 

5. Gray Images of Skew Constacyclic Codes Over  𝑭𝒑𝑹 

The Gray map between  𝐹𝑝𝑅 and 𝐹𝑝
3 is defined as 

𝜁:  𝐹𝑝𝑅 →  𝐹𝑝
3 

𝜁((𝑑, 𝑎 + 𝑣𝑏)) = (𝑑, −𝑏, 2𝑎 + 𝑏),                                 (32) 

where (𝑑, 𝑎 + 𝑣𝑏) ∈  𝐹𝑝𝑅. This map can be extended to 

the map 𝜁:  𝐹𝑝
𝑚𝑅𝑛 →  𝐹𝑝

𝑚+2𝑛 such that  

𝜁((𝑑0, 𝑑1, … , 𝑑𝑚−1, 𝑎0 + 𝑣𝑏0, 𝑎1 + 𝑣𝑏1, … , 𝑎𝑛−1 +

𝑣𝑏𝑛−1)) = (𝑑0, 𝑑1, … , 𝑑𝑚−1, −𝑏0, −𝑏1, … , −𝑏𝑛−1, 2𝑎0 +

𝑏0, 2𝑎1 + 𝑏1, … , 2𝑎𝑛−1 + 𝑏𝑛−1),                                      (33) 

 for all (𝑑0, 𝑑1, … , 𝑑𝑚−1) ∈  𝐹𝑝
𝑚 and (𝑎0 + 𝑣𝑏0, 𝑎1 +

𝑣𝑏1, … , 𝑎𝑛−1 + 𝑣𝑏𝑛−1)  ∈ 𝑅𝑛. 

 If C is an 𝐹𝑝𝑅-linear codes, then 𝜁(𝐶) is also  𝐹𝑝-linear. 

The Hamming weight of a codeword c in  𝐹𝑝
𝑚𝑅𝑛 is the 

number of non-zero coordinates in c and denoted by 

𝑤𝐻(𝑐).  The Hamming distance between two codewords 

𝑐1 and 𝑐2 in  𝐹𝑝
𝑚𝑅𝑛 is defined as 𝑑𝐻(𝑐1, 𝑐2) = 𝑤𝐻(𝑐1 −

𝑐2) and Hammng distance for a code C is defined by 

𝑑𝐻(𝐶) = min{𝑑𝐻(𝑐1, 𝑐2)| 𝑐1 ≠ 𝑐2, ∀ 𝑐1, 𝑐2 ∈ 𝐶}. 

The Lee weight of (𝑑, 𝑎 + 𝑣𝑏) ∈  𝐹𝑝𝑅 can be defined as 

𝑤𝐿((𝑑, 𝑎 + 𝑣𝑏))= 𝑤𝐻(𝑑) + 𝑤𝐻(−𝑏) + 𝑤𝐻(2𝑎 + 𝑏). (34) 

The Lee weigth of a codeword is the rational sum of Lee 

weigths of its components. The Lee distance between two 

codewords 𝑐1 and 𝑐2 in  𝐹𝑝
𝑚𝑅𝑛 is defined as 

𝑑𝐿(𝑐1, 𝑐2) = 𝑤𝐿(𝑐1 − 𝑐2).                                                  (34) 

Proposition 5.1. The Gray map 𝜁 is an  𝐹𝑝-linear distance 

preserving map from  𝐹𝑝
𝑚𝑅𝑛 to 𝐹𝑝

𝑚+2𝑛. 

Proof. Let 𝑥 = (𝑑0, 𝑑1, … , 𝑑𝑚−1,  𝑒0, 𝑒1, … , 𝑒𝑛−1) and 𝑦 =

(𝑑0
′ , 𝑑1

′ , … , 𝑑𝑚−1
′ , 𝑒0

′ , 𝑒1
′ , … , 𝑒𝑛−1

′ ) be two elements in 

 𝐹𝑝
𝑚𝑅𝑛 , where  𝑒𝑖 = 𝑎𝑖 + 𝑣 𝑏𝑖  and  𝑒𝑖

′ = 𝑎𝑖
′ + 𝑣𝑏𝑖

′ for 𝑖 =

0, 1, … , 𝑛 − 1. By the definiton, 

𝜁(𝑥 + 𝑦) = 𝜁((𝑑0, 𝑑1, … , 𝑑𝑚−1,  𝑒0, 𝑒1, … , 𝑒𝑛−1) +

(𝑑0
′ , 𝑑1

′ , … , 𝑑𝑚−1
′ , 𝑒0

′ , 𝑒1
′ , … , 𝑒𝑛−1

′ )) = (𝑑0 +

𝑑0
′ , 𝑑1 + 𝑑1

′ , … , 𝑑𝑚−1 + 𝑑𝑚−1
′ , −𝑏0 − 𝑏0

′ , −𝑏1 −

𝑏1
′ , … , −𝑏𝑛−1 − 𝑏𝑛−1

′ , 2(𝑎0 + 𝑎0
′ ) + 𝑏0 +

𝑏0
′ ,   2(𝑎1 + 𝑎1

′ ) + 𝑏1 + 𝑏1
′ , … , 2(𝑎𝑛−1 + 𝑎𝑛−1

′ ) +

𝑏𝑛−1 + 𝑏𝑛−1
′ , ) =

(𝑑0, 𝑑1, … , 𝑑𝑚−1, −𝑏0, −𝑏1, … , −𝑏𝑛−1, 2(𝑎0 +

𝑏0), 2(𝑎1 + 𝑏1), … , 2(𝑎𝑛−1 + 𝑏𝑛−1)) +

(𝑑0
′ , 𝑑1

′ , … , 𝑑𝑚−1
′ , −𝑏0

′ , −𝑏1
′ , … , −𝑏𝑛−1

′ , 2(𝑎0
′ +

𝑏0
′ ), 2(𝑎1

′ + 𝑏1
′ ), … , 2(𝑎𝑛−1

′ + 𝑏𝑛−1
′ )) =  𝜁(𝑥) +

𝜁(𝑦).                                                                               (35) 

Also, for any element 𝑠 ∈ 𝐹𝑝, 

𝜁(𝑠𝑥) = 𝜁(𝑠𝑑0, 𝑠𝑑1, … , 𝑠𝑑𝑚−1, 𝑠𝑒0, 𝑠𝑒1, … , 𝑒𝑛−1) =

(𝑠𝑑0, 𝑠𝑑1, … , 𝑠𝑑𝑚−1, −𝑠𝑏0, −𝑠𝑏1, … , −𝑠𝑏𝑛−1, 𝑠(2𝑎0 +

𝑏0), 𝑠(2𝑎1 + 𝑏1), … , 𝑠(2𝑎𝑛−1 + 𝑏𝑛−1)) = 𝑠𝜁(𝑥).        (36) 

 

Hence, 𝜁 is an 𝐹𝑝-linear map. Moreover, we can show 

that 𝜁 is an 𝐹𝑝-linear distance preserving map as follows: 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 −  𝑦) = 𝑤𝐻(𝑑 − 𝑑′) + 𝑤𝐻(𝜁(𝑒 −

 𝑒′)) = 𝑤𝐻(𝑑 − 𝑑′) + 𝑤𝐻(𝜁(𝑒) −  𝜁(𝑒′)) =

𝑑𝐻(𝑑, 𝑑′) + 𝑑𝐻(𝜁(𝑒), 𝜁(𝑒′))                                            (37) 

 

Corollary 5.2. If C is an 𝐹𝑝𝑅-linear code with parameters 

[m+n, M, 𝑑𝐿], then 𝜁(𝐶) is a q-ary linear code with 

parameters [m+2n, log𝑞 𝑀, 𝑑𝐿], where M denotes the 

number of codewords in C. 
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Proof. Clear. 

Theorem 5.3. Let C be a linear code over 𝐹𝑝𝑅. Then 

𝜁(𝐶⊥) = 𝜁(𝐶)⊥. 

Proof. Let 𝑐1 = (𝑑1, 𝑎1 + 𝑣𝑏1) ∈ 𝐶 and 𝑐2 = (𝑑2, 𝑎2 +

𝑣𝑏2) ∈ 𝐶⊥. By the definiton, one gets 𝑑1𝑑2 = 𝑎1𝑎2 =

𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2 = 0. Thus,  

 

< 𝜁(𝑐1), 𝜁(𝑐1) >=< (𝑑1, −𝑏1, 2𝑎1 +

𝑏1), (𝑑2, −𝑏2, 2𝑎2 + 𝑏2) >= 𝑑1𝑑2 + 4𝑎1𝑎2 + 2(𝑎1𝑏2 +

𝑎2𝑏1 + 𝑏1𝑏2) = 0.                                                              (38) 

 

Hence, 𝜁(𝑐2) ∈ 𝐶⊥ and this gives that 𝜁(𝐶⊥) ⊆ 𝜁(𝐶)⊥. 

Since 𝐹𝑝𝑅 is a Frobeniues ring, 

 

|𝜁(𝐶⊥)| =
𝑝𝑚+2𝑛

|𝜁(𝐶)|
=

𝑝𝑚+2𝑛

|𝐶|
= |𝐶⊥|,                                 (39) 

 

and the result follows. 

 

If a code C is equal to its dual, then C is called self-dual 

code. 

 

Corollary 5.4. Let C be a linear code over 𝐹𝑝𝑅. If C is a 

self-dual code, so is 𝜁(𝐶). 

Proof. Clear. 
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