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Abstract
We study the set of k-quasi-(m, n, C)-isosymmetric operators. This family extends the set
of (m, , n, C)-isosymmetric operators. In the present article, we give operator matrix repre-
sentation of k-quasi-(m, , n, C)-isosymmetric operator in order to obtain some structural
properties for such operators. We show that if R is a k-quasi-(m, n, C)-isosymmetric,
then Rq is a k-quasi-(m, n, C)-isosymmetric operator. We show that the product of
a k1-quasi-(m1, n1, C)-isosymmetric and a k2-quasi-(m2, n2, C)-isosymmetric which are
C-double commuting is a max{k1, k2}-quasi-(m1 + m2 − 1, n1 + n2 − 1, C)-isosymmetry
under suitable conditions. In particular, we prove the stability of perturbation of k-
quasi-(m, n, C)-isosymmetric operator by a nilpotent operator of order p under suitable
conditions. Moreover, we give some results about the joint approximate spectrum of a
k-quasi-(m, n, C)-isosymmetric operator.
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1. Introduction
Let B[K] be the set of all bounded linear operators on a separable complex Hilbert space

K with inner product ⟨· | ·⟩ and denote by I be the identity of B[K]. For an operator
R ∈ B[K], we denote by ran(R) its range, ker(R) its kernel, and R∗ its adjoint. Recall
from [16] that a conjugation on K is a map C : K −→ K which is antilinear, involutive
(C2 = I. Moreover, C satisfies the following properties:

⟨Cx | Cy⟩ = ⟨y | x⟩ for all x, y ∈ K,

CRC ∈ B
[
K
]

for every R ∈ B
[
K
]
,(

CRC
)r = CRrC for all r ∈ N,(

CRC
)∗ = CR∗C.
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See [5, 12] for properties of conjugation operators.
In this work, N = {1, 2, · · · }, N0 = {0, 1, 2, · · · } and n, m ∈ N.
During the past years, the m-isometric operators term has known a great interest on the
part of researchers in the field of operator theory, by the works that has been published in
this aspect. It should be noted that most of these works are dependent on the following
definition, which is due to Agler [2]. An operator R ∈ B[K] is said to be m-isometric if

∑
0≤k≤m

(−1)k

(
m

k

)
R∗m−kRm−k = 0, (1.1)

or ∑
0≤k≤m

(−1)k

(
m

k

)
∥Rm−kx∥2 = 0 ∀ x ∈ K. (1.2)

(For more detail, see [2–4,6, 7, 17–19,27] about the theory of m-isometries).
As extensions of the concepts of m-isometric operators on Hilbert spaces, some authors
have introduced and studied in different papers the following classes of operators.
(1) (m, C)-isometric operator that is an operator R ∈ B

[
K
]

satisfies

∑
0≤k≤m

(−1)k

(
m

k

)
R∗m−kCRm−kC = 0, (1.3)

for some m ∈ N and some conjugation C ([9, 11,21]).

(2) n-quasi-m-isometric operator that is an operator R ∈ B
[
K
]

satisfies

R∗n
( ∑

0≤k≤m

(−1)m−k

(
m

k

)
R∗m−kRm−k

)
Rn = 0, (1.4)

for some n ∈ N and m ∈ N ([8, 15,24,26]).

(3) n-quasi-(m, C)-isometric operator that is an operator R ∈ B
[
K
]

satisfies

Qm
(
R; C

)
:= R∗n

( ∑
0≤k≤m

(−1)m−k

(
m

k

)
R∗m−kCRm−kC

)
Rn = 0, (1.5)

for some conjugation C and some n ∈ N and m ∈ N ([1, 22,25]).
It is well known that the properties of powers, products and perturbations of the mem-

bers of each of the classes cited above has been discussed ([9, 22,24–26]).
The readers are invited to see the reference list and citations guide for more detailed

information.
From [10, 13], an operator R ∈ B

[
K
]

is said to be n-complex symmetric if there exists a
conjugation operator C such that

∑
0≤k≤n

(−1)n−k

(
n

k

)
R∗kCRn−kC = 0. (1.6)

for some n ∈ N. However, R is said k-quasi-n-symmetric ([1]), if

R∗k
( ∑

0≤j≤n

(−1)n−j

(
n

j

)
R∗jCRn−jC

)
Rk = 0, (1.7)

for some conjugation operator C and for some integers k, n ∈ N.
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Definition 1.1 ([29, 30]). An operator R ∈ B
[
K
]

is called (m, n)-isosymmetric if R
satisfies ∑

0≤j≤m

(−1)j

(
m

j

)
R∗(m−j)

( ∑
0≤k≤n

(−1)k

(
n

k

)
R∗(n−k)Rk

)
Rm−j

=
∑

0≤k≤n

(−1)k

(
n

k

)
R∗(n−k)

( ∑
0≤j≤m

(−1)j

(
m

j

)
R∗(m−j)Rm−j

)
Rk

= 0.

Remark 1.2. Every m-isometric operator is an (m, n)-isosymmetric and every n-symmetric
operator is an (m, n)-isosymmetric operator.

For R ∈ B
[
K
]

and C ∈ C
[
K
]
. Following [14], we put

Λm
(
C; R

)
:=

∑
0≤k≤m

(−1)k

(
m

k

)
R∗m−kCRkC,

Υm
(
C; R

)
:=

∑
0≤k≤m

(−1)k

(
m

k

)
R∗m−kCRm−kC

Note that Λ1
(
C; R

)
= R∗ − CRC and Υ1

(
C; R

)
= R∗CRC − I.

Definition 1.3 ([14]). An operator R ∈ B
[
K
]

is said to be an (m, n, C)-isosymmetric
operator for some conjugation C ∈ C

[
K
]

if Qm,n
(
C; R

)
= 0 where

Qm,n
(
C; R

)
: =

∑
0≤k≤m

(−1)k

(
m

k

)
R∗m−kΛn

(
C; R

)
CRm−kC

=
∑

0≤k≤n

(−1)k

(
n

k

)
R∗(n−k)Υm

(
C; R

)
CRkC

Remark 1.4.
Qm+1,n

(
C; R

)
= R∗Qm,n

(
C; R

)(
CRC

)
− Qm,n

(
C; R

)
(1.8)

and
Qm,n+1

(
C; R

)
= R∗Qm,n

(
C; R

)
− Qm,n

(
C; R

)(
CRC

)
. (1.9)

The outline of the paper is as follows. In section two, we introduce the concept of k-
(m, n, C)-isosymmetric operators. Some properties of these families are studied. Section
three is devoted to the study of some spectral properties of k- (m, n, C)-isosymmetric
operators.

2. k-quasi-(m, n, C)-isosymmetric operators
In the present section, we give the definition and basic properties of k-quasi-(m, n, C)-

isosymmetric operators.

Definition 2.1 ([23]). An operator R ∈ B
[
K
]

is said to be a k-quasi-(m, n)-isosymmetric
operator for some positive integers m, n and k, if R satisfies

R∗k
( ∑

0≤j≤m

(−1)j

(
m

j

)
R∗(m−j)

( ∑
0≤r≤n

(−1)r

(
n

r

)
R∗(n−r)Rr

)
Rm−j

)
Rk

= R∗k
( ∑

0≤r≤n

(−1)r

(
n

r

)
R∗(n−r)

( ∑
0≤j≤m

(−1)j

(
m

j

)
R∗(m−j)Rm−j

)
Rr
)

Rk = 0.
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Definition 2.2. An operator R ∈ B
[
K
]

is said to be a k-quasi-(m, n, C)-isosymmetric
operator for some conjugation C ∈ C

[
K
]

if

Qm,n,k

(
C; R

)
:= R∗kQm,n

(
C; R

)
Rk

= R∗k
( ∑

0≤j≤m

(−1)j

(
m

j

)
R∗(m−j)

( ∑
0≤r≤n

(−1)r

(
n

r

)
R∗(n−r)CRrC

)
CRm−jC

)
Rk

= R∗k
( ∑

0≤r≤n

(−1)r

(
n

r

)
R∗(n−r)

( ∑
0≤j≤m

(−1)j

(
m

j

)
R∗(m−j)CRm−jC

)
CRrC

)
Rk

= 0,

where

Qm,n
(
C; R

)
: =

∑
0≤k≤m

(−1)k

(
m

k

)
R∗m−kΛn

(
C; R

)
CRm−kC

=
∑

0≤k≤n

(−1)k

(
n

k

)
R∗(n−k)Υm

(
C; R

)
CRkC

Example 2.3. It should be noted that
(1) Every (m, C)-isometric operator is a k-quasi-(m, n, C)-isosymmetric and every n-
complex symmetric operator is a k-quasi-(m, n, C)-isosymmetric operator.
(2) Every (m, n, C)-isosymmetric operator is a k-quasi-(m, n, C)-isosymmetric operator.

Remark 2.4. Let R ∈ B
[
K
]

and C ∈ C
[
K
]

such that
[
R, CRC

]
= 0, the following hold.

(1) If R is k-quasi-(m, C)-isometric operator, then it is k-quasi-(m, n, C)-isosymmetric
operator.
(2) If R is a k-quasi-n-complex symmetric operator, then it is a k-quasi-(m, n, C)- isosym-
metric operator.

Remark 2.5. When n = m = k = 1, 1-quasi-(1, 1, C)-isosymmetric operator is a quasi-
complex isosymmetric i.e; an operator R is quasi complex isosymmetric if and only if

R∗
(

R∗2CRC − R∗CR2C − R∗ + CRC
)

R = 0.

Proposition 2.6. If R is a k-quasi-(m, n, C)-isosymmetric operator for some conjuga-
tion C such that

[
R, CRC

]
= 0, then R is a k′-quasi-(p, q, C)-isosymmetric for all q ≥ n,

p ≥ m and k′ ≥ k.

Proof. Since
[
R, CRC

]
= 0, it follows that

R∗kQm+1,n
(
C; R

)
Rk

= R∗k
(

R∗Qm,n
(
C; R

)(
CRC

)
− Qm,n

(
C; R

))
Rk

= R∗R∗kQm,n
(
C; R

)
Rk(CRC

)
− R∗kQm,n

(
C; R

)
Rk

and
R∗kQm,n+1

(
C; R

)
Rk

= R∗k
(

R∗Qm,n
(
C; R

)
− Qm,n

(
C; R

)(
CRC

))
Rk
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= R∗R∗kQm,n
(
C; R

)
Rk − R∗kQm,n

(
C; R

)
Rk(CRC

)
.

Based on the above identities, the required result is achieved. □

Proposition 2.7. Let R ∈ B
[
K
]

and C ∈ C
[
K
]
, then the following are equivalent.

(1) R is a k-quasi-(m, n, C)-isosymmetric operator.

(2)
〈
Qm,n

(
C; R

)
w | w

〉
= 0, ∀ w ∈ ran(Rk).

Proof. (1) =⇒ (2). If R is a k-quasi-(m, n, C)-isosymmetric operator, then
R∗kQm,n

(
C; R

)
Rk = 0. Depending on the known properties, we can obtain

R∗kQm,n
(
C; R

)
Rk = 0 =⇒

〈
R∗kQm,n

(
C; R

)
Rkw | w

〉
= 0, ∀ w ∈ K

=⇒
〈
Qm,n

(
C; R

)
Rkw | Rkw

〉
= 0, ∀ w ∈ K

=⇒
〈
Qm,n

(
C; R

)
w | w

〉
= 0, ∀ w ∈ ran(Rk).

(2) =⇒ (1). With similar steps, we have〈
Qm,n

(
C; R

)
w | w

〉
= 0, ∀ w ∈ ran(Rk)

=⇒
〈
Qm,n

(
C; R

)
Rku | Rku

〉
= 0, ∀ u ∈ K

=⇒
〈
R∗kQm,n

(
C; R

)
Rku | u

〉
= 0, ∀ u ∈ K

=⇒ R∗kQm,n
(
C; R

)
Rk = 0,

which implies that R is a k-quasi-(m, n, C)-isosymmetirc operator. □

Corollary 2.8. Let R ∈ B
[
K
]

and k1, k2 ∈ N0. If ran(Rk1) = ran(Rk2), then R
is a k1-quasi-(m, n, C)-isosymmetric operator if and only if R is a k2-quasi-(m, n, C)-
isosymmetric operator for some conjugation C ∈ C

[
K
]
.

Proof. Referring to Proposition 2.7, we find that

k1 − quasi − (m, n, C) − isosymmetric ⇔
〈
Qm,n

(
C; R

)
w | w

〉
= 0, ∀ w ∈ ran(Rk1).

Using the condition ran(Rk1) = ran(Rk2), we may write〈
Qm,n

(
C; R

)
w | w

〉
= 0, ∀ w ∈ ran(Rk1) ⇔

〈
Qm,n

(
C; R

)
w | u

〉
= 0, ∀ u ∈ ran(Rk2)

⇔ k2 − quasi − (m, n, C) − isosymmetric.

□

Theorem 2.9. Let R ∈ B
[
K
]

be a k-quasi-(m, n, C)-isosymmetric operator for some
C ∈ C

[
K
]
. If ker(R∗r) = ker(R∗(r+1)) for some 1 ≤ r ≤ k − 1, then R is a r-quasi-

(m, n, C)-isosymmetric operator.

Proof. From the assumptions ker(R∗r) = ker(R∗(r+1)) and r ≤ k − 1, it follows that
ker(R∗r) = ker(R∗k). We get ran(Rk) = ran(Rr). Applying Corollary 2.8, the desired
conclusion will be obtained. □

Theorem 2.10. Let R ∈ B
[
K
]

and C = C1 ⊕ C2 be a conjugation on K where C1 and
C2 are conjugations on ran(Rk) and ker(R∗k), respectively. If Rk does not have a dense
range, then the following statements are equivalent:

(1) R is a k-quasi-(m, n, C)-isosymmetric operator.

(2) R =
(

R1 R2
0 R3

)
on K = ran(Rk) ⊕ ker(R∗k), where R1 is a (m, n, C1)-

isosymmetric operator and Rk
3 = 0.
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Proof. (1) ⇒ (2) Let P be the projection onto ran(Rk). Since R is an k-quasi-(m, n, C)-
isosymmetric operator, it follows that

P
(
Qm,n

(
C, R

)
P = 0,

then Qm,n
(
C1, R1

)
= 0. Hence R1 is an (m, n, C1)-isosymmetric on ran(Rk). On the

other hand, for any x = x1 ⊕ x2 ∈ K = ran(Rk) ⊕ ker(R∗k), we have〈
Rk

3x2, x2
〉

=
〈
Rk(I − P )x, (I − P )x

〉
=
〈
(I − P )x, R∗k(I − P )x

〉
= 0.

Hence Rk
3 = 0.

(2) ⇒ (1) Assume that R =
(

R1 R2
0 R3

)
on K = ran(Rk) ⊕ ker(R∗k), such that R1 is

a (m, n, C1)-isosymmetric operator and Rk
3 = 0. We know that for all r ∈ N, we have

Rr =

 Rr
1

r−1∑
i=0

Ri
1R2Rr−1−i

3

0 Rr
3

 .

Therefore
RkR∗k =

(
Rk

1R∗k
1 0

0 0

)
,

since Rk
3 = 0. On the other hand, by a simple calculation we get

Qm,n
(
C; R

)
=
(

Qm,n
(
C1; R1

)
A

B D

)
such that A, B, D ∈ B

[
K
]
.

RkR∗kQm,n
(
C; R

)
RkR∗k =

(
Rk

1R∗k
1 Qm,n

(
C1; R1

)
Rk

1R∗k
1 0

0 0

)
.

Since R1 is (m, n, C1)-isosymmetric operator, then Qm,n
(
C1; R1

)
= 0. Therefore,

RkR∗kQm,n
(
C; R

)
RkR∗k = 0.

Consequently, for all x ∈ K, we have

0 =
〈
RkR∗kQm,n

(
C; R

)
RkR∗kx | x

〉
=

〈
R∗kQm,n

(
C; R

)
Rk

(
R∗kx

)
|
(
R∗kx

)〉
.

As a result that R∗kQm,n
(
C; R

)
Rk = 0, therefore R is a k-quasi-(m, n, C)-isosymmetric

operator. □

Corollary 2.11. Let R ∈ B
[
K
]

be a k-quasi-(m, n, C)-isosymmetric operator, where
C = C1 ⊕ C2 be a conjugation on K with C1 and C2 are conjugations on ran(Rk) and
ker(R∗k), respectively. If the restriction R

∣∣
ran(Rk) is invertible, then R is similar to a

direct sum of an (m, n, C1)-isosymmetric operator and a nilpotent operator with index of
nilpotence less than or equal k.

Proof. According to that R is a k-quasi-(m, n, C)-isosymmetric operator and to the de-
composition

R =
(

R1 R2
0 R3

)
on K = ran(Rk) ⊕ ker(R∗k).

We have from Theorem 2.10 that R1 is (m, n, C1)-isosymmetric operator and R3 is nilpo-
tent. By the fact that R1 is invertible, we have 0 /∈ σ(R1). Hence, σ(R1) ∩ σ(R3) = ∅. By
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Rosenblum’s Corollary [28], there exists S ∈ B
[
K
]

for which R1S − SR3 = R2. Therefore
R can be written as

R =
(

I S
0 I

)−1 (
R1 0
0 R3

)(
I S
0 I

)
.

□

Theorem 2.12. Let R =
(

R1 R2
0 R3

)
∈ B

[
K ⊕ K

]
and C ∈ C

[
K
]
. If R1 is a surjective

(m, n, C)-isosymmetric operator and Rk
3 = 0, then R is similar to a k-quasi-(m, n, C⊕C

)
-

isosymmetric operator.

Proof. Under the assumptions that R1 is surjective and Rk
3 = 0, we have σs(R1) ∩

σa(R3) = ∅ where σs(.) is the surjective spectrum and σa(.) is the approximate spectrum.
From the statement (c) in [20, Theorem 3.5.1], there exist an operator S ∈ B

[
K
]

for which
R1S − SR3 = R2. Therefore, we can write(

R1 R2
0 R3

)
=
(

I S
0 I

)−1 ( R1 0
0 R3

)(
I S
0 I

)
,

it follows that R is similar to A =
(

R1 0
0 R3

)
.

In fact, since R1 is (m, n, C)-isosymmetric and Rk
3 = 0, we obtain

Qm,n,k

(
C ⊕ C, A

)
=

 Qm,n,k

(
C, R1) 0

0 0

 = 0.

Therefore, R is similar to a k-quasi-(m, n, C ⊕ C)-isosymmetric operator. □

Proposition 2.13. Let R be a k-quasi-(m, n, C)-isosymmetric operator, then Rq is also
for all q ∈ N where C = C1 ⊕ C2 be a conjugation on K with C1 and C2 are conjugations
on ran(Rk) and ker(R∗k), respectively.

Proof. If ran(Rk) = K it is obvious. Else, by Theorem 2.10 we write the matrix represen-

tation of R on K = ran(Rk)⊕ker(R∗k) as follows R =
(

R1 R2
0 R3

)
where R1 = R∣∣ran(Rk)

is an (m, n, C1)-isosymmetric operator and Rk
3 = 0. We notice that

Rq =

 Rq
1

q−1∑
i=0

Ri
1R2Rq−1−i

3

0 Rq
3

 ,

where (Rq
3)k = 0 and since R1 is an (m, n, C1)-isosymmetric operator, then according to

[14, Theorem 3.3], we get, Rq
1 is an (m, n, C1)-isosymmetric operator. Hence, by Theorem

2.10 Rq is k-quasi-(m, n, C)-isosymmetric operator. □

Theorem 2.14. Let R, T be in B[K] and C ∈ C[K] such that[
R, T] =

[
T∗, CRC

]
=
[
R, CRC

]
=
[
T, CTC

]
= 0.

Let k1, k2, m1, m2, n1, n2 be positive integers. If R is a k1-quasi-(m1, n1, C)-isosymmetric
operator and T is a k2-quasi-(m1, C)-isometric operator and, a k2-quasi-n2-complex sym-
metric with conjugation C. Then RT is a k-quasi-(m, n, C)-isosymmetric operator, with
m = m1 + m2 − 1, n = n1 + n2 − 1 and k = max{k1, k2}
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Proof. Under the assumptions
[
R, T] =

[
T∗, CRC

]
= 0 and taking into account [14,

Theorem 3.6] it follows that

(RT)∗k Qm,n
(
C; RT

)
(RT)k

= R∗kT∗k

m1+m2−1∑
i=0

n1+n2−1∑
j=0

(
m1 + m2 − 1

i

)(
n1 + n2 − 1

j

)

× R∗j+i
(
Qm1+m2−1−i,n1+n2−1−j

(
C; R

)
Qi,j

(
C; T

)
RiTn1+n2−1−j

))
RkTk

=
m1+m2−1∑

i=0

n1+n2−1∑
j=0

(
m1 + m2 − 1

i

)(
n1 + n2 − 1

j

)

× R∗j+i
(
R∗kQm1+m2−1−i,n1+n2−1−j

(
C; R

)
Rk
)(

T∗kQi,j
(
C; T

)
Tk
)
RiTn1+n2−1−j

=
m1+m2−1∑

i=0

n1+n2−1∑
j=0

(
m1 + m2 − 1

i

)(
n1 + n2 − 1

j

)

× R∗j+i
(
Qm1+m2−1−i,n1+n2−1−j,k

(
C; R

))(
Qi,j,k

(
C; T

)
RiTn1+n2−1−j .

If i ≥ m2 or j ≥ n2, since T is a k2-quasi-(m2, C)-isometric operator and k2-quasi-n2-
complex symmetric operator and

[
T, CTC

]
= 0 then, Qi,j,k

(
C; T

)
= 0 by Remark 2.4 and

Proposition 2.6. Else, if i ≤ m2 −1 and j ≤ n2 −1, then m1 +m2 −1−i ≥ m1 and n1 +n2 −
1 − j ≥ n1. Under the hypotheses R is a k1-quasi-(m1, n1, C)-isosymmetric operator and[
R, CRC

]
= 0 by Proposition 2.6, we get that Qm1+m2−1−i,n1+n2−1−j,k

(
C; R

)
= 0. □

Proposition 2.15. Let R ∈ B
[
K
]

be a k1-quasi-(m1, n1, C)-isosymmetric operator with a
conjugation C = C1 ⊕ C2 where C1 and C2 are conjugations on ran(Rk

1) and ker(R∗k1),
respectively. Let T ∈ B

[
K
]

be a k2-quasi-(m2, C)-isometric and a k2-quasi-n2-symmetric
operator with a conjugation C. Assume that[

R, T] =
[
T∗, CRC

]
=
[
R, CRC

]
=
[
T, CTC

]
= 0,

and ran(Rk1) = ran(Tk2). Then RpTq is a k-quasi-(m, n, C)-isosymmetric operator for
all positive integers p and q, with m = m1 +m2 −1, n = n1 +n2 −1 and k = max{k1, k2}.

Proof. If ran(Rk1) = K
(

= ran(Tk2)
)
, it follows that R is (m1, n1, C)-isosymmetric

operator and so is Rp by [14, Theorem 3.]. On the other hand T is (m2, C)-isometry and
n2-complex symmetric with a conjugation C. In view of [9, Theorem 3.7] and [10, Theorem
4.5] it follows that Tq is (m2, C)-isometry and n2-complex symmetry with a conjugation
C. Applying [14, Theorem 3.6] we obtain that RpTq is (m1 + m2 − 1, n1 + n2 − 1, C)-
isosymmetric operator.

If ran(Rk1) ̸= K
(

̸= ran(Tk2)
)
. From Proposition 2.13 we have Rp is k1-quasi-(m1, n1, C)-

isosymmetric operator. On the other hand, Tq is k2-quasi-(m2, C) isometric (by [25,
Theorem 2.2] and it is k2-quasi-n2-complex symmetric (by [1, Theorem 2.3]. Elementary
calculation shows that Rp and Tq satisfy the conditions of Theorem 2.14 and consequently,
RpSq is k-quasi-(m1 + m2 − 1, n1 + n2 − 1, C)-isosymmetric operator. □

Proposition 2.16. Let R ∈ B
[
K
]

be a k-quasi-(m, n, C)-isosymmetric operator for some
C ∈ C

[
K
]

and N ∈ B
[
K
]

be a p-nilpotent operator such that R and N satisfying
[
R, T

]
=[

T∗, CRC
]

= 0, then R + N is (k + p)-quasi-(m + 2p − 2, n + 2p − 1, C)-isosymmetric
operator.



On k-quasi-(m, n, C)-isosymmetric operators 9

Proof. We know that from [14, Theorem 3.4]

Qm+2p−2,n+2p−1
(
C; R + N

)
=

n+2p−1∑
j=0

∑
i+l+h=m+2p−2

(
n + 2p − 1

j

)(
m + 2p − 2

i, l, h

)

× (R∗ + N∗)i N∗lQh,n+2p−1−j

(
C; R

)
αj
(
C; N

)
RlNi

where αj
(
C; N

)
=

j∑
µ=0

(−1)j

(
j

µ

)
N∗j−µCNµC and αj

(
C; N

)
= 0 if j ≥ 2p. Therefore

Qm+2p−2,n+2p−1,k+p

(
C; R + N

)
= (R + N)∗k+p Qm+2p−2,n+2p−1

(
C; R + N

)
(R + N)k+p

=
k+p∑
r=0

(
k + p

r

)
R∗k+p−rN∗r

( n+2p−1∑
j=0

∑
i+l+h=m+2p−2

(
n + 2p − 1

j

)(
m + 2p − 2

i, l, h

)

× (R∗ + N∗)i N∗lQh,n+2p−1−j

(
C; R

)
αj
(
C; N

)
RlNi

) k+p∑
r=0

(
k + p

r

)
Rk+p−rNr.

• If
j ≥ 2p ⇒ αj

(
C; N

)
= 0

or
i ≥ p ⇒ Ni = 0

or
l ≥ p ⇒ N∗l = 0

or
r ≥ p + 1 ⇒ Nr = 0 and N∗r = 0


⇒ Qm+2p−2,n+2p−1,k+p

(
C; R

)
= 0

• Else, if
j ≤ 2p − 1 ⇒ n + 2p − 1 − j ≥ n

i ≤ p − 1
l ≤ p − 1

}
⇒ h = m + 2k − 2 − i − l ≥ m

r ≤ p ⇒ k + p − r ≥ k

 ⇒ R∗k+p−rQh,n+2p−1−j

(
C; R

)
Rk+p−r = 0.

Putting together the above cases, we obtain that R +N is is (k +p)-quasi-(m+2p−2, n+
2p − 1, C)-isosymmetric operator. □
Corollary 2.17. Let Rj ∈ B

[
K
]

be a kj-quasi-(mj , nj , C)-isosymmetric operator such
that

[
Rj , CRjC

]
= 0 for j = 1, · · · , d where C ∈ C

[
K
]
. Set

S =


R1 λI 0 · · ·

0 . . . . . . . . .
. . . . . . . . . λI

0 . . . 0 Rd

 on K(d) := K ⊕ · · · ⊕ K,

where λ ∈ C, then S is (max{kj}+d)-quasi-
(

max{mj}+2d−2, max{nj}+2d−1, C(d))-
isosymmetric operator where C(d) := C ⊕ C · · · ⊕ C is a conjugation on K(d).

Proof. Consider the matrices

R =


R1 0 0 · · ·

0 . . . . . . . . .
. . . . . . . . . 0

0 . . . 0 Rd

 and N =


0 λI 0 · · ·

0 . . . . . . . . .
. . . . . . . . . λI

0 . . . 0 0

 .
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Obviously we have that S = R + N. Since Rj is a kj-quasi- (mj , nj , C)-isosymmetric
operator and satisfies

[
Rj , CRjC

]
= 0 for j = 1, · · · , d , it follows from Proposition

2.6 that Rj is a max{kj}-quasi-(max{mj}, max{nj}, C)-isosymmetric for j = 1, · · · , d.
From which we deduce that R is a max{kj}-quasi-(max{mj}, max{nj}, C(d))-isosymmetric
operator. It easy to check that N is d-nilpotent and

[
N, R

]
=
[
N∗, C(d)RC(d)] = 0. This

means that R and N satisfying the conditions of Proposition 2.16 so we get that S is
(max{kj}+d)-quasi-

(
max{mj}+2d−2, max{nj}+2d−1, C(d))-isosymmetric operator. □

3. Spectral properties
In this section, we will study some spectral properties of a k-quasi-(m, n, C)-isosymmetric

operator. We will note by σ(R), σap(R), σp(R) the spectrum, the approximate point spec-
trum and the point spectrum of an operator R, respectively.
Proposition 3.1. Let R be a k-quasi-(m, n, C)-isosymmetric operator, then σap(R) ⊂
∂D ∪ R, where ∂D = { λ ∈ C |λ| = 1 }.

Proof. Let λ ∈ σap(R), then there exists a sequence (xi)i≥0, with ∥xi∥ = 1 such that
(R − λI)xi → 0 as i → +∞. We have (Rj − λjI)xi → 0 for all positive integers j. Under
the hypothesis R is a k-quasi-(m, n, C)-isosymmetric operator, then

0 =
〈
Qm,n,k

(
C; R

)
xi | xi

〉
=
〈
R∗kQm,n

(
C; R

)
Rkxi | xi

〉
=
〈
Qm,n

(
C; R

)
Rkxi | Rkxi

〉
=
〈
Qm,n

(
C; R

) [(
Rk − λk

)
xi + λkxi

]
|
(
Rk − λk

)
xi + λkxi

〉
=|λ|2k 〈Qm,n

(
C; R

)
xi | xi

〉
i → +∞

=|λ|2k

〈
m∑

j=0
(−1)j

(
m

j

)
R∗m−jΛn

(
C, R

)
CRm−jxi | xi

〉

=|λ|2k

〈
m∑

j=0
(−1)j

(
m

j

)
Λn
(
C, R

)
CRm−jxi | Rm−jxi

〉
i → +∞

=|λ|2k
〈 m∑

j=0
(−1)j

(
m

j

)
Λn
(
C, R

)
C
(
Rm−j − λm−jxi

)
+ λm−jxi |

(
Rm−j − λm−j

)
xi + λm−jxi

〉

=|λ|2k
〈 m∑

j=0
(−1)j

(
m

j

)
Λn
(
C, R

)
Cλm−jxi | λm−jxi

〉
i → +∞

=|λ|2k
(
1 − |λ|2

)m 〈
Λn
(
C, R

)
Cxi | xi

〉
=|λ|2k

(
1 − |λ|2

)m
〈

n∑
r=0

(−1)r

(
n

r

)
R∗n−rCRrxi | xi

〉
i → +∞

=|λ|2k
(
1 − |λ|2

)m
〈

n∑
r=0

(−1)r

(
n

r

)
CRrxi | Rn−rxi

〉
i → +∞

=|λ|2k
(
1 − |λ|2

)m
〈 n∑

r=0
(−1)r

(
n

r

)
C (Rr − λr) xi

+ λrxi |
(
Rn−r − λn−r)xi + λn−rxi

〉
i → +∞
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=|λ|2k
(
1 − |λ|2

)m
〈

n∑
r=0

(−1)r

(
n

r

)
Cλrxi | λn−rxi

〉
i → +∞

=|λ|2k
(
1 − |λ|2

)m (
λ − λ

)n
⟨Cxi | xi⟩ i → +∞

=|λ|2k
(
1 − |λ|2

)m
(2Im(λ))n ⟨Cxi | xi⟩ i → +∞.

Now, since 0 /∈ σa(C) it follows that ⟨Cxi | xi⟩ ̸−→ 0 as i → ∞. Consequently, λ = 0 or
|λ| = 1 or λ ∈ R. This completes the proof. □

Proposition 3.2. Let R be a k-quasi-(m, n, C)-isosymmetric operator for some conjuga-
tion C and λ ∈ C with Im(λ) ̸= 0, then the following properties hold.

(i) If λ ∈ σap(R), then λ ∈ σap(R∗).
(ii) If λ ∈ σp(R), then λ ∈ σp(R∗).

Proof. (i) Let λ ∈ σap(R) then there exists a sequence (xi)i≥0, with ∥xi∥ = 1 such that
(R − λI)xi → 0 as i → +∞. We have (Rj − λjI)xi → 0 for all positive integers j. Under
the hypothesis R is a k-quasi-(m, n, C)-isosymmetric operator, then

0 = Qm,n,k

(
C; R

)
xi

= R∗kQm,n
(
C; R

)
Rkxi

= R∗kQm,n
(
C; R

) [(
Rk − λk

)
xi + λkxi

]
= λkR∗kQm,n

(
C; R

)
xi, i → +∞

= λkR∗k
m∑

j=0
(−1)j

(
m

j

)
R∗m−jΛn

(
C; R

)
CRm−jCxi

=

λkR∗k
m∑

j=0
(−1)j

(
m

j

)
R∗m−jΛn

(
C; R

)
CRm−jCxi


=

λkR∗k
m∑

j=0
(−1)j

(
m

j

)
R∗m−jΛn

(
C; R

)
C
[(

Rm−j − λm−j
)

Cxi + λm−jCxi

]
=

λkR∗k
m∑

j=0
(−1)j

(
m

j

)
R∗m−jΛn

(
C; R

)
λ

m−j
xi

 , i → +∞

=
(
λk
(
I − λR∗

)m
R∗kΛn

(
C; R

)
xi

)
=
(

λk
(
I − λR∗

)m
R∗k

n∑
r=0

(−1)r

(
n

r

)
R∗n−rCRrCxi

)

=
(

λk
(
I − λR∗

)m
R∗k

n∑
r=0

(−1)r

(
n

r

)
R∗n−rC [(Rr − λr) Cxi + λrCxi]

)

=
(

λk
(
I − λR∗

)m
R∗k

n∑
r=0

(−1)r

(
n

r

)
R∗n−rCλ

r
xi

)
, i → +∞

= λkR∗k
(
I − λR∗

)m (
λI − R∗

)n
xi.

Therefore, since λ ̸= 0, then lim
i→+∞

R∗k
(
I − λR∗

)m (
λI − R∗

)n
xi = 0. If

(
λ − R∗)

is bounded from below, then so is
(
λ − R∗)n , then there exist M > 0 such that
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∥
(
λ − R∗

)n
x∥ ≥ M∥x∥ for all x ∈ K. This implies that

∥R∗k
(
I − λR∗

)m (
λI − R∗

)n
xi∥ ≥ M∥R∗k

(
1 − λR∗

)m
xi∥.

Consequently,

lim
i→+∞

R∗k
(
I − λR∗

)m
xi = 0 =⇒ lim

i→+∞

〈
R∗k

(
I − λR∗

)m
xi, xi

〉
= 0

=⇒ lim
i→+∞

〈
xi | (I − λR)m Rkxi

〉
= 0

=⇒ lim
i→+∞

〈
xi |

(
λI − R

)m (
Rk − λk

)
xi

〉
= 0

+ lim
i→+∞

〈
xi | λk

(
λI − R

)m
xi

〉
= 0

=⇒ lim
i→+∞

〈
xi | λk

(
λI − R

)m
xi

〉
= 0

=⇒ λk
(
λ − λ

)m
= 0.

The hypothesis Im(λ) ̸= 0 gives the contradiction. Hence
(
λ − R∗

)
is not lower bounded

and therefore λ ∈ σap(R∗).
(ii) The statement (ii) follows from the statement (i) so we omitted its proof. □
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[11] M. Chō, E. Ko and J.E. Lee, (∞, C)-isometric operators, Oper. Matrices, 11 (3),

793–806, 2017.
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[21] O.A. Mahmoud Sid Ahmed, M. Chō and J.E. Lee, On (m, C)-Isometric Commuting
Tuples of Operators on a Hilbert Space, Results Math. 73:51, 2018.
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