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ABSTRACT
The Fock space can be characterized (up to a positive multiplicative factor) as the only Hilbert space of entire functions in which
the adjoint of derivation is multiplication by the complex variable. Similarly (and still up to a positive multiplicative factor) the
Hardy space is the only space of functions analytic in the open unit disk for which the adjoint of the backward shift operator is
the multiplication operator. In the present paper we characterize the Hardy space and some related reproducing kernel Hilbert
spaces in terms of the adjoint of the differentiation operator. We use reproducing kernel methods, which seem to also give a new
characterization of the Fock space.
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1. INTRODUCTION

The Fock (or Bargmann-Fock-Segal) space consists of the entire functions 𝑓 such that
1
𝜋

∬
C
| 𝑓 (𝑧) |2𝑒−|𝑧 |2𝑑𝑥𝑑𝑦 < ∞, (1)

and is the reproducing kernel Hilbert space with reproducing kernel

𝑒𝑧𝜔 . (2)

It is (up to a positive multiplicative factor) the unique Hilbert space of entire functions in which

𝜕∗𝑧 = 𝑀𝑧 , (3)

where 𝜕𝑧 denote the derivative with respect to 𝑧, and will be used throughout the work along with the notation (𝜕𝑧 𝑓 ) (𝑧) = 𝑓 ′ (𝑧).
Furthermore, in (3) 𝑀𝑧 stands for multiplication by the variable 𝑧, e.g., (𝑀𝑧 𝑓 ) (𝑧) = 𝑧 𝑓 (𝑧). We refer to the work of Bargmann
Bargmann (1961, 1962) for this result. Formula (3) suggests to find similar characterizations for other important spaces of analytic
functions. In particular, we have in mind the following spaces of functions analytic in the open unit disk D:
(1) The Bergman space, which consists of the functions analytic in D and such that:

1
𝜋

∬
D
| 𝑓 (𝑧) |2𝑑𝑥𝑑𝑦 < ∞,

with the reproducing kernel
1

(1 − 𝑧𝜔)2 =

∞∑︁
𝑛=0

(𝑛 + 1)𝑧𝑛𝜔𝑛.

(2) The Hardy space H2, when the condition is:

lim
𝑟→1

1
2𝜋

∫ 2𝜋

0
| 𝑓 (𝑟𝑒𝑖𝑡 ) |2𝑑𝑡 < ∞,

with the reproducing kernel
1

1 − 𝑧𝜔 =

∞∑︁
𝑛=0

𝑧𝑛𝜔𝑛.
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(3) The Dirichlet space, for which the functions vanish at the origin and satisfy

1
𝜋

∬
D
| 𝑓 ′ (𝑧) |2𝑑𝑥𝑑𝑦 < ∞,

with the reproducing kernel − ln(1 − 𝑧𝜔) =
∞∑︁
𝑛=1

𝑧𝑛𝜔𝑛

𝑛
.

In the present work we approach this problem using reproducing kernel Hilbert spaces methods. We prove te following results.

Theorem 1.1. The Hardy space is, up to a positive multiplicative factor, the only reproducing kernel Hilbert space of functions
analytic in D, in which the equality

𝜕∗𝑧 = 𝑀𝑧𝜕𝑧𝑀𝑧 (4)

holds on the linear span of the kernel functions.

Note that both in this, and in the next theorem, one could assume that the functions are analytic only in a neighborhood of the
origin, and then use analytic continuation. We also note that the unbounded operator 𝑀𝑧𝜕𝑧 is diagonal, and acts on the polynomials
as the number operator of quantum mechanics:

𝑀𝑧𝜕𝑧 (𝑧𝑛) = 𝑛𝑧𝑛, 𝑛 = 0, 1, . . . ,

see e.g. (Fayngold and Fayngold 2013, p. 548) which is the radial derivative for mathematics.
As mentioned above, the Hardy space of the open unit diskD has reproducing kernel 1

1−𝑧𝜔 . More generally, for every 𝛼 ∈ (0,∞),
the function 1

(1−𝑧𝜔)𝛼 is positive definite in D, as can be seen from the power series expansion of the function 1
(1−𝑡 )𝛼 with center

at the origin as

1
(1 − 𝑧𝜔)𝛼 = 1 +

∞∑︁
𝑛=1

𝛼(𝛼 + 1) · · · (𝛼 + 𝑛 − 1)
𝑛!

𝑧𝑛𝜔𝑛, 𝑧, 𝜔 ∈ D. (5)

We will use a similar notation to Bargmann (see (Bargmann 1961, Remark 2g, page 203)), and denote ℌ𝛼 to be the associated
reproducing kernel Hilbert space, characterized by the following result.

Theorem 1.2. Let 𝛼 > 0. Then the spaceℌ𝛼 is, up to a multiplicative factor, the only reproducing kernel Hilbert space of functions
analytic in D, in which the equality

𝜕∗𝑧 = 𝑀𝑧𝜕𝑧𝑀𝑧 − (1 − 𝛼)𝑀𝑧 , 𝛼 > 0, (6)

holds on the linear span of the kernel functions.

The case 𝛼 = 1 corresponds to the Hardy space and Theorem 1.1, and 𝛼 = 2 corresponds to the Bergman space. The case 𝛼 = 0
would “correspond” to the Dirichlet space, in the sense that

lim
𝛼→0

1
𝛼

(
1

(1 − 𝑧𝜔)𝛼 − 1
)
= − ln(1 − 𝑧𝜔).

Note that 𝜕𝑧 is not densely defined in the Dirichlet space (since 𝜕𝑧𝑘𝜔 is not in the Dirichlet space for 𝜔 ≠ 0), and therefore its
adjoint is a relation and not an operator. We were not able to get a counterpart of Theorem 1.2 for 𝛼 = 0, but we have the following
result.

Theorem 1.3. The Dirichlet space is, up to a positive multiplicative factor, the only reproducing kernel Hilbert space of functions
analytic in D, for which the equality

𝜕2
𝑧2 𝑘 = �̄�2𝜕𝑧𝜕�̄�𝑘 (7)

holds for its kernel 𝑘 , pointwise for 𝑧, 𝜔 ∈ D.

Note that (7) is not an equality in the Dirichlet space, but rather, an equality between analytic functions. We give a similar
characterization of the Fock space in Proposition 2.5.

More generally, our analysis suggests a new direction in the study of the connections between reproducing kernel Hilbert spaces
and operator models. In particular, the following question is of interest: For which polynomials of two variables 𝑝(𝑥, 𝑦) does the
equation

𝜕∗𝑧 = 𝑝(𝑀𝑧 , 𝜕)

characterize a reproducing kernel Hilbert space?
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Remark 1.4. When denoting inner products, we will sometimes mention explicitly the variable inside an inner product by writing
⟨ 𝑓 (𝑧), 𝑔(𝑧)⟩ rather than ⟨ 𝑓 , 𝑔⟩ to make the reading easier. See for instance equation (11).

Remark 1.5. A kernel 𝑘 (𝑧, 𝜔) analytic in 𝑧 and 𝜔 in a neighborhood of (0, 0) (see Proposition 2.2) has a power series expansion
at (0,0) of the form

𝑘 (𝑧, 𝜔) =
∞∑︁

𝑛,𝑚=0
𝑐𝑛,𝑚𝑧

𝑛�̄�𝑚. (8)

where

𝑐𝑛,𝑚 = ⟨𝑧𝑛, 𝜔𝑚⟩−1 (9)

To ease the presentation, we associate to (8) the infinite matrix 𝐶 (𝑘) = (𝑐𝑚,𝑛)∞𝑛,𝑚=0. Note that 𝐶 (𝑘) does not necessarily need
to define a bounded operator in ℓ2 (N0). For instance, for the Bergman kernel

1
(1 − 𝑧�̄�)2 = 1 + 2𝑧�̄� + 3(𝑧�̄�)2 + · · · ,

we have

𝐶 (𝑘) =
©­­­«

1
2 0

3

0 . . .

ª®®®¬ ,
which is unbounded on ℓ2 (N0).

The paper consists of four sections besides the introduction. In Section 2 we review a number of definitions and results on
reproducing kernel Hilbert spaces of analytic functions. Sections 3, 4, and 5 contain proofs of Theorems 1.1, 1.2, and 1.3
respectively.

2. REPRODUCING KERNEL HILBERT SPACES

In this section we will briefly review the properties of reproducing kernel Hilbert spaces needed in the following sections. We first
recall a definition.

Definition 2.1. A reproducing kernel Hilbert space is a Hilbert space (H , ⟨·, ·⟩) of functions defined in a non-empty set Ω such
that there exists a complex-valued function 𝑘 (𝑧, 𝜔) defined on Ω ×Ω and with the following properties:

1. ∀𝜔 ∈ Ω, 𝑘𝜔 : 𝑧 ↦→ 𝑘 (𝑧, 𝜔) ∈ H → H ,
2. ∀ 𝑓 ∈ H , <∼ 𝑓 , 𝑘𝜔⟩ = 𝑓 (𝜔).

The function 𝑘 (𝑧, 𝜔) is uniquely defined by the Riesz representation theorem, and is called the reproducing kernel of the
space. The reproducing kernel (kernel, for short) has a very important property: it is positive definite, that is, for all 𝑁 ∈ N,
𝜔1, . . . 𝜔𝑁 ∈ Ω, and 𝑐1, . . . , 𝑐𝑁 ∈ C, we have

𝑁∑︁
𝑖, 𝑗=1

𝑐 𝑗𝑐𝑖𝑘 (𝜔𝑖 , 𝜔 𝑗 ) ≥ 0.

In particular, it can be shown that the equation above implies that 𝑘 (𝑧, 𝜔) is Hermitian, i.e.,

𝑘 (𝑧, 𝜔) = 𝑘 (𝜔, 𝑧). (10)

We refer to the book Saitoh (1988) for more information on reproducing kernel Hilbert spaces, and we recall that there is a
one-to-one correspondence between positive definite functions on a given set and reproducing kernel Hilbert spaces of functions
defined on that set. In the present work we are interested in the case where Ω is an open neighborhood of the origin, and where the
kernels are analytic in 𝑧 and 𝜔. The following result is a direct consequence of Hartog’s theorem, and will be used in the sequel.
For a different proof, see (Donoghue 1974, p. 92).

Proposition 2.2. Let H be a reproducing kernel Hilbert space of functions analytic in Ω ⊂ C, with reproducing kernel 𝑘 (𝑧, 𝜔).
Then the reproducing kernel is jointly analytic in 𝑧 and 𝜔.

Proof. Since the kernels belong to the space, we have that for every 𝜔 ∈ Ω the function 𝑧 ↦→ 𝑘 (𝑧, 𝜔) is analytic in Ω. From (10)
it follows that the kernel is also analytic in 𝜔. Hartog’s theorem (see (Chabat 1990, p. 39)) allows us to conclude that 𝑘 (𝑧, 𝜔) is
jointly analytic in 𝑧 and 𝜔.
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When derivatives come into play, one then has (12) below as the counterpart of (10):

Proposition 2.3. Under the hypotheses of the above discussion, the elements of the associated reproducing kernel Hilbert space
are analytic in Ω and the following hold:

(𝜕𝑤 𝑓 ) (𝜔) = ⟨ 𝑓 (𝑧), 𝜕𝜔𝑘𝜔 (𝑧)⟩ (11)

and

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 = 𝜕�̄�𝑘 (𝜔0, 𝜔) |𝜔=𝑧0 . (12)

Proof. The proof of (11) can be found in (Saitoh 1997, Theorem 9, p. 41). We give the proof of (12), where as in Definition 2.1
and in the rest of the work, we use the notation: 𝑘𝛽 : 𝑧 ↦→ 𝑘 (𝑧, 𝛽) where 𝛽 ∈ Ω.

Setting 𝑓 (𝑧) = 𝑘 (𝑧, 𝜔0) in (11) gives

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 =
<∼ 𝑘 (𝑧, 𝜔0), 𝜕�̄�𝑘 (𝑧, 𝜔) |𝜔=𝑧0⟩

and so we have

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 =
<∼ 𝜕�̄�𝑘 (𝑧, 𝜔) |𝜔=𝑧0 , 𝑘 (𝑧, 𝜔0)⟩ = 𝜕�̄�𝑘 (𝑧, 𝜔) |𝑧=𝜔0 ,𝜔=𝑧0 ,

and hence the result.

For some special cases, the reader could also check (12) for 𝑘 (𝑧, 𝜔) = 𝑓 (𝑧�̄�) or for 𝑘 (𝑧, 𝑤) = 𝑎(𝑧)𝑎(𝑤), where 𝑎(𝑧) is analytic
in some open subset of the complex plane. In particular, for the latter example we have:

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 = 𝑎
′ (𝑧0)𝑎(𝜔0)

on the one hand, and

𝜕�̄�𝑘 (𝜔0, 𝜔) |𝜔=𝑧0 = 𝑎(𝜔0)𝑎′ (𝑧0)

on the other hand, and hence taking conjugates we see that (12) holds. Since every positive definite function can be represented
as an infinite sum of functions of the form 𝑎(𝑧)𝑎(𝑤) (this is Bergman’s reproducing kernel formula, see Aronszajn (1950)), this
would give another way to prove (12), after justifying interchange of sum and derivatives, but we preferred to give a direct proof.

The following is a main technical result that we will need in the proofs of the theorems.

Proposition 2.4. Let 𝑘 (𝑧, 𝜔) be positive definite and jointly analytic in 𝑧 and 𝜔 for 𝑧, 𝜔 in an open subset Ω of the complex plane.
Assume that the operator 𝜕𝑧 is densely defined in the associated reproducing kernel Hilbert space H(𝑘). Then 𝜕𝑧 is closed and in
particular has a densely defined adjoint 𝜕∗𝑧 which satisfies 𝜕∗∗𝑧 = 𝜕𝑧 .

Proof. Let ( 𝑓𝑛) be a sequence of elements in Dom 𝜕 and let 𝑓 , 𝑔 ∈ H be such that

𝑓𝑛 → 𝑓

𝜕 𝑓𝑛 → 𝑔

where the convergence is in the norm. Since weak convergence follows from strong convergence, using (11), we have for every
𝜔 ∈ Ω that

⟨ 𝑓𝑛, 𝜕�̄�𝑘𝜔⟩ → ⟨ 𝑓 , 𝜕�̄�𝑘𝜔⟩ and ⟨𝜕 𝑓𝑛, 𝑘𝜔⟩ → ⟨𝑔, 𝑘𝜔⟩ ,

where the brackets denote the inner product in H(𝑘). Hence it follows that

lim
𝑛→∞

𝑓 ′𝑛 (𝜔) = 𝑓 ′ (𝜔) and lim
𝑛→∞

𝑓 ′𝑛 (𝜔) = 𝑔(𝜔).

Thus 𝑔 = 𝑓 ′, and hence 𝜕 is closed. Hence, 𝜕 has a densely defined adjoint and 𝜕∗∗ = 𝜕; see e.g. (Reed and Simon 1980,
Theorem VIII.1, pp. 252-253).

As an application we prove the following characterization of the Fock space. In the statement, one could assume the functions
analytic only in a neighborhood of the origin, and then use analytic continuation.

Proposition 2.5. The Fock space is the unique (up to a positive multiplicative factor) reproducing kernel Hilbert space of entire
functions where the equation

𝜕∗𝑧 = 𝑀𝑧

holds on the linear span of the kernels (in particular the kernel functions are in the domain of 𝜕∗ and of 𝑀𝑧).
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Proof. Let 𝑘 (𝑧, 𝑤) be the reproducing kernel of the space in the proposition. We want to show that 𝑘 (𝑧, 𝑤) = 𝑐𝑒𝑧𝜔 for some
𝑐 > 0. From Proposition 2.2 the kernel is jointly analytic in D. Since 𝜕∗ = 𝑀𝑧 , it follows that

<∼ 𝜕
∗
𝑧 𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩ = <∼𝑀𝑧𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩.

Evaluating each side yields the following: For the right hand side we get
<∼𝑀𝑧𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩ = 𝜈𝑘 (𝜈, 𝜔)

since 𝑀𝑧𝑘 (𝑧, 𝜔) = 𝑧𝑘 (𝑧, 𝜔). The left hand side yields
<∼ 𝜕

∗
𝑧 𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩ = <∼ 𝑘 (𝑧, 𝜔), 𝜕𝑧𝑘 (𝑧, 𝜈)⟩

= <∼ 𝜕𝑧𝑘 (𝑧, 𝜈), 𝑘 (𝑧, 𝜔)⟩

= 𝜕𝑧𝑘 (𝑧, 𝜈) |𝑧=𝜔
= 𝜕𝜔𝑘 (𝜔, 𝜈)
= 𝜕�̄�𝑘 (𝜈, 𝜔),

(13)

where we have used (12) to go from the penultimate line to the last one. Thus we obtain that 𝜕�̄�𝑘 (𝜈, 𝜔) = 𝜈𝑘 (𝜈, 𝜔), which is a
differential equation with the solution

𝑘 (𝜈, 𝜔) = 𝑐(𝜈)𝑒𝜈�̄� ,

where the function 𝑐(𝜈) is an entire function of 𝜈 (since 𝑘 (𝜈, 𝜔) and 𝑒𝜈𝜔 are entire functions of 𝜈). But 𝑘 (𝜈, 𝜔) = 𝑘 (𝜔, 𝜈). Hence
𝑐(𝜈) = 𝑐(𝜈) so that 𝑐(𝜈) is real valued. Using the Cauchy-Riemann equations, we see that 𝑐(𝜈) is a constant, which is furthermore
positive since the kernel is positive.

Remark 2.6. The Fock space can be described in a geometric way by the Gaussian weight as in (1). The Gaussian weight has
other characterizations. We mention in particular the one from information theory: the Gaussian distribution 1√

2𝜋
𝑒−

𝑥2
2 maximizes

the entropy

−
∫
R
𝑓 (𝑥) ln 𝑓 (𝑥)𝑑𝑥

among all probability distributions with zero mean and second moment equal to 1; see e.g. (Petz 2008, Exercise 4, p. 50) and (Ash
1990, Theorem 8.3.3, p. 240). It can also be characterized (after normalization) as the unique continuous radial weight function
𝜔(𝑧) = 1

𝜋
𝑒−|𝑧 |

2 such that for polynomial 𝑝 and 𝑞 under the inner product

<∼ 𝑝, 𝑞⟩ =
1
𝜋

∬
C
𝑝(𝑧)𝑞(𝑧)𝜔(𝑧)𝑑𝐴(𝑧),

the operator of multiplication and differentiation are adjoint to each other; see Bargmann (1961) (and J. Tung’s thesis Tung (1976)).

3. PROOF OF THEOREM 1.1

We first check that the kernel 𝑘𝜔 (𝑧) = 1
1−𝑧𝜔 is a solution of (4), i.e.

⟨𝜕𝑧𝑔, 𝑘 (𝑧, 𝜔)⟩ =
〈
𝑔, 𝜕∗𝑧 𝑘 (𝑧, 𝜔)

〉
= ⟨𝑔, 𝑀𝑧𝜕𝑧𝑀𝑧𝑘 (𝑧, 𝜔)⟩ ,

with 𝑔(𝑧) = 1
1−𝑧𝜔∗ . To verify the above, we compute the left side of the equation and have

⟨𝜕𝑧𝑘𝜈 (𝑧), 𝑘𝜔 (𝑧)⟩ =
〈
𝜕𝑧

(
1

1 − 𝑧�̄�

)
, 𝑘𝜔 (𝑧)

〉
=

〈
�̄�

(1 − 𝑧�̄�)2 , 𝑘𝜔 (𝑧)
〉
=

�̄�

(1 − 𝜔�̄�)2 .

Similarly, we independently calculate the right hand side as

⟨𝑘 �̄� (𝑧), 𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜔⟩ =
〈
𝑘 �̄� (𝑧), 𝑀𝑧𝜕𝑧

(
𝑧

1 − 𝑧�̄�

)〉
=

〈
𝑘 �̄� (𝑧),

𝑧

(1 − 𝑧�̄�)2

〉
=

〈
𝑧

(1 − 𝑧�̄�)2 , 𝑘𝜈 (𝑧)
〉

=
�̄�

(1 − 𝜔�̄�)2 ,
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which comes to be the same as the left hand side.
To prove the converse we apply (4) to kernels, then we use analyticity to find the kernel via its Taylor expansion at the origin.

Let 𝜔, 𝜈 ∈ D. From (4) we get

⟨𝜕𝑧𝑘𝜔 , 𝑘𝜈⟩ = <∼ 𝑘𝜔 , 𝜕
∗
𝑧 𝑘𝜈⟩ = ⟨𝑘𝜔 , 𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜈⟩. (14)

We rewrite (4) as

𝜕∗𝑧 𝑓 = 𝑧(𝜕𝑧𝑧 𝑓 ) = 𝑧(𝑧 𝑓 ′ + 𝑓 ) = 𝑧2 𝑓 ′ + 𝑧 𝑓 .

By hypothesis the kernel functions belong to the domain of 𝜕∗𝑧 and we have 𝜕∗∗𝑧 = 𝜕𝑧 by Proposition 2.4. Therefore, By by (13)
we obtain

<∼ 𝜕
∗
𝑧 𝑘𝜔 , 𝑘𝜈⟩ = (𝜕�̄�𝑘) (𝜈, 𝜔). (15)

Then, using the two end sides of (14), we get
<∼𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜈 (𝑧), 𝑘𝜔 (𝑧)⟩ = <∼ 𝑘𝜔 (𝑧), 𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜈 (𝑧)⟩

= <∼ 𝑘 (𝑧, 𝜔), 𝑧
2𝜕𝑧𝑘 (𝑧, 𝜈) + 𝑧𝑘 (𝑧, 𝜈)⟩

= <∼ 𝑘 (𝑧, 𝜔), 𝑧
2𝜕𝑧𝑘 (𝑧, 𝜈)⟩ + <∼ 𝑘 (𝑧, 𝜔), 𝑧𝑘 (𝑧, 𝜈)⟩

= �̄�2𝜕�̄�𝑘 (𝜈, 𝜔) + �̄�𝑘 (𝜈, 𝜔)

where we have used (12) to go from the penultimate line to the last one. Considering 𝑘 = 𝑘 (𝑧, 𝜔) and using (14), we get the partial
differential equation

𝜕𝑧𝑘 = �̄�2𝜕�̄�𝑘 + �̄�𝑘. (16)

The kernel is analytic in 𝑧 and 𝜔 near the origin, and hence can be written as (8). So we can rewrite (16) as
∞∑︁
𝑛=1

∞∑︁
𝑚=0

𝑛𝑐𝑛,𝑚𝑧
𝑛−1�̄�𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑚𝑐𝑛,𝑚𝑧
𝑛�̄�𝑚+1 +

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑧
𝑛�̄�𝑚+1,

which can also be written as:
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,0𝑧
𝑛 +

∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝑧
𝑛𝜔 +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝑧
𝑛�̄�𝑚

=

∞∑︁
𝑛=0

𝑐𝑛,0𝑧
𝑛𝜔 +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

𝑚𝑐𝑛,𝑚−1𝑧
𝑛𝜔𝑚.

Now we compare the terms on the two sides. First we look at the part which is constant with respect to 𝜔 and get
∞∑︁
𝑛=0

(𝑛 +

1)𝑐𝑛+1,0𝑧
𝑛 = 0. Hence

𝑐𝑛+1,0 = 0, (17)

for all 𝑛 ∈ N0.

Consider the coefficients of 𝑧𝑛𝜔 on both sides. Then we have
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝑧
𝑛𝜔 =

∞∑︁
𝑛=0

𝑐𝑛,0𝑧
𝑛𝜔. Hence

(𝑛 + 1)𝑐𝑛+1,1 = 𝑐𝑛,0, (18)

for all 𝑛 ∈ N0. Note that for 𝑛 = 0 we get 𝑐0,0 = 𝑐1,1.

Consider the terms 𝑧𝑛𝜔𝑚, 𝑚 ≥ 2. Then
∞∑︁
𝑛=0

∞∑︁
𝑚=2

𝑚𝑐𝑛,𝑚−1𝑧
𝑛𝜔𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝑧
𝑛�̄�𝑚. Hence

𝑚𝑐𝑛,𝑚−1 = (𝑛 + 1)𝑐𝑛+1,𝑚, (19)

for all 𝑛 ∈ N0 and 𝑚 = 2, 3, .... Note if 𝑚 = 𝑛 + 1, then (𝑛 + 1)𝑐𝑛+1,𝑛+1 = (𝑛 + 1)𝑐𝑛,𝑛. So

𝑐0,0 = 𝑐1,1 = 𝑐2,2 = · · · . (20)

We now check that 𝑐𝑛,𝑚 = 0 when 𝑛 ≠ 𝑚. For 0 < 𝑚 < 𝑛 + 1, using (18) and (19) it follows that

𝑐𝑛+1,𝑚 = 𝛼𝑛,𝑚𝑐𝑛+1−𝑚,0,
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where 𝛼𝑛,𝑚 = 𝑚
𝑛+1

𝑚−1
𝑛

· · · 1
𝑛+2−𝑚 ≠ 0, then 𝑐𝑛+1,𝑚 = 0 by (17) for 𝑛 + 1 > 𝑚. The case 𝑚 > 𝑛 is obtained by symmetry.

Hence, all off-diagonal entries of the matrix 𝐶 (𝑘) (defined in Remark 1.5 will be zero, and it follows from (20) that
𝑘 (𝑧, 𝜔) = 𝑐0,0

1−𝑧𝜔 . This ends the proof of the theorem. □

If we assume that the powers of 𝑧 are in the domain of 𝜕∗ and of 𝑀𝑧 one has a simpler proof for the characterization given in
Theorem 1.1 of the Hardy space, close in spirit to Bargmann’s arguments. We note that conditions (1)-(4) in the statement of the
next result are satisfied by H2.

Proposition 3.1. Let H be a reproducing kernel Hilbert space of functions analytic in a neighborhood of the origin and such that

1. 𝑀𝑧 bounded,
2. {𝑧𝑛}∞

𝑛=0 ⊂ Dom 𝜕,
3. Dom 𝜕 ⊂ Dom 𝜕∗,
4. 𝜕∗ = 𝑀𝑧𝜕𝑀𝑧 .

Then H = H2.

Proof. Let the kernel 𝐾 of H have the form in (8). From Proposition 2.2 the kernel is jointly analytic in D. Take 𝑓 (𝑧) = 𝑧𝑛 and
𝑔(𝑧) = 𝑧𝑚, then

<∼ 𝑓 , 𝜕𝑔⟩ = <∼ 𝑧
𝑛, 𝑚𝑧𝑚−1⟩ <∼ 𝜕

∗ 𝑓 , 𝑔⟩ = <∼ 𝑧
2 𝑓 ′ + 𝑧 𝑓 , 𝑔⟩

= 𝑚 <∼ 𝑧
𝑛, 𝑧𝑚−1⟩, = <∼ 𝑛𝑧

𝑛+1 + 𝑧𝑛+1, 𝑧𝑚⟩
= (𝑛 + 1) <∼ 𝑧

𝑛+1, 𝑧𝑚⟩.

Since <∼ 𝑓 , 𝜕𝑔⟩ = <∼ 𝜕
∗ 𝑓 , 𝑔⟩, we obtain

(𝑛 + 1) <∼ 𝑧
𝑛+1, 𝑧𝑚⟩ = 𝑚 <∼ 𝑧

𝑛, 𝑧𝑚−1⟩. (21)

For 𝑚 = 𝑛 + 1, we have

(𝑛 + 1) <∼ 𝑧
𝑛, 𝑧𝑛⟩ = (𝑛 + 1) <∼ 𝑧

𝑛+1, 𝑧𝑛+1⟩ =⇒ <∼ 𝑧
𝑛, 𝑧𝑛⟩ = <∼ 𝑧

𝑛+1, 𝑧𝑛+1⟩,

thus the diagonal entries are nonzero. Now we are left to show that if 𝑛 ≠ 𝑚, <∼ 𝑧
𝑛, 𝑧𝑚⟩ = 0. From (21) we get

<∼ 𝑧
𝑛+1, 𝑧𝑚⟩ = 𝑚

𝑛 + 1
<∼ 𝑧

𝑛, 𝑧𝑚−1⟩. (22)

Take 𝑓 (𝑧) = 𝑧𝑛, 𝑛 ≠ 0, and 𝑔(𝑧) ≡ 1; then

<∼ 𝑓 , 𝜕𝑔⟩ = <∼ 𝜕
∗ 𝑓 , 𝑔⟩ = <∼ 𝑧

2 𝑓 ′ + 𝑧 𝑓 , 𝑔⟩
= <∼ 𝑛𝑧

𝑛+1 + 𝑧𝑛+1, 1⟩
= (𝑛 + 1) <∼ 𝑧

𝑛+1, 1⟩.

However <∼ 𝑓 , 𝜕𝑔⟩ = 0, hence <∼ 𝑧
𝑛+1, 1⟩ = 0, which also gives <∼ 1, 𝑧𝑚+1⟩ = 0. Then from (9) and (22) all the off-diagonal

coefficients 𝑐𝑛,𝑚 are equal to 0.

More generally, with the same hypothesis as in Proposition 3.1, one could replace 𝑀𝑧𝜕𝑧 by a (possibly unbounded) diagonal
operator defined as follows:

𝐷 (𝑧𝑛) = 𝛼𝑛𝑧𝑛, 𝑛 = 0, 1, 2, . . . ,

with 𝛼𝑛 > 0 for 𝑛 ≥ 1 and 𝛼0 arbitrary. Such 𝐷 is called a radial differential operator in the literature. Then we get

⟨𝑧𝑛, 𝑧𝑚⟩ = 𝛿𝑛,𝑚
𝑛!

𝛼𝑛 · · · 𝛼1
⟨1, 1⟩.

Taking 𝛽−1 = <∼ 1, 1⟩, and using (9), the reproducing kernel is given by

𝑘 (𝑧, 𝜔) = 𝛽
∞∑︁
𝑛=0

𝛼𝑛 · · · 𝛼1
𝑛!

𝑧𝑛𝜔𝑛

by (9), provided the radius of convergence of the above series is strictly positive.

7



Istanbul Journal of Mathematics

4. PROOF OF THEOREM 1.2

To prove Theorem 1.2, we use the same strategy as in the previous section. The kernel 1
(1−𝑧𝜔)𝛼 is a solution of 𝜕∗ = 𝑀𝑧𝜕𝑧𝑀𝑧 −

(1 − 𝛼)𝑀𝑧 . This operator applied to this kernel gives us

𝜕∗𝑘 (𝑧, 𝜔) = (𝑀𝑧𝜕𝑧𝑀𝑧 − (1 − 𝛼)𝑀𝑧)
(

1
(1 − 𝑧�̄�)𝛼

)
=

𝑧

(1 − 𝑧�̄�)𝛼 + 𝛼 𝑧2�̄�

(1 − 𝑧�̄�)𝛼+1 − (1 − 𝛼) 𝑧

(1 − 𝑧�̄�)𝛼

=
𝛼𝑧

(1 − 𝑧�̄�)𝛼+1

= 𝜕�̄�

(
1

(1 − 𝑧�̄�)𝛼

)
= 𝜕�̄�𝑘 (𝑧, 𝜔).

which implies
<∼ 𝜕

∗𝑘𝜈 (𝑧), 𝑘𝜔 (𝑧)⟩ = <∼ 𝑘𝜈 (𝑧), 𝜕�̄�𝑘𝜔 (𝑧)⟩.

Additionally, we get the relation 𝑧(1 − 𝑧�̄�) + 𝛼𝑧2�̄� − (1 − 𝛼)𝑧(1 − 𝑧�̄�) = 𝛼𝑧.
As we see again, indeed for 𝛼 = 1 we have the Hardy case. To prove the converse we apply (6) to kernels, and find a partial

differential equation satisfied by the reproducing kernel. Then we use analyticity to find the kernel via its Taylor expansion at the
origin. Let 𝜔, 𝜈 ∈ D, then from (6) we get

⟨𝜕𝑘𝜔 , 𝑘𝜈⟩ = <∼ 𝑘𝜔 , 𝜕
∗𝑘𝜈⟩ = ⟨𝑘𝜔 , 𝑀𝑧𝜕𝑀𝑧𝑘𝜈 + (𝛼 − 1)𝑀𝑧𝑘𝜈⟩. (23)

We rewrite (6) as
𝜕∗ 𝑓 = 𝑧(𝜕𝑧 𝑓 ) + (𝛼 − 1)𝑧 𝑓 = 𝑧2 𝑓 ′ + 𝑧 𝑓 + 𝛼𝑧 𝑓 − 𝑧 𝑓

= 𝑧2 𝑓 ′ + 𝛼𝑧 𝑓 .
(24)

From the calculation above similar to (13), it follows that <∼ 𝜕𝑧𝑘 (𝑧, 𝑤), 𝑘 (𝑧, 𝜈)⟩ = 𝜕𝑧𝑘 (𝜈, 𝜔), thus from (24) and the two end
sides of (23). Equation (13) still holds here (it is a general computation valid for kernels analytic in 𝑧 and 𝜔) and we have

𝜕𝑧𝑘 (𝜈, 𝜔) = 𝜕𝑧𝑘 (𝑧, 𝜔) |𝑧=𝜈
= <∼ 𝜕𝑧𝑘𝜔 , 𝑘𝜈⟩
= <∼ 𝑘𝜔 , 𝜕

∗
𝑧 𝑘𝜈⟩

= <∼ 𝑘𝜔 , 𝑀𝑧𝜕𝑀𝑧𝑘𝜈 − (𝛼 − 1)𝑀𝑧𝑘𝜈⟩
= <∼ 𝑘𝜔 , 𝜈

2𝜕𝑧𝑘𝜈 + 𝛼𝜈𝑘𝜈⟩

= <∼ 𝜈
2𝜕𝑘𝜈 + 𝛼𝜈𝑘𝜈 , 𝑘𝜔⟩

= �̄�2𝜕𝑘 (𝜈, 𝜔) + 𝛼�̄�𝑘 (𝜈, 𝜔).
Thus we get the partial differential equation

𝜕𝑧𝑘 = �̄�2𝜕�̄�𝑘 + 𝛼�̄�𝑘. (25)

The kernel is analytic in 𝑧 and 𝜔 near the origin, and hence can be written as

𝑘 (𝜈, 𝑤) =
∞∑︁

𝑛,𝑚=0
𝑐𝑛,𝑚𝜈

𝑛�̄�𝑚.

So we can rewrite (25) as
∞∑︁
𝑛=1

∞∑︁
𝑚=0

𝑛𝑐𝑛,𝑚𝜈
𝑛−1�̄�𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑚𝑐𝑛,𝑚𝜈
𝑛�̄�𝑚+1 + 𝛼

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝜈
𝑛�̄�𝑚+1,

which can also be written as
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,0𝜈
𝑛 +

∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝜈
𝑛�̄� +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝜈
𝑛�̄�𝑚

=

∞∑︁
𝑛=0

𝛼𝑐𝑛,0𝜈
𝑛�̄� +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝛼 + (𝑚 − 1))𝑐𝑛,𝑚−1𝜈
𝑛�̄�𝑚.
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Now we can consider the following cases: First we compare the coefficients for the terms with constant �̄�. Then we have
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,0𝜈
𝑛 = 0. Hence

𝑐𝑛+1,0 = 0

for all 𝑛 ∈ N0.

Consider the coefficients of 𝜈𝑛𝜔. Then we have:
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝜈
𝑛�̄� =

∞∑︁
𝑛=0

𝛼𝑐𝑛,0𝜈
𝑛𝜔. Hence

(𝑛 + 1)𝑐𝑛+1,1 = 𝛼𝑐𝑛,0,

for all 𝑛 ∈ N0. Note that for 𝑛 = 0 we get 𝑐0,0 = 𝛼𝑐1,1.
Consider the terms 𝜈𝑛𝜔𝑚, 𝑚 ≥ 2; then we have

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝜈
𝑛�̄�𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝛼 + (𝑚 − 1))𝑐𝑛,𝑚−1𝜈
𝑛�̄�𝑚.

Hence

(𝑛 + 1)𝑐𝑛+1,𝑚 = (𝑚 + 𝛼 − 1)𝑐𝑛,𝑚−1, (26)

for all 𝑛 ∈ N0. Note that if 𝑚 = 𝑛 + 1, then (𝑛 + 1)𝑐𝑛+1,𝑛+1 = (𝑛 + 𝛼)𝑐𝑛,𝑛. So

𝑐𝑛,𝑛 =

(
𝑛 + 1
𝑛 + 𝛼

)
𝑐𝑛+1,𝑛+1.

we see that the diagonal entries are equal (up to a constant) to the Taylor coefficients in (5).
We now check that 𝑐𝑛,𝑚 = 0 when 𝑛 ≠ 𝑚. For 0 ≤ 𝑚 ≤ 𝑛 + 1, it follows from (26) that

𝑐𝑛+1,𝑚 = 𝜙𝛼,𝑛,𝑚𝑐𝑛+1−𝑚,0,

for 𝜙𝛼,𝑛,𝑚 = 𝑚+𝛼−1
𝑛+1

𝑚+𝛼−2
𝑛

· · · 𝛼
𝑛+2−𝑚 ≠ 0, and hence the conclusion using (17). The case 𝑚 > 𝑛 follows by symmetry. Hence from

these cases and by symmetry, all off-diagonal entries of 𝐶 (𝑘) will be zero, and this completes the proof. □

5. PROOF OF THEOREM 1.3

While with similar spirit in proof structure, unlike in proofs for Theorems 1.1 and 2, we prove (7) for the kernel pointwise for
𝑧, 𝜔 ∈ D. Let 𝑘 (𝜈, 𝜔) be a solution of (7), with power series expansion

𝑘 (𝜈, 𝜔) =
∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝜈
𝑛�̄�𝑚.

Since 𝑘 (0, 0) = 0 by hypothesis, we have 𝑐0,0 = 0 (without the condition 𝑘 (0, 0) = 0 any constant function is a solution of (7)).
We have

𝜕2
𝜈𝑘 =

∞∑︁
𝑛=2

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑛(𝑛 − 1)𝜈𝑛−2�̄�𝑚

�̄�2𝜕𝜈𝜕�̄�𝑘 =

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑐𝑛,𝑚𝑛𝑚𝜈
𝑛−1�̄�𝑚+1.

So we can rewrite (7) in terms of the power series expansion of kernel as:
∞∑︁
𝑛=2

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑛(𝑛 − 1)𝜈𝑛−2�̄�𝑚 =

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑐𝑛,𝑚𝑛𝑚𝜈
𝑛−1�̄�𝑚+1, (27)

which is equivalent to
∞∑︁
𝑛=2

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑛(𝑛 − 1)𝜈𝑛−2�̄�𝑚 =

∞∑︁
𝑚=1

𝑐1,𝑚𝑚�̄�
𝑚+1 +

∞∑︁
𝑛=2

∞∑︁
𝑚=1

𝑐𝑛,𝑚𝑛𝑚𝜈
𝑛−1�̄�𝑚+1. (28)

Comparing on both sides the part independent of 𝜈 we get
∞∑︁

𝑚=1
𝑐1,𝑚𝑚�̄�

𝑚+1 = 0, (29)
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as we have no corresponding terms on the left side.
Let 𝑛 = 2. Then

∞∑︁
𝑚=0

𝑐2,𝑚2�̄�𝑚 =

∞∑︁
𝑚=1

𝑐2,𝑚2𝑚𝜈�̄�𝑚+1. (30)

We make the change of index 𝑀 = 𝑚 + 1 in (29), and obtain
∞∑︁

𝑀=2
𝑐1,𝑚−1 (𝑀 − 1)�̄�𝑀 = 0. (31)

From equations (31) and (30), it follows now that

𝑐2,0 = 𝑐2,1 = 0 and 2𝑐2,𝑀 = (𝑀 − 1)𝑐1,𝑀−1 for 𝑀 > 2.

Considering equation (27) and making the change of index 𝑁 = 𝑛 − 2, 𝑀 = 𝑚 to the right side, and 𝑁 = 𝑛 − 1, 𝑀 = 𝑚 + 1 to
the left side, we get

∞∑︁
𝑁=0

∞∑︁
𝑀=0

𝑐𝑁+2,𝑀 (𝑁 + 2) (𝑁 + 1)𝜈𝑁 �̄�𝑀 =

∞∑︁
𝑁=0

∞∑︁
𝑀=2

𝑐𝑁+1,𝑀−1 (𝑁 + 1) (𝑀 − 1)𝜈𝑁 �̄�𝑀 . (32)

From (32) for 𝑁 ∈ N0 and 𝑀 ≥ 2, we have

𝑐𝑁+2,𝑀 (𝑁 + 2) = (𝑀 − 1)𝑐𝑁+1,𝑀−1. (33)

We now check that all off diagonal entries of 𝐶 (𝑘) are indeed zero. Let 𝑀 = 0; then from (27) with the change of variable
𝑁 = 𝑛 − 2 gives us

∞∑︁
𝑁=0

𝑐𝑁+2,0 (𝑁 + 2) (𝑁 + 1)𝜈𝑁 = 0,

so we have

𝑐𝑁+2,0 = 0 for 𝑁 ≥ 0.

Let 𝑀 = 1; then from (32) we get

𝑐𝑁+2,1 = 0 for 𝑁 ≥ 0.

Hence all off diagonal entries of 𝐶 (𝑘) are zero. Since 𝑘 (0, 0) = 0 we get that 𝑐0,0 = 0. Finally we set 𝑀 = 𝑁 + 2 in (32), and get

𝑐𝑁+2,𝑁+2 (𝑁 + 2) = (𝑁 + 1)𝑐𝑁+1,𝑁+1, 𝑁 = 0, 1, . . . (34)

From (34) we get 𝑐𝑁,𝑁 = 1
𝑁

for 𝑁 ≥ 1, and the proof is complete. □
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