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Abstract 

 

Optimization refers to the process of identifying the optimal state of a system while ensuring all 

constraints and requirements are met. In engineering problems, the feasibility of solutions is typically 

assured by imposing relevant constraints. Since these constraints have different properties, utilizing 

more systematic and logical methods to handle them has the potential to enhance the search performance 

of the optimization algorithms. According to this fact, in the current study, a new constraint handling 

mechanism based on combining the fly-back method, weighted average concept and quadratic 

approximation approach is developed. The proposed mechanism is then merged with three distinct well-

established metaheuristic optimization methods. The effectiveness of the enhanced techniques is 

evaluated through comparative analysis in solving various mathematical and engineering optimization 

problems subjected to different constraints. Furthermore, non-parametric statistical tests are conducted 

to compare the quality of the obtained results. The results show that the developed approach can 

considerably improve the performance of the search algorithms with regards to accuracy, stability, and 

computational cost. 
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1. Introduction 

 

Generally, from the aspect of search space boundaries, the optimization problems can be 

divided into two categories of constrained and unconstrained problems [1]. In contrast with 

unconstrained problems, some additional boundary conditions should be satisfied to reach a 

feasible solution in constrained problems. Most engineering optimization problems are in the 

category of constrained problems [2-17]. On the other hand, the most time-consuming part of 

these optimization problems is the objective function evaluation (e.g., in structural optimization 

problems, complex finite element models are required to determine the response of the system). 

Based on these facts, applying an efficient approach to handle problem’s constraints can highly 

increase the performance of the search algorithm by decreasing the required number of 

objective function evaluations (OFEs). Also, it can improve the quality of the optimal solution 

by providing more room for the search algorithm to examine the search space in more detail. 

 

In this regard, there are distinct constrained handling methods developed and integrated with 

different optimization techniques. For instance, Elaziz et al. (2021) introduced an enhanced 

version of Harris Hawks Optimizer (HHO) algorithm and utilized the penalty function approach 

for controlling the constraints [18]. Tsipianitis and Tsompanakis (2020) proposed a modified 

version of Cuckoo Search (CS) algorithm by implementing a penalty function approach for 

solving engineering optimization problems [19]. Zhengtong (2019) introduced an improved 

version of Particle Swarm Optimization (PSO) combined with a dynamic penalty function 

approach for handling the constraints in solving structural optimization problems [20]. Tejani 

et al. (2018) investigated simultaneously size, shape and topology optimization of truss 

structures using metaheuristic techniques and a penalty function approach for handling the 

stated constraints [21].  

 

Javidi et al. (2019) tested the performance of modified crow search algorithm (CSA) for 

structural optimization problems. They utilized fly-back approach for handling the 

corresponding constraints [22]. The main advantage of the Fly-Back (FB) method, compared 

with different penalty approaches, is that the fly-back rejecting any infeasible solution during 

the optimization process guarantees the feasibility of the attained solutions. However, the main 

drawback of this technique is that in the non-convex search spaces, especially in the narrow 

areas of the domain that are highly restricted the FB might not find any solution due to over 

rejecting the infeasible solution. In this condition, the algorithm cannot spot a feasible point in 

the domain and search process cannot be converged. So, in highly constrained problems 

standard FB approach can cause the process to diverge, or even in some cases any solution may 

not be found.  

 

To tackle this problem and provide a more flexible approach, in the current study, firstly the 

quadratic approximation (QA) method is improved by the mean of weighted agent, and then, it 

is integrated with fly-back approach to provide a more efficient constraint handling method. 

The new approach called Enhanced Quadratic approximation-based Fly-Back (EQFB) 

approach not only guarantees the feasibility of the attained solutions by rejecting all unfeasible 

candidates but also reduces the excessive rejections of standard FB and increases the 

convergence possibility of the algorithm by giving a second chance to infeasible agents and 

keeping them inside the feasible region of the search domain. The proposed new strategy is 

merged with three well-developed optimization metaheuristic algorithms as Teaching and 

Learning Based Optimization (TLBO) [23], Harris Hawks Optimization (HHO) [24], and 

Butterfly Optimization Algorithm (BOA) [25]. The performance of these methods using FB 
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and EQFB are tested on handling different mathematical and engineering problems and the 

attained results are reported and compared in detail. 

 

The rest of the current study is arranged as below. The utilized optimization algorithms are 

briefly described in Section 2. The proposed constraint-handling module is explained in Section 

3. Section 4 is devoted to numerical tests and achieved results are discussed in this section. 

Finally, the significant points concluded from the current study are summarized in the last 

Section. 

 

2. Optimization methods 
 

In the current section, initially a brief description of the selected optimization methods is given. 

These algorithms are Teaching and Learning Based Optimization (TLBO), Butterfly 

Optimization Algorithm (BOA), and Harris Hawks Optimization (HHO). 

 

2.1. Teaching and Learning Based Optimization (TLBO) 

 

Teaching and Learning Based Optimization (TLBO), introduced by Rao et al. (2011), is 

inspired by an information transfer in an educational process between the teacher and students. 

In the method, there is a population in a class and agents are the students. The optimization 

process utilizing TLBO is based on two main phases as teaching and learning phases. In the 

teaching phase, the optimal agent acts as the teacher and the remaining agents, serving as 

students, try to enhance their performance by assimilating knowledge from the best agent. This 

phase is mathematically expressed as below [23]: 

 

𝐗𝑖
𝑛𝑒𝑤 = 𝐗𝑖 + 𝑟. (𝐗𝑇

− 𝑇𝐹𝐗𝑚𝑒𝑎𝑛)                                                                                                              (1) 
 

where, XT, Xi
new and Xi are the best agent’s location, the improved location of the ith agent and 

the current position of the ith agent, respectively. TF indicates the teaching factor, which can be 

selected as 1 or 2. Xmean is the mean vector of the entire agents that can be determined as below 

[23]:  

 

𝐗𝑚𝑒𝑎𝑛

= [𝑚(∑𝑥𝑗
1

𝑛𝑝

𝑗=1

) ,𝑚(∑𝑥𝑗
2

𝑛𝑝

𝑗=1

) ,… ,𝑚(∑𝑥𝑗
𝑖

𝑛𝑝

𝑗=1

) ,… ,𝑚(∑𝑥𝑗
𝑛𝑑

𝑛𝑝

𝑗=1

)]                                      (2) 

 

where, 𝑥𝑗
1 is the first component of the jth agent. np and nd demonstrate the size of the 

population and number of decision variables, respectively. In addition, m(.) is the mean value 

of the corresponding decision variables.  

 

In the learning phase of the algorithm, the matter is an information interaction between the 

agents to enhance their location. After a comparison between two distinct agents’ objective 

value the movement occurs. The movement of the agent is toward the agent with a better 

objective function value. This phase can be mathematically described as below [23]: 

 

𝐗𝑖
𝑛𝑒𝑤 = 𝐗𝑖 + 𝑟. (𝐗𝑖 − 𝐗𝑗)         if       𝑓(𝐗𝑖)

< 𝑓(𝐗𝑗)                                                                            (3) 
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𝐗𝑖
𝑛𝑒𝑤 = 𝐗𝑖 + 𝑟. (𝐗𝑗 − 𝐗𝑖)         if       𝑓(𝐗𝑖)

> 𝑓(𝐗𝑗)                                                                            (4) 

 

where, r is random value which is uniformly distributed in [0,1] interval. Consequently, 

according to these two phases if Xi
new provides a better position for the agent, it is changed with 

the old one, otherwise, Xi is preserved as presented in the following: 

 

𝐗𝑖 = 𝐗𝑖
𝑛𝑒𝑤        if           𝑓(𝐗𝑖

𝑛𝑒𝑤) <
𝑓(𝐗𝑖)                                                                                             (5) 
𝐗𝑖 = 𝐗𝑖             if          𝑓(𝐗𝑖

𝑛𝑒𝑤)  ≥
𝑓(𝐗𝑖)                                                                                             (6) 
 

2.2. Harris Hawks Optimizer (HHO) 

 

Harris Hawks Optimizer (HHO) is a non-gradient and swarm-based optimization technique that 

is inspired by the behavior and chasing style of a kind of bird in the nature named Harris’ 

Hawks. Their surprise pounces for catching prey are mimicked in the algorithm. Three phases 

are followed in this method; these are Exploration, Transition from exploration to exploitation 

and Exploitation. Like other swarm-based and nature inspired techniques, each agent in the 

population is a potential solution of the optimization process. During the search process, the 

agents change their locations randomly and the average position is attained through the 

exploration phase of the algorithm. As the prey is escaping from the hunter bird and changes 

its locations its energy reduces and the algorithm at this point moves to the transition phase. 

The information attained from the transition phase became a directive for the agent to move 

toward an improved location. According to the given information about the algorithm, three 

phases of the HHO is mathematically presented as below [24]: 

 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒                                                                                                                                     
𝑋𝑡+1

= {
𝑋𝑗
𝑡 − 𝑟1|𝑋𝑗

𝑡 − 2𝑟2𝑋
𝑡|                                             𝑞 ≥ 0.5

(𝑋𝑝𝑟𝑒𝑦
𝑡 − 𝑋𝑚

𝑡 ) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))        𝑞 < 0.5
                                                       (7) 

𝑋𝑚
𝑡

=
1

𝑁
∑𝑋𝑖

𝑡

𝑁

𝑖=1

                                                                                                                                              (8) 

 

where, rn  (n=1, 2, 3, 4) and q are random values selected from (0, 1) interval. 𝑋𝑡+1 and 𝑋𝑡 are 

the next and current location of the predator, respectively. 𝑋𝑝𝑟𝑒𝑦
𝑡  is the location vector of the 

prey. 𝑋𝑡 is the current location of the predator. UB and LB indicate the upper and lower bounds 

of the variables, respectively. 𝑋𝑗
𝑡 is an agent randomly selected from the population. 𝑋𝑚

𝑡  is the 

mean location of the agents in the population and N is the population size.  

 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛                                                                                    
𝐸

= 2𝐸0 (1

−
𝑡

𝑇
)                                                                                                                                          (9) 
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where, E indicates the escaping energy of the prey. E0 is the initial level of the prey’s energy, 

and it is randomly selected from (-1, 1) interval. T is the maximum number of iterations.  

 

 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒                                                                                                                                      
for 𝑟 ≥ 0.5  𝑎𝑛𝑑  |𝐸| ≥ 0.5 

 𝑋𝑡+1 = ∆𝑋𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦
𝑡

− 𝑋𝑡|                                                                                                              (10) 

∆𝑋𝑡

= 𝑋𝑝𝑟𝑒𝑦
𝑡 − 𝑋𝑡                                                                                                                                      (11) 

𝐽
= 2(1
− 𝑟5)                                                                                                                                              (12) 
for 𝑟 ≥ 0.5  𝑎𝑛𝑑  |𝐸| < 0.5 

𝑋𝑡+1

= 𝑋𝑝𝑟𝑒𝑦
𝑡 − 𝐸|∆𝑋𝑡|                                                                                                                            (13) 

for 𝑟 < 0.5  𝑎𝑛𝑑  |𝐸| ≥ 0.5 

𝑌 = 𝑋𝑝𝑟𝑒𝑦
𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦

𝑡

− 𝑋𝑡|                                                                                                                   (14) 

𝑍
= 𝑌 + 𝑆
× 𝐿𝐹(𝐷)                                                                                                                                   (15) 

𝐿𝐹(𝑥) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽

     ,     𝜎

=

(

 
𝜏(1 + 𝛽) × sin (

𝜋𝛽
2 )

𝜏 (
1 + 𝛽
2 ) × 𝛽 × 2

(
𝛽−1
2 )

)

 

1
𝛽

                                                   (16) 

𝑋𝑡+1

= {
𝑌         𝑖𝑓    𝑓(𝑌) < 𝐹(𝑋𝑡)

𝑍         𝑖𝑓    𝑓(𝑍) < 𝐹(𝑋𝑡)
                                                                                                        (17) 

when 𝑟 < 0.5  𝑎𝑛𝑑  |𝐸| < 0.5 

𝑋𝑡+1

= {
𝑌         𝑖𝑓    𝑓(𝑌) < 𝐹(𝑋𝑡)

𝑍         𝑖𝑓    𝑓(𝑍) < 𝐹(𝑋𝑡)
                                                                                                        (18) 

𝑌 = 𝑋𝑝𝑟𝑒𝑦
𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦

𝑡

− 𝑋𝑚
𝑡 |                                                                                                                  (19) 

𝑍
= 𝑌 + 𝑆
× 𝐿𝐹(𝐷)                                                                                                                                   (20) 
 

where, r5 is a random number selected from (0, 1) interval. D is the problem’s dimension and S 

is random vector with a size of 1 × 𝐷. LF is the levy flight function. The u and v values are 

randomly selected from (0, 1) interval and β is a constant considered as 1.5.  
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2.3. Butterfly Optimization Algorithm (BOA) 

 

The Butterfly Optimization Algorithm (BOA) mimics the survival behavior of butterflies to 

mate and find food sources. This search technique has three main sections as initializing, 

process iterations and finalizing [25]. In the BOA after the butterflies attract each other by 

emitting the fragrance, each butterfly moves stochastically toward the best butterfly in the 

colony. The properties of the search space influence the amount of stimulus intensity for each 

butterfly. The BOA for global and local searches is defined with different strategies and it is 

mathematically formulated as below [25]: 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ                                                                                                                                                
𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑔∗ − 𝑥𝑖
𝑡)

× 𝑓𝑖                                                                                                           (21) 
𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ                                                                                                                                                

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡)

× 𝑓𝑖                                                                                                           (22) 
 

where, 𝑔∗is the best agent in the colony. xj and xk are randomly selected agents in the colony. t 

and t+1 designate the current and updated position, respectively. Also, r is a random coefficient 

uniformly selected from [0,1] interval. fi presents the fragrance factor of the ith agent and it is 

also selected from [0, 1] interval. 

 

3. The proposed new constraint handling strategy 
 

This section is devoted to describing the proposed constraint handling mechanism based on 

combining the fly-back method and quadratic approximation approach. To provide more 

clarity, firstly the standard Fly-Back method is explained and then the proposed Enhanced 

Quadratic approximation-based Fly-Back approach is defined. 

 

3.1. Standard Fly-Back (FB) Approach 

 

The standard Fly-Back approach is one of the well-known constraint handling techniques. As 

presented in Figure 1, in the standard Fly-Back (FB) approach, for holding the agents in the 

feasible region of the search domain, the violated agents are forced to fly back to its previous 

feasible location [26]. Although this method has a simple logic, a possible high number of 

rejections might increase the inefficient iterations and subsequently raise the demanded 

computational cost. This subject is specially critic in engineering optimization problems with 

complex and costly objective functions.  
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Figure 1. Schematic view of standard Fly-Back 

 

 

In the current study, to overcome this problem a new approach is introduced. The new 

quadratic-based constraint-handling approach utilizing the advantages of the weighted agent 

and quadratic approximation approach puts forward an efficient constraint handling approach. 

The proposed methodology is described in detail in the following section. 

 

3.2. Enhanced Quadratic Approximation Based Fly-Back (EQFB) approach 

 

In this section, the proposed constraint handling mechanism (EQFB) is described. In this 

approach, firstly, the constraints are divided to two groups of numeric constraints and 

characteristic constraints. Numeric constraints are those that do not require any analysis (e.g., 

bounds of design variables). Characteristic constraints are those that need at least one objective 

function evaluation to identify the violations [27]. To achieve feasible solutions, it should be 

checked whether these constraints are violated or not during the optimization process [28, 29]. 

For further clarification, the schematic view of this expression is presented in Figure 2. 

 

 
Figure 2. Schematic illustration of numeric and characteristic constraint boundaries 

 

 



92 

In the original Quadratic Approximation (QA), there are three main primary agents named R1, 

R2 and R3 generate an infant agent as Rnew. This generation process is mathematically presented 

as below [30]: 

 

𝑅𝑛𝑒𝑤

= 0.5 
(𝑅2

2 − 𝑅3
2)𝑓(𝑅1) + (𝑅3

2 − 𝑅1
2)𝑓(𝑅2) + (𝑅1

2 − 𝑅2
2)𝑓(𝑅3)

(𝑅2 − 𝑅3)𝑓(𝑅1) + (𝑅3 − 𝑅1)𝑓(𝑅2) + (𝑅1 − 𝑅2)𝑓(𝑅3)
                                         (23) 

 

The three primary agents are distinct agents (𝑅1 ≠ 𝑅2 ≠ 𝑅3) randomly selected from the 

population. f(.) designates the objective function value of the corresponding agent. In this 

approach, the agents are guided due to a random-based movement, and this causes some 

shortcomings. For instance, the agents in a better position may be neglected due to the high 

randomness of the new agent. So, the computational cost of the search process can negatively 

be affected. Based on this fact, and to decrease the randomness level of standard QA method, 

one of the three random agents is replaced with a new meaningful agent. The new agent is 

defined as the weighted average of all available agents in the population and mathematically is 

expressed as follows [31]: 

 

X𝑊

=∑𝑐𝑠̅
𝑤𝐗𝑠

𝑃

𝑀

𝑠=1

                                                                                                                                                             (24) 

in which 
𝑐𝑠̅
𝑤

= [𝑐̂𝑠
𝑤 ∑𝑐̂𝑠

𝑤

𝑀

𝑠=1

⁄ ]                                                                                                                                                       (25) 

𝑐̂𝑠
𝑤 =

max
1≤𝑘≤𝑀

(𝑓(𝐗𝑘
𝑃)) − 𝑓(𝐗𝑠

𝑃)

max
1≤𝑘≤𝑀

(𝑓(𝐗𝑘
𝑃)) − min

1≤𝑘≤𝑀
(𝑓(𝐗𝑘

𝑃)) + 𝜀
             , 𝑠

= 1,2, … ,𝑀                                                 (26) 
 

where, X𝑊 represents the weighted agent; M designates the population size; 𝑐̂𝑠
𝑤 presents the 

effect coefficient of each agent based on its objective function value (f(.)). max
1≤𝑘≤𝑀

(𝑓(𝐗𝑘
𝑃)) and 

min
1≤𝑘≤𝑀

(𝑓(𝐗𝑘
𝑃)) are the worst and best values of the objective function for all agents, 

respectively. 𝜀 presents a tiny positive quantity (e.g., 0.00001) for preventing any division by 

zero situation. Consequently, by replacing the R1 agent with the weighted agent (X𝑊) the 

enhanced new agent (𝑅𝑒−𝑛𝑒𝑤) is described as below:  

 

𝑅𝑒−𝑛𝑒𝑤

= 0.5 
(𝑅2

2 − 𝑅3
2)𝑓(X𝑊) + (𝑅3

2 − (X𝑊)2)𝑓(𝑅2) + ((X
𝑊)2 − 𝑅2

2)𝑓(𝑅3)

(𝑅2 − 𝑅3)𝑓(X
𝑊) + (𝑅3 − X

𝑊)𝑓(𝑅2) + (X
𝑊 − 𝑅2)𝑓(𝑅3)

                      (27) 

 

Consequently, as presented in Figure 3 the enhanced new agent is merged with the FB method, 

and the proposed method is named Enhanced Quadratic Fly-Back (EQFB).  
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Figure 3. Enhanced Quadratic Approximation based Fly-Back (EQFB) 

 

 

In contrast with standard FB method that simply reject the violated agents, the introduced 

Enhanced Quadratic Fly-Back (EQFB) applying the enhanced new agent (𝑅𝑒−𝑛𝑒𝑤) follows a 

three-step procedure to evaluate the violated agents. These steps are as follows: 

i. The components of the current agent are controlled for any numeric constraint(s) 

violation. 

ii. Changing the violated component(s) in the violated agent (if any) with the equivalent 

component(s) in the enhanced new agent (Re-new). 

iii. Controlling the modified agent for any violation in characteristic constraints, if it is not 

a violated agent and provides a better solution, it will be replaced with the previous agent 

and if not, the agent will be rejected. 

 

4. Numerical test 
 

This section is devoted to evaluating the performance of the proposed EQFB technique in 

handling different constraints of distinct mathematical and engineering problems. In this 

respect, the FB and EQFB modules are merged with three different methods as TLBO, BOA 

and HHO. Attained algorithms are utilized for solving distinct constrained optimization 

problems. Twenty eight mathematical problems are selected from the CEC2017 database [32]. 

Moreover, five problems such as, a tension/compression spring, a hydro-static thrust bearing, a 

multiple disc clutch brake, a car side impact and a rolling element bearing design problems are 

investigated as the mechanical optimization problems. Then, two problems as 72-bar spatial 

truss and 120-bar dome structures containing dynamic constraints are investigated. The 

computer system for implementing the algorithms and problem-solving processes is a system 

equipped with an Intel-i7TM CPU and 12 MB of installed RAM. The results are compared and 

reported descriptively. For assessing the capability of the proposed methods more evidently, 

statistical tests are employed on the achieved results. 

 

4.1 Constrained mathematical functions 

 

In the current section, a set of 28 constrained mathematical optimization problems reported in 

the CEC2017 database [32], with distinct properties, are tested using the combined algorithms. 

The problems include a wide variety of constraints such as equalities and inequalities. The 

search range of the problems CF 01-CF 03, CF 08, CF 10-CF 18, CF 20-CF 27 are [-100,100]D, 

CF 07, CF 19, CF 28 are [-50,50]D, CF 06 is [-20,20]D, CF 04-CF 05, CF 09 are [-10,10]D. D 

designates the dimension of the problems and it is considered as 30 for all functions. The 

optimization process is run 25 times and the maximum objective function evaluations (OFEs) 

is considered as 20000*D. The mathematical optimization problems are defined in the 

following format [32]: 
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Minimize: 𝑓(𝑋),    𝑋 = (𝑥1 , 𝑥2, … , 𝑥𝑛)  𝑎𝑛𝑑 𝑋 ∈
𝑆                                                                          (28) 
Subject to: 𝑔𝑖(𝑋) ≤ 0,       𝑖 =
1,… , 𝑝                                                                                                (29.1) 
                    ℎ𝑖(𝑋) = 0         𝑗 = 𝑝 +
1,… ,𝑚                                                                                    (29.2) 
 

The equality constraints usually are converted to inequalities using an auxiliary element 

(δ=0.0001) in the following format [32]: 

 

|ℎ𝑖(𝑋)| − 𝛿 ≤ 0,
𝑓𝑜𝑟     𝑗 = 𝑝 + 1,… ,𝑚                                                                                      (30) 

 

The achieved optimal results utilizing different methods are given in Table 1. The accuracy and 

stability of the selected methods are compared. According to the reported information, the 

TLBO-EQFB almost provides the most accurate optimal solution among the other 

combinations. This presents the search capability of the TLBO method and its compatibility 

with the proposed EQFB module. The obtained standard deviation values reveal that the EQFB 

module increases the stability of the selected methods in comparison with FB. In addition, based 

on the Std. values the TLBO-EQFB in most cases exceed the other algorithms in term of 

stability. 

 

Table 1. Optimal results for CEC2017 constrained test functions 

 
Func. Value TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

CF 01 Mean 5.37 E-07 2.95 E-07 7.53 E-06 7.84 E-06 1.20 E-06 7.56 E-07 

 Std. 2.43 E-08 1.84 E-08 1.14 E-07 5.81 E-08 4.38 E-08 3.56 E-08 

 Rank 2 1 5 6 4 3 

CF 02 Mean 3.05 E-07 1.71 E-07 8.84 E-06 3.44 E-06 2.20 E-06 6.67 E-07 

 Std. 9.57 E-09 9.32 E-09 9.86 E-07 5.68 E-07 3.13 E-08 1.47 E-08 

 Rank 2 1 6 5 4 3 

CF 03 Mean 5.20 E+05 2.42 E+05 9.88 E+05 1.09 E+06 6.43 E+05 8.21 E+05 

 Std. 2.88 E-01 2.15 E-01 9.00 E+00 8.94 E+00 7.81 E+00 4.59 E+00 

 Rank 2 1 5 6 3 4 

CF 04 Mean 3.60E+02 3.59 E+02 5.73 E+02 8.44 E+02 8.59 E+02 4.99 E+02 

 Std. 3.15 E-01 1.64 E-01 1.21 E+00 6.33 E-01 6.00 E-01 5.76 E-01 

 Rank 2 1 4 5 6 3 

CF 05 Mean 2.75 E+02 9.17 E+00 9.51 E+02 3.66 E+02 3.22 E+02 1.75 E+02 

 Std. 8.78 E-01 3.90 E-01 8.00 E+00 1.99 E+00 4.43 E+00 1.71 E+00 

 Rank 3 1 6 5 4 2 

CF 06 Mean 1.00 E+09 4.47 E+08 2.22 E+09 9.17 E+08 3.48 E+09 4.23 E+09 

 Std. 3.94 E+01 2.25 E+01 7.47 E+02 6.10 E+01 2.97 E+02 5.91 E+01 

 Rank 3 1 4 2 5 6 

CF 07 Mean 2.46 E+06 6.60 E+05 5.90 E+06 3.23 E+06 7.87 E+05 7.28 E+05 

 Std. 4.89 E+00 2.61 E+00 3.36 E+01 8.42 E+00 7.10 E+00 4.29 E+00 

 Rank 4 1 6 5 3 2 

CF 08 Mean -4.41 E-03 -5.11 E-04 6.01E-04 -1.34 E-03 1.33 E-02 -2.90 E-04 

 Std. 4.30 E-06 4.17 E-06 3.09 E-05 6.10 E-04 4.36 E-06 4.62 E-06 

 Rank 1 3 5 2 6 4 

CF 09 Mean 6.31 E+06 2.45 E+06 5.35 E+07 2.26 E+07 7.13 E+06 7.04 E+06 

 Std. 2.15 E+01 4.61 E+00 8.93 E+01 8.32 E+01 7.59 E+01 1.28 E+01 
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 Rank 2 1 6 5 4 3 

CF 10 Mean -2.15 E-04 -4.69 E-05 3.65 E-04 -1.47 E-04 1.03 E-04 -5.16 E-04 

 Std. 3.56 E-06 6.75 E-06 3.94 E-05 1.72 E-05 6.32 E-05 7.98 E-05 

 Rank 2 4 6 3 5 1 

CF 11 Mean 2.65 E+01 5.57 E+00 9.64 E+04 7.03 E+04 8.65 E+01 7.81 E+01 

 Std. 3.78 E-01 2.17 E-02 6.19 E+01 8.66 E+00 4.08 E-01 3.42 E-01 

 Rank 2 1 6 5 4 3 

CF 12 Mean 3.65 E+03 2.89 E+03 2.70 E+07 8.74 E+06 5.49 E+04 4.51 E+04 

 Std. 3.56 E+01 1.11 E+01 9.04 E+01 6.06 E+01 7.50 E+01 1.49 E+01 

 Rank 2 1 6 5 4 3 

CF 13 Mean 6.32 E+02 9.40 E+00 2.83 E+07 3.07 E+05 1.92 E+03 3.89 E+02 

 Std. 6.60 E-01 3.45 E-02 4.91 E+01 6.39 E+00 4.24 E+00 3.55 E+00 

 Rank 3 1 6 5 4 2 

CF 14 Mean 9.83 E+00 9.16 E+00 5.14 E+08 2.43 E+08 7.35 E+02 4.05 E+02 

 Std. 6.78 E-02 6.15 E-02 7.92 E+02 2.79 E+01 9.01 E+00 6.73 E+00 

 Rank 2 1 6 5 4 3 

CF 15 Mean 8.45 E+02 6.04 E+01 2.92 E+06 7.55 E+05 6.34 E+03 1.20 E+03 

 Std. 2.48 E-01 1.70 E-01 3.02 E+02 8.26 E+01 8.24 E+00 3.88 E+00 

 Rank 2 1 6 5 4 3 

Func. Value TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

CF 16 Mean 7.72 E+02 3.70 E+02 6.53 E+03 6.26 E+03 8.81 E+02 8.66 E+02 

 Std. 1.77 E+00 1.55 E+00 5.01 E+00 4.29 E+00 3.25 E+00 2.44 E+00 

 Rank 2 1 6 5 4 3 

CF 17 Mean 8.65 E+09 4.89 E+09 4.24 E+11 6.96 E+10 7.74 E+09 6.11 E+09 

 Std. 2.63 E+00 2.00 E+00 3.96 E+01 2.93 E+01 1.39 E+01 1.36 E+01 

 Rank 4 1 6 5 3 2 

CF 18 Mean 5.53 E+16 7.73 E+15 1.86 E+18 5.75 E+17 1.74 E+17 3.41 E+16 

 Std. 2.50 E+03 3.97 E+02 1.08 E+03 5.84 E+03 9.60 E+03 4.42 E+03 

 Rank 3 1 6 5 4 2 

CF 19 Mean 5.96 E+12 1.16 E+12 7.36 E+12 6.18 E+12 8.02 E+12 6.05 E+12 

 Std. 2.09 E+02 1.81 E+02 8.53 E+05 8.15 E+05 5.11 E+05 7.83 E+04 

 Rank 2 1 5 4 6 3 

CF 20 Mean 5.92 E+00 4.94 E+00 9.81 E+00 9.04 E+00 6.66 E+00 6.02 E+00 

 Std. 9.95 E-03 8.80 E-03 3.86 E-02 2.13 E-02 1.54 E-02 1.50 E-02 

 Rank 2 1 6 5 4 3 

CF 21 Mean 7.25 E+01 9.08 E+00 9.43 E+07 3.49 E+07 3.89 E+02 1.96 E+02 

 Std. 6.66 E-01 2.76 E-02 1.67 E+02 9.03 E+01 7.35 E-01 4.05 E-01 

 Rank 2 1 6 5 4 3 

CF 22 Mean 1.01 E+11 4.82 E+10 8.49 E+12 4.46 E+12 3.23 E+11 2.35 E+11 

 Std. 1.53 E+02 1.29 E+02 7.80 E+02 5.10 E+02 5.46 E+02 1.76 E+02 

 Rank 2 1 6 5 4 3 

CF 23 Mean 7.73 E+01 9.36 E+00 5.85 E+03 1.96 E+03 2.23 E+02 7.60 E+01 

 Std. 8.70 E-03 4.40 E-04 9.60 E+01 6.78 E+01 2.32 E+00 1.06 E+00 

 Rank 3 1 6 5 4 2 

CF 24 Mean 9.32 E+01 2.92 E+01 5.11 E+02 1.23 E+02 6.45 E+02 9.19 E+01 

 Std. 1.89 E-02 1.51 E-02 8.69 E+00 6.02 E+00 5.08 E-01 3.12 E-01 

 Rank 3 1 5 4 6 2 

CF 25 Mean 5.18 E+02 3.06 E+02 6.92 E+08 2.58 E+08 8.08 E+02 3.41 E+02 

 Std. 1.76 E+00 1.06 E+00 7.91 E+02 7.34 E+02 5.99 E+00 3.29 E+00 

 Rank 3 1 6 5 4 2 

CF 26 Mean 8.19 E+09 4.45 E+09 3.30 E+10 7.19 E+10 4.35 E+10 5.55 E+09 

 Std. 9.36 E+01 4.46 E+01 9.24 E+02 4.41 E+02 1.72 E+02 1.15 E+02 
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 Rank 3 1 4 6 5 2 

CF 27 Mean 2.57 E+17 7.71 E+16 8.00 E+19 7.32 E+19 4.75 E+18 3.29 E+18 

 Std. 3.12 E+04 1.09 E+04 7.22 E+06 6.05 E+06 5.70 E+04 3.20 E+04 

 Rank 2 1 6 5 4 3 

CF 28 Mean 4.31 E+12 4.30 E+12 4.34 E+12 4.33 E+12 4.34 E+12 4.33 E+12 

 Std. 5.98 E+00 2.30 E+00 4.55 E+01 2.18 E+01 8.30 E+00 6.22 E+00 

 Rank 2 1 5 4 6 3 

 

 

4.1.1 Non-parametric statistical test (Friedman Rank Test) for constrained 

mathematical problems 

In this section the performance of the proposed algorithms is compared with each other using 

the Friedman rank test over mean and standard deviation (Std.) values. Attained test results are 

given in Table 2. Reported results reveal that the performance of the TLBO-EQFB algorithm 

in terms of accuracy and stability is superior to the other algorithms. In addition, it is observable 

that the proposed EQFB module increases the performance of all three selected optimization 

methods.  

 

Table 2. The Friedman rank test for Mean and Std. values for selected constrained functions 

 
 Test for optimal Mean value  Test for optimal Std. value 

Method Friedman 

value 

Normalized 

value 

Rank 
 

Friedman 

value 

Normalized 

value 

Rank 

TLBO-FB 67 0.492537 2  61 0.47541 2 

TLBO-EQFB 33 1.000000 1  29 1.000000 1 

BOA-FB 156 0.211540 6  161 0.180124 6 

BOA-EQFB 132 0.250000 5  135 0.214815 5 

HHO-FB 122 0.270492 4  118 0.245763 4 

HHO-EQFB 78 0.423080 3  84 0.345238 3 

 

 

4.2. Constrained engineering problems 

 

In the current section, different mechanical and structural optimization problems with distinct 

constraints are solved with the considered methods. For handling the constraints, the 

performance of the proposed EQFB is evaluated. Finally, for investigating the performance of 

the algorithms a non-parametric statistical test is applied. The problems and their optimal results 

are given in the following subsections. 

 

4.2.1. Tension/compression spring (T/CS) design problem 

 

In the current problem, it is targeted to minimize the construction cost of a tension/compression 

spring, which is schematically presented in Figure 4. There are three design variables 𝐗 =
[𝑥1, 𝑥2, 𝑥3] for the current problem, where x1 is the wire diameter (d), x2 is the mean diameter 

of spring (D), x3 is the number of active coils (N) [33].The objective function of the problem, 

proper constraints and design variables are presented in Table 3. 

 

The achieved optimal solutions for the current problem are reported in Table 4. Based on the 

attained optimal values and Std. values the TLBO-EQFB outperforms the other selected 
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algorithms from both accuracy and stability aspects. Also, the number of objective function 

evaluations (OFEs) reveal that the proposed TLBO-EQFB has an acceptable computational cost 

among other combinations. All these observations indicate that the TLBO-EQFB method, 

because of its search strategy and constraint handling mechanism puts forward a good 

performance in comparison with other combinations. 

 

 
Figure 4. Schematic view of T/CS system 

 

 

Table 3. Objective function, constraints and design variables of T/CS design problem 

 
Properties Formulations 

Objective function 𝑓(𝐗) = (𝑥3 + 2)𝑥2𝑥1
2 

Constraints 

𝑔1(𝐗) = 1 −
𝑥2
3𝑥3

71785𝑥1
4 ≤ 0 

𝑔2(𝐗) =
4𝑥2

2 − 𝑥1𝑥2
125666(𝑥2𝑥1

3 − 𝑥1
4)
+

1

5108𝑥1
2 ≤ 0 

𝑔3(𝐗) = 1 −
140.45𝑥1
𝑥2
2𝑥3

≤ 0 

𝑔4(𝐗) =
𝑥1 + 𝑥2
1.5

≤ 0 

Design variables 

0.05 ≤ 𝑥1 ≤ 2 

0.25 ≤ 𝑥2 ≤ 1.3 

2 ≤ 𝑥3 ≤ 15 

 

 

Table 4. The optimal result for T/CS design problem 

 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

x1 0.052041 0.051947 0.054480 0.052816 0.052989 0.052552 

x2 0.365165 0.362953 0.427653 0.383657 0.388826 0.377818 

x3 10.816579 10.932596 8.086149 9.923457 9.628137 10.151806 

Optimal Results 

Best 0.012675 0.012666 0.012802 0.012761 0.012695 0.012679 

Mean 0.013021 0.129998 0.132579 0.131864 0.131402 0.130663 

Std. 1.25E-04 9.81E-05 3.74E-02 2.90E-02 8.54E-03 6.00E-03 

OFEs 2140 1620 2860 2500 2440 2100 

Constraints       

g1(X) -0.000325 -0.000002 -0.000079 -0.003221 -0.000073 -0.000001 

g2(X) -0.000174 -0.000004 -0.000004 -0.001658 -0.000046 -0.000037 
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g3(X) -4.067563 -4.065918 -4.174091 -4.078530 -4.112751 -4.093337 

g4(X) -0.721863 -0.723400 -0.678578 -0.709018 -0.705457 -0.713087 

 

 

4.2.2 Hydro-static thrust bearing (HSTB) design problem 

 

Hydro-static thrust bearing design problem which is mentioned by Siddall is a minimization 

problem [34]. In the current problem, it is required to minimize the power loss in the system 

during its operation. The system is presented schematically in Figure 5 and aims to withstand a 

certain load while supplying an axial support. There are four design variables 𝐗 =
[𝑥1, 𝑥2, 𝑥3, 𝑥4] for the current problem, where x1 is the bearing step radius (R), x2 is the recess 

radius (R0), x3 is the oil viscosity (μ), x4 is the flow rate (Q) [34]. This problem is subjected to 

seven constraints such as physical constraints, oil temperature rise, load carrying capacity, oil 

film thickness and inlet oil pressure. The objective function, proper constraints and design 

variables of the current problem are listed in Table 5. 

 

Attained outcomes for the HSTB design problem are presented in Table 6. The optimal 

solutions reveal that the TLBO-FB method finds the most accurate solution after TLBO-EQFB 

approach. Additionally, the standard deviation values illustrate the higher stability of the 

TLBO-EQFB in comparison with the other combinations. According to the OFEs, the TLBO-

EQFB by eliminating the ineffective iterations more effectively requires lower computational 

cost than other combine techniques. 

 

 
Figure 5. Schematic view of HSTB system 
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Table 5. Objective function, constraints, and design variables of HSTB design problem 

 
Properties Formulations 

Objective function 𝑓(𝐗) =
𝑥4𝑃𝑖𝑛
0.7

+ 𝐸𝑓 

Constraints 

𝑔1(𝐗) = 𝑊 − 101000 ≥ 0 

𝑔2(𝐗) = 1000 − 𝑃𝑖𝑛 ≥ 0 

𝑔3(𝐗) = 50 − ∆T ≥ 0 

𝑔4(𝐗) = ℎ − 0.001 ≥ 0 

𝑔5(𝐗) = 𝑥1 − 𝑥2 ≥ 0 

𝑔6(𝐗) = 0.001 −
0.0307

386.4 𝑃𝑖𝑛
(
𝑥4

2𝜋𝑥1ℎ
) ≥ 0 

𝑔7(𝐗) = 5000 −
𝑊

𝜋(𝑥1
2 − 𝑥2

2)
≥ 0 

Design variables 

1.00 ≤ 𝑥1 ≤ 16.00 

1.00 ≤ 𝑥2 ≤ 16.00 

1 × 10−6 ≤ 𝑥3 ≤ 16 × 10
−6 

1.00 ≤ 𝑥4 ≤ 16.00 

Other parameters 

𝑊 =
𝜋𝑃𝑖𝑛
2

𝑥1
2 − 𝑥2

2

ln
𝑥1
𝑥2

 

𝑃𝑖𝑛 =
6𝑥3𝑥4
𝜋ℎ3

ln
𝑥1
𝑥2

 

𝐸𝑓 = 143.3076 𝑥4∆𝑇 

∆𝑇 = 2(10𝑃𝑜𝑢𝑡 − 560) 

𝑃𝑜𝑢𝑡 =
log10log10(8.122 × 10

6𝑥3 + 0.8) − 10.04  

−3.55
 

ℎ = (
1500𝜋

60
)
2 2𝜋𝑥3
𝐸𝑓

(
𝑥1
4

4
−
𝑥2
4

4
) 

 

 

Table 6. The optimal results for HSTB design problem 

 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

x1 5.9567 5.9558 6.7343 6.2874 5.9571 5.9632 

x2 5.3892 5.3890 6.1726 5.7507 5.3873 5.3918 

x3 5.40×10-6 5.36×10-6 5.57×10-6 6.81×10-6 7.25×10-6 5.45×10-6 

x4 2.3016 2.2965 3.1293 4.0707 4.3781 2.3391 

Optimal Results 

Best 1632.1306 1625.2757 2029.2110 1901.8800 1852.3102 1640.2114 

Mean 1658.2200 1644.4832 2100.5526 1891.8748 1900.6022 1701.4541 

Std. 2.61E+01 9.45E+00 6.88E+01 6.51E+01 6.01E+01 5.00E+01 

OFEs 8220 6560 11020 9840 9800 7440 

Constraints 

g1(X) 34.8165 27.1305 30520.5920 4948.9468 411.2569 52.6320 

g2(X) 0.0000 0.0001 204.2231 68.5086 0.0001 0.0001 

g3(X) 0.0546 0.1873 2.6812 19.1182 0.0608 0.0592 

g4(X) 0.0003 0.0014 0.0005 0.0007 0.0004 0.0003 

g5(X) 0.5675 0.5722 0.5617 0.5367 0.5701 0.5831 
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g6(X) 0.0009 0.0010 0.0009 0.0009 0.0009 0.0009 

g7(X) 9.4110 12.5287 4003.0724 3837.2719 9.5611 11.2467 

 

 

4.2.3 Multiple disc clutch brake (MDCB) design problem 

 

In the current problem, it is desired to minimize the weight of the multiple disc clutch brake, 

which is schematically presented in Figure 6. There are five design variables 𝐗 =
[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5] for the current problem, where x1 is the inner radius (ri), x2 is the outer radius 

(ro), x3 is the thickness of discs (t), x4 is actuating force (F), x5 is the number of friction surfaces 

(Z). It should be noted that all the design variables are discrete. Considering the geometry and 

operating requirements, there are eight constraints such as temperature, relative speed of the 

slip–stick, shear stress, stopping time and physical constraints [35]. The objective function, 

proper constraints and design variables of the current problem are listed in Table 7. 

 

Optimal results obtained for the MDCB design problem are given in Table 8. Based on the 

statistical information (i.e., Std. value) reported in this table the TLBO-EQFB has a higher 

stability than other techniques. Also, the accuracy of the TLBO-EQFB method is observable 

from the optimal solutions presented in the table. Additionally, the lower computational cost 

among the techniques belongs to the TLBO-EQFB and HHO-EQFB techniques, respectively. 
 

 

 
Figure 6. Schematic view of MDCB system 
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Table 7. Objective function, constraints, and design variables of MDCB design problem 

 
Properties Formulations 

Objective function 𝑓(𝐗) = 𝜋(𝑥2
2 − 𝑥1

2)(𝑥5 + 1)0.0000078𝑥3 

Constraints 

𝑔1(𝐗) = 𝑥2 − 𝑥1 − 20 ≥ 0 

𝑔2(𝐗) = 30 − (𝑥5 + 1)(𝑥3 + 0.5) ≥ 0 

𝑔3(𝐗) = 1 − 𝑃𝑟𝑧 ≥ 0 

𝑔4(𝐗) = 10000 − 𝑃𝑟𝑧𝑣𝑠𝑟 ≥ 0 

𝑔5(𝐗) = 10000 − 𝑣𝑠𝑟 ≥ 0 

𝑔6(𝐗) = 15 − 𝑇 ≥ 0 

𝑔7(𝐗) = 𝑀ℎ − 60 ≥ 0 

𝑔8(𝐗) = 𝑇 ≥ 0 

Design variables 

𝑥1𝜖[60,61,62, … ,79,80] 
𝑥2𝜖[90,91,92, … ,109,110] 
𝑥3𝜖[1.0,1.5,2.0,2.5,3.0] 
𝑥4𝜖[600,610,620,… ,990,1000] 
𝑥5𝜖[2,3,4, … ,8,9] 

Other parameters 

𝑀ℎ =
2

3

1

2
𝑥4𝑥5

𝑥2
3 − 𝑥1

3

𝑥2
2 − 𝑥1

2 

𝑃𝑟𝑧 =
2

3

𝑥4
𝜋(𝑥2

2 − 𝑥1
2)

 

𝑣𝑠𝑟 =
500𝜋(𝑥2

3 − 𝑥1
3)

90(𝑥2
2 − 𝑥1

2)
 

𝑇 =
13750𝜋

30(𝑀ℎ + 3000)
 

 

 

Table 8. The optimal results for MDCB design problem 

 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

x1 70 70 70 76 70 70 

x2 90 90 90 96 90 90 

x3 1.0 1 1.5 1.0 1.0 1.0 

x4 910 600 1000 840 900 810 

x5 3 2 3 3 3 3 

Optimal Results 

Best 0.31366 0.23524 0.47048 0.33718 0.31366 0.31366 

Mean 0.32051 0.27561 0.49906 0.37600 0.32887 0.32650 

Std. 3.44E-02 2.01E-02 8.47E-02 7.90E-02 3.71E-02 3.07E-02 

OFEs 4560 4200 5060 4900 4600 4420 

Constraints 

g1(X) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

g2(X) 24.00000 25.50000 22.00000 24.00000 24.00000 24.00000 

g3(X) 0.90948 0.94032 0.90053 0.92227 0.91047 0.91943 

g4(X) 9809 9874 9790 9824 9811 9830 

g5(X) 7894 7894 7894 7738 7894 7894 

g6(X) 14.98723 14.97190 14.98835 14.98713 14.98709 14.98570 

g7(X) 109708 48190 120565 108788 108502 97646 

g8(X) 0.01277 0.02809 0.01165 0.01287 0.01291 0.01429 
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4.2.4 Car side impact (CSI) design problem 

 

In the current section, the overall weight of a car is desired to be minimized as an engineering 

optimization problem. In this problem, mixed design variables and constraints are considered. 

There are seven design variables 𝐗 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7] for the current problem. The 

design variables of a car side impact, which is schematically presented in Figure 7 [36], are B-

Pillar reinforcement, thicknesses of B-Pillar inner, cross members, floor side inner, door beltline 

reinforcement, door beam, roof rail, materials of floor side and floor side inner and barrier 

height, and hitting position [37]. The objective function, proper constraints and design variables 

of this problem are given in Table 9. 

 

Optimal results obtained and statistical data information of the optimization process are 

reported and illustrated in Table 10. According to the optimal outcomes, the TLBO-EQFB 

obtained the most accurate solution in comparison with other algorithms. This observation 

shows that the EQFB is well adapted by the TLBO. Also, the standard deviation values reveal 

that the proposed EQFB mechanism boosts the stability of the algorithms more than the case of 

using Fly-Back method as a constraint handling method. In addition, the number of objective 

function evaluations (OFEs) show that an effective constraint handling mechanism highly 

reduces unnecessary iterations. 

 

 

 

 

 
Figure 7. Finite element model of CSI [36] 
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Table 9. Objective function, constraints, and design variables of CSI design problem 

 
Properties Formulations 

Objective function 𝑓(𝐗) = 1.98 + 4.90𝑥1 + 6.67𝑥2 + 6.98𝑥3 + 4.01𝑥4 + 1.78𝑥5 + 2.73𝑥7 

Constraints 

𝑔1(𝐗) = 1.16 − 0.3717𝑥2𝑥4 − 0.00931𝑥2𝑥10 − 0.484𝑥3𝑥9 + 0.01343𝑥6𝑥10 − 1 ≤ 0 

𝑔2(𝐗) = 0.261 − 0.0159𝑥1𝑥2 − 0.188𝑥1𝑥8 − 0.019𝑥2𝑥7 + 0.0144𝑥3𝑥5
+ 0.0008757𝑥5𝑥10 + 0.08045𝑥6𝑥9 + 0.00139𝑥8𝑥11
+ 0.00001575𝑥10𝑥11 − 0.32 ≤ 0 

𝑔3(𝐗) = 0.214 + 0.00817𝑥5 − 0.131𝑥1𝑥8 − 0.0704𝑥1𝑥9 + 0.03099𝑥2𝑥6 − 0.018𝑥2𝑥7
+ 0.0208𝑥3𝑥8 + 0.121𝑥3𝑥9 − 0.00364𝑥5𝑥6 + 0.0007715𝑥5𝑥10
− 0.000535𝑥6𝑥10 + 0.00121𝑥8𝑥11 − 0.32 ≤ 0 

𝑔4(𝐗) = 0.074 − 0.061𝑥2 − 0.163𝑥3𝑥8 + 0.001232𝑥3𝑥10 − 0.166𝑥7𝑥9 + 0.227𝑥2
2

− 0.32 ≤ 0 

𝑔5(𝐗) = 28.98 + 3.818𝑥3 − 4.2𝑥1𝑥2 + 0.0207𝑥5𝑥10 + 6.63𝑥6𝑥9 − 7.7𝑥7𝑥8
+ 0.32𝑥9𝑥10 − 32 ≤ 0 

𝑔6(𝐗) = 33.86 + 2.95𝑥3 + 0.1792𝑥10 − 5.057𝑥1𝑥2 − 11.0𝑥2𝑥8 − 0.0215𝑥5𝑥10
− 9.98𝑥7𝑥8 + 22.0𝑥8𝑥9 − 32 ≤ 0 

𝑔7(𝐗) = 46.36 − 9.9𝑥2 − 12.9𝑥1𝑥8 + 0.1107𝑥3𝑥10 − 32 ≤ 0 

𝑔8(𝐗) = 4.72 − 0.5𝑥4 − 0.19𝑥2𝑥3 − 0.0122𝑥4𝑥10 + 0.009325𝑥6𝑥10 + 0.000191𝑥11
2

− 4 ≤ 0 

𝑔9(𝐗) = 10.58 − 0.674𝑥1𝑥2 − 1.95𝑥2𝑥8 + 0.02054𝑥3𝑥10 − 0.0198𝑥4𝑥10
+ 0.028𝑥6𝑥10 − 9.9 ≤ 0 

𝑔10(𝐗) = 16.45 − 0.489𝑥3𝑥7 − 0.843𝑥5𝑥6 + 0.0432𝑥9𝑥10 − 0.0556𝑥9𝑥11
− 0.000786𝑥11

2 − 15.7 ≤ 0 

Design variables 

0.5 ≤ 𝑥1 − 𝑥7 ≤ 1.5 

0.192 ≤ 𝑥8 − 𝑥9 ≤ 0.345 

−30 ≤ 𝑥10 − 𝑥11 ≤ 30 

 

 

Table 10. The optimal results for CSI design problem 

 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

x1 0.500000 0.500000 0.503762 0.500000 0.501908 0.500143 

x2 1.107071 1.117324 1.104463 1.117704 1.128121 1.117641 

x3 0.500000 0.500000 0.520328 0.500203 0.500570 0.500318 

x4 1.319352 1.301078 1.334846 1.308179 1.286175 1.301739 

x5 0.500013 0.500649 0.509665 0.508999 0.500000 0.500000 

x6 1.499999 1.500000 1.500000 1.499727 1.500000 1.499536 

x7 0.500000 0.500000 0.500000 0.500000 0.500000 0.500265 

x8 0.344999 0.344989 0.337695 0.336619 0.344628 0.345000 

x9 0.344987 0.192000 0.331929 0.344165 0.192000 0.192000 

x10 -21.264178 -19.444029 -21.480509 -20.292671 -17.505021 -19.396166 

x11 -0.191181 -0.233398 -0.489496 -0.448730 -0.603797 -0.636964 

Optimal Results 

Best 22.849788 22.846029 23.072028 22.893319 22.870457 22.853282 

Mean 22.867418 22.854449 23.695253 23.001258 23.002963 23.001018 

Std. 1.10E-01 0.91E-01 2.21E-01 1.18E-01 1.74E-01 1.30E-01 
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OFEs 3850 3520 5120 4760 4980 4540 

Constraints 

g1(X) -0.675598 -0.616251 -0.683436 -0.664365 -0.594626 -0.616064 

g2(X) -0.074855 -0.092717 -0.076098 -0.074067 0.092252 -0.092789 

g3(X) -0.064646 -0.068915 -0.064130 -0.064432 -0.069539 -0.069109 

g4(X) -0.105169 -0.086797 -0.106430 -0.099114 -0.080773 -0.086661 

g5(X) -3.900768 -4.272296 -3.877525 -3.779986 -4.160981 -4.270059 

g6(X) -6.350597 -7.269600 -6.354396 -6.174509 -7.015966 -7.264739 

g7(X) -0.002219 -0.002914 -0.005989 -0.000117 -0.009738 -0.004793 

g8(X) -0.000003 -0.000009 -0.007213 -0.000201 -0.000485 -0.000221 

g9(X) -0.993853 -0.963629 -0.986325 -0.965343 -0.929157 -0.962433 

g10(X) -0.317787 -0.164148 -0.320862 -0.309093 -0.143674 -0.158846 

 

 

4.2.5 Rolling element bearing (REB) design problem 

 

As another engineering problem, a rolling element bearing (REB) design is considered, in 

which dynamic load carrying capacity is desired to be maximized [38]. The schematic 

illustration of this system is presented in Figure 8. There are ten geometric design variables 

𝐗 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10] for the current problem, where x1 is the pitch diameter 

(Dm), x2 is the ball diameter (Db), x3 is the number of balls (Z), x4 and x5 are the inner and outer 

raceway curvature coefficients, respectively (fi, fo), x6 and x7 are the minimum and maximum 

ball diameter limiters, respectively (KD min , KD max), x8 is the parameter for outer ring strength 

consideration (ε), x9 is the parameter for mobility condition (e), x10 is the bearing width limiter 

(ζ). It should be noted that Z is a discrete design variable, and other variables are continuous 

design variables. Also, there are nine proper constraints according to manufacturing conditions 

and kinematic considerations. Objective function, constraints and design variables of the 

current problem are given in Table 11.  

Optimal results attained for the REB design problem using the selected algorithms are shown 

in Table 12. According to the optimal solution and Std. values the TLBO-EQFB puts forward 

a promising performance from both accuracy and stability aspects. In addition, the number of 

objective function evaluations (OFEs) reveal that the TLBO-EQFB method exceeds the other 

approaches in terms of computational cost. 

                             
Figure 8. Schematic view of REB system 
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Table 11. Objective function, constraints, and design variables of REB design problem 

 
Properties Formulations 

Objective function 
𝑓(𝐗) =

1

𝐶𝑑
 

where 

𝐶𝑑 = {
𝑓𝑐𝑥3

2
3𝑥2
1.8                  𝑖𝑓    𝑥2 ≤ 25.4𝑚𝑚

3.647𝑓𝑐𝑥3

2
3𝑥2
1.4       𝑖𝑓    𝑥2 > 25.4𝑚𝑚

 

Constraints 

𝑔1(𝐗) = 𝑥3 −
𝜑𝑜

2 sin  −1 (
𝑥2
𝑥1
)
− 1 ≤ 0 

𝑔2(𝐗) = 𝑥6(70) − 2𝑥2 ≤ 0 

𝑔3(𝐗) = 2𝑥2 − 𝑥7(70) ≤ 0 

𝑔4(𝐗) = 𝑥10(30) − 𝑥2 ≤ 0 

𝑔5(𝐗) = 0.5(250) − 𝑥1 ≤ 0 

𝑔6(𝐗) = 𝑥1 − (0.5 + 𝑥9)(250) ≤ 0 

𝑔7(𝐗) = 𝑥8𝑥2 − 0.5(160 − 𝑥1 − 𝑥2) ≤ 0 

𝑔8(𝐗) = 0.515 − 𝑥4 ≤ 0 

𝑔9(𝐗) = 0.515 − 𝑥5 ≤ 0 

Design variables 

0.5(250)  ≤ 𝑥1 ≤ 0.6(250) 
0.15(70)  ≤ 𝑥2 ≤ 0.45(70) 
4 ≤ 𝑥3 ≤ 50 

0.515 ≤ 𝑥4 ≤ 0.6 

0.515 ≤ 𝑥5 ≤ 0.6 

0.4 ≤ 𝑥6 ≤ 0.5 

0.6 ≤ 𝑥7 ≤ 0.7 

0.02 ≤ 𝑥8 ≤ 0.1 

0.3 ≤ 𝑥9 ≤ 0.4 

0.6 ≤ 𝑥10 ≤ 0.85 

Other parameters 

𝑓𝑐 = 37.91 [1 + {1.04 (
1 − 𝛾

1 + 𝛾
)
1.72

(
𝑥4(2𝑥5 − 1)

𝑥5(2𝑥4 − 1)
)

0.41

}

10
3

]

−0.3

× [
𝛾0.3(1 − 𝛾)1.39

(1 − 𝛾)
1
3

] [
2𝑥4

2𝑥4 − 1
]
0.41

 

𝑥 = [{
(70)

2
+ 3 (

𝑇

4
)}

2

+ {
160

2
−
𝑇

4
− 𝑥2}

2

− {
90

2
+
𝑇

4
}
2

] 

𝑦 = 2{
(70)

2
+ 3 (

𝑇

4
)} {

160

2
−
𝑇

4
− 𝑥2} 

𝜑𝑜 = 2𝜋 − cos  
−1 (

𝑥

𝑦
) 

𝛾 =
𝑥2
𝑥1
  , 𝑥4 =

11.034

𝑥2
   , 𝑥5 =

11.034

𝑥2
  , 𝑇 = 70 − 2𝑥2 

𝐷 = 160  , 𝑑 = 90  , 𝐵𝑤 = 30  , 𝑟𝑖 = 𝑟𝑜 = 11.034 

 

 

Table 12. The optimal results for REB design problem 

 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

x1 125.7190 125.7200 125.0000 125.7150 125.7211 125.7153 

x2 21.4250 21.4250 21.0000 21.4230 21.4233 21.4233 

x3 11 11 11 11 11 11 

x4 0.515 0.515 0.515 0.515 0.515 0.515 

x5 0.515 0.5115 0.515 0.515 0.515 0.515 

x6 0.4000 0.4212 0.4000 0.4888 0.4015 0.4800 

x7 0.7000 0.6997 0.6000 0.6278 0.6590 0.6278 
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x8 0.300000 0.300000 0.300000 0.300149 0.300032 0.300100 

x9 0.1000 0.0953 0.0505 0.0973 0.0400 0.0973 

x10 0.6261 0.6455 0.6000 0.6461 0.6000 0.6459 

Optimal Results 

Best 1.08924E-05 1.08924E-05 1.13195E-05 1.08943E-05 1.08941E-05 1.08940E-05 

Mean 1.16851E-05 1.12909E-05 1.22194E-05 1.22120E-05 1.20443E-05 1.16876E-05 

Std. 2.17E-06 1.09E-06 7.22E-06 6.14E-06 4.14E-06 4.00E-06 

OFEs 11,520 10,200 31,520 29,600 18,940 16,440 

Constraints 

g1(X) -5.4048 -5.4049 -5.6427 -5.4058 -5.4064 -5.4057 

g2(X) -14.8500 -13.3660 -14.0000 -8.6299 -14.7416 -14.7416 

g3(X) -6.1499 -6.1289 0.0000 -5.3000 -3.2834 -3.2834 

g4(X) -2.6420 -2.0600 -3.0000 -2.0399 -3.4233 -2.0463 

g5(X) -0.7189 -0.7199 0.0000 -1.7175 -0.7211 -0.7153 

g6(X) -24.2810 -23.1049 -12.6250 -1.7175 -9.2789 -23.6097 

g7(X) -0.0005 0.0000 -0.7000 -0.0009 -0.0001 -0.0016 

g8(X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

g9(X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

4.2.6 72-bar spatial truss structure 

 

In the current problem, it is targeted to minimize the weight of a 72-bar spatial truss structure. 

The schematic view of the system from different points is given in Figure 9. The elements of 

the truss are listed in sixteen groups according to a symmetric categorization principle [1]. 

Allowable displacement limits in all directions for all nodes is ±0.25 in. The properties of the 

utilized material are E=10,000 ksi (module of elasticity) and ρ=0.1 lb/in.3 (density). The limit 

of the compressive and tensile stress for all elements is ±25 ksi. The lower and upper bound of 

the design variables are considered continuously between 0.1 in.2 and 3.0 in.2. For the current 

problem two independent loading conditions are considered, where the 17, 18, 19, and 20 nodes 

are exposed to a 5.0 kips load in the negative direction of the z axis and the 17 node is exposed 

to 5.0 kips in the positive direction of x axis, 5.0 kips in the positive direction of y axis, and 5.0 

kips load in the negative direction of the z axis [39]. 

        
 

     3D view    side view   partial view 

Figure 9. The 72-bar spatial truss structure 
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The problem is solved with the selected optimization algorithms and the achieved optimal 

results are presented in Table 13. According to the reported data, the most accurate optimal 

solution belongs to the TLBO-EQFB combination. Additionally, according to the Std. values, 

the stability of the TLBO-EQFB is higher than other optimization algorithms. Objective 

function values (OFEs) reveal that the EQFB module decreases the computational cost of the 

optimization process.  

 

Table 13. The optimal result for 72-bar spatial truss system 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

          (in.2) 

A1- A4 1.8577 1.8519 1.7430 1.8600 1.8600 1.8364 

A5- A12 0.5059 0.5141 0.5181 0.5209 0.5210 0.5021 

A13- A16 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

A17- A18 0.1000 0.1000 0.1000 0.1000 0.1000 0.1004 

A19- A22 1.2476  1.2819 1.3079 1.2710 1.2710 1.2522 

A23- A30 0.5269 0.5091 0.5190 0.5090 0.5090 0.5033 

A31- A34 0.1000 0.1000 0.1000 0.1000 0.1000 0.1002 

A35- A36 0.1012 0.1000 0.1000 0.1000 0.1000 0.1002 

A37- A40 0.5209 0.5312 0.5140 0.4849 0.4850 0.5729 

A41- A48 0.5172 0.5173 0.5460 0.5010 0.5010 0.5498 

A49- A52 0.1004 0.1000 0.1000 0.1000 0.1000 0.1004 

A53- A54 0.1005 0.1000 0.1090 0.1000 0.1000 0.1001 

A55- A58 0.1565 0.1560 0.1610 0.1680 0.1680 0.1576 

A59- A66 0.5507 0.5572 0.5089 0.5839 0.5840 0.5222 

A67- A70 0.3922 0.4259 0.4970 0.4330 0.4330 0.4356 

A71- A72 0.5922 0.5271 0.5620 0.5200 0.5200 0.5972 

Optimal Results 

Best weight 

(lb) 
379.8511 379.7687 381.9100 380.8135 380.6200 380.4417 

Mean weight 

(lb) 
381.2522 380.9963 383.5940 382.0971 382.0004 381.9970 

Std. (lb) 1.9842 1.1153 3.2506 2.9588 2.3380 2.1778 

OFEs 6720 6400 8500 8120 8040 7900 

 

 

4.2.7 120-bar dome structure with dynamic constraints 

 

In the current problem, the weight of a 120-bar dome structure subjected to multiple natural 

frequency constraints is aimed to be minimized. The schematic presentation of the system is 

shown in Figure 10. The properties of the utilized material are E=210 MPa (module of 

elasticity) and ρ=7971.81 kg/m3 (density). The elements of the structure are categorized into 

seven independent groups. For the current problem the nodes 1, 2-13 and 14-37 are exposed to 

a non-structural mass of 3000 kg, 500 kg, and 100 kg, respectively. Two first natural frequencies 

Ф1 ≥ 9 Hz and Ф2 ≥ 11 Hz. are the limitations of the current problem. The lower and upper 

bound of the design variables are considered continuously between 1 cm.2 and 129.3 cm.2 [30]. 
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   Top view         3D view 

Figure 10. The 120-bar dome structure 

 

 

Optimal solutions acquired by the selected approaches are given in Table 14. Based on the 

presented outcomes and statistical data, the proposed TLBO-EQFB in terms of accuracy and 

stability is superior to other techniques. Also, the constraints of the problem are not violated, 

this means that the algorithms are able to handle the dynamic constraints. The EQFB module 

improves the algorithms’ performance. This observation indicates that the constraint-handling 

module EQFB is well adopted to all of selected algorithms. The number of objective function 

evaluations (OFEs) indicate that the unnecessary iterations are reduced, and this decreases the 

computational cost of the optimization process. Also, the algorithm does not require separate 

treatment for each type of violation. 

 

Table 14. The optimal result for 120-bar dome structure 

 

Algorithms TLBO-FB TLBO-EQFB BOA-FB BOA-EQFB HHO-FB HHO-EQFB 

Design Variables 

          (cm2) 

A1 19.5093 19.4867 19.6070 18.9791 20.2631 19.5107 

A2 40.3911 40.4260 41.2901 41.0046 39.2942 40.3368 

A3 10.6066 10.6099 11.1360 10.6124 9.9892 10.6274 

A4 21.1368 21.0910 21.0253 21.8776 20.5630 21.1037 

A5 9.8134 9.8491 10.0601 10.7519 9.6031 9.8450 

A6 11.7798 11.7639 12.7582 12.4286 11.7384 11.7369 

A7 14.8192 14.8556 15.4144 13.7772 15.8771 14.8595 

Optimal Results 

Best weight (kg) 8707.2802 8707.2715 8790.4812 8748.2105 8724.9722 8707.2808 

Mean weight (kg) 8708. 6005 8708.0009 8793.6752 8751.6634 8727.0025 8709.8960 

Std. (kg) 2.1259 1.9763 5.0021 4.1254 3.8996 3.7561 

OFEs 4240 4100 6040 5900 5280 5020 
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4.2.8 Non-parametric statistical tests for constrained engineering problems 

 

To investigate the performance of the selected algorithms in comparison with each other, a non-

parametric statistical test is approved. For this aim, the Friedman rank test is implemented. The 

acquired outcomes are reported in Table 15. Based on the test results the TLBO-EQFB in 

comparison with other algorithms ranks in a better position from both stability and accuracy 

features. 

 

Table 15. The Friedman rank test for mean and Std. values for engineering problems 

 
 

 
Test for optimal mean value 

 
Test for optimal Std. value 

Method Friedman 

value 

Normalized 

value 
Rank  

Friedman 

value 

Normalized 

value 
Rank 

TLBO-FB 13 0.615384 2  15 0.466667 2 

TLBO-EQFB 8 1.000000 1  7 1.000000 1 

BOA-FB 42 0.190476 6  42 0.166667 6 

BOA-EQFB 33 0.242424 5  33 0.212121 5 

HHO-FB 30 0.266666 4  29 0.241379 4 

HHO-EQFB 21 0.380952 3  21 0.333333 3 

 

 

5. Conclusion 
 

In the current study, a new constraint handling mechanism is introduced to incorporate the 

restrictions of the restricted optimization problems into the search process. For this aim, initially 

the concept of weighted agent is utilized to reinforce the quadratic approximation search 

approach. Subsequently, the proposed reinforced strategy is integrated with Fly-Back (FB) 

mechanism to develop an efficient and capable constraint handling approach so-called 

Enhanced Quadratic Fly-Back (EQFB) technique. On the one hand, this approach leverages the 

weighted average to use information collected by entire population more efficiently (This is 

possible because the weighted agent shares the data collected by all agents). On the other hand, 

taking advantage of the logic of the quadratic approximation strategy provides more reasonable 

alternatives for violated agents. These advantages enable the EQFB to enhance the main 

optimization algorithm's efficiency in scanning the problem's domain. To assess the effect of 

EQFB method on the search performance of the metaheuristic algorithms, it is combined with 

three different methods. The selected pilot methods are Teaching and Learning Based 

Optimization (TLBO), Harris Hawks Optimization (HHO), and Butterfly Optimization 

Algorithm (BOA). The performance of the proposed combined algorithms is tested on solving 

constrained mathematical, mechanical and structural optimization problems. 

 

The optimal solutions obtained for all tested problems demonstrate that the EQFB module 

enhances the precision of the optimization algorithm and boosts its performance. The outcomes 

of carried out statistical test (i.e., for standard deviation values) demonstrate that the EQFB has 

an effective role in raising the stability of the optimization process. Furthermore, the number of 

required objective function evaluations (OFEs) indicates that the EQFB approach substantially 

decreases the number of ineffective iterations (i.e., iterations without improvement), resulting 

in a significant reduction in computational cost. This issue specialty is very important in 

complex engineering optimization problems in which the objective function evaluation is the 

most time-consuming part of the optimization process. Consequently, it should be noted that 
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EQFB is a stand-alone module that can be independently integrated with various optimization 

algorithms. As a future plan, it is targeted to test the performance of the EQFB on solving more 

complex and large-scale problems in the field of energy. 
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