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ABSTRACT
Let Φ be an Orlicz function and 𝐿Φ (𝑋, Σ, 𝜇) be the corresponding Orlicz space on a non-atomic, 𝜎-finite, complete measure
space (𝑋, Σ, 𝜇). It is known that extreme points which are connected with rotundity of the whole spaces are the most essential and
important geometric notion in the geometric theory of Banach spaces. On the other hand, geometric theory of complex Banach
spaces has significant applications that differ from the geometric theory of real Banach spaces. In this paper, we first describe the
complex extreme points of unit ball of Orlicz spaces equipped with the 𝑠-norm where 𝑠 is a strictly increasing outer function. We
also give criteria for complex rotundity. Our study generalizes and unifies the results that have been obtained for the Orlicz norm
and the 𝑝-Amemiya norm (1 < 𝑝 < ∞) separately.
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1. INTRODUCTION

The notion of extreme points plays a crucial role for geometric theory of Banach spaces. Also, rotundity properties are very
important in geometry of Banach spaces and its applications. Since the early 1980’s, the investigations concerning the geometric
theory of complex Banach spaces have been developed because it has significant applications that differ from the geometric theory
of real Banach spaces. For instance, the notion of complex rotundity, which was introduced by Thorp, E., Whitley, R. (1967),
has an important application in the theory of analytic functions. It is known that if 𝑓 is a function from the unit disc of C into a
complex Banach space 𝑋 , 𝑓 is analytic, i.e. 𝑥∗ ◦ 𝑓 is analytic in the classical sense for any 𝑥∗ ∈ 𝑋∗ (the dual space of 𝑋) and the
maximum of the function 𝐹 (𝑧) = ∥ 𝑓 (𝑧)∥ is attained in an interior point of unit disc, then 𝐹 is a constant function. However, in the
case when 𝑋 is complex rotund, more can be deduced, namely that 𝑓 is a constant function.

On the other hand, Orlicz spaces comprise an important class of Banach spaces that are a kind of generalization of Lebesgue
spaces. The theory of Orlicz spaces has been greatly developed because of its important theoretical properties and value in
applications. Some examples for applications of Orlicz spaces can be found in Arıs B., Öztop S., (2023) and Üster R. (2021).
Structure of complex extreme points and complex rotundity in the class of Musielak–Orlicz spaces have been first studied by Wu,
C.X., Sun, H. (1987) and Wu, C.X., Sun, H. (1987). Then Chen, L., Cui, Y. (2010) gave criteria for complex extreme points and
complex rotundity in Orlicz function spaces equipped with the 𝑝-Amemiya norm.

Wisła, M. (2020), using the concept of an outer function, presented a general and universal method of introducing norms in
Orlicz spaces that covered the classical Orlicz and Luxemburg norms, and 𝑝-Amemiya norms (1 ⩽ 𝑝 ⩽ ∞). After then, Başar E.,
Öztop, S., Uysal, B.H., Yaşar, Ş. (2023), classified 𝑠-norms with respect to the constant 𝜎𝑠 and described real extreme points as
well.

Our first aim in this work is to describe the complex extreme points in Orlicz spaces equipped with 𝑠-norms where 𝑠 is strictly
increasing. Then we give criteria for complex rotundity by using description of extreme points.

The structure of this paper as follows. In Section 2, we provide necessary definitions. In Section 3, we recall some technical
results for Orlicz spaces equipped with 𝑠-norms that will be used and we make some observations from these known results. In
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Section 4, we first describe complex extreme points of unit ball in Orlicz spaces equipped with 𝑠-norms for a strictly increasing
outer function 𝑠. Then we obtain a necessary and sufficient condition for complex rotundity.

2. PRELIMINARIES

A map Φ : R → [0,∞] is said to be an Orlicz function if Φ(0) = 0, Φ is not identically equal to zero, Φ is even and convex on
the interval (−𝑏Φ, 𝑏Φ), and Φ is left continuous at 𝑏Φ, where 𝑏Φ = sup{𝑢 > 0 : Φ(𝑢) < ∞}. From these properties it follows that
an Orlicz function Φ is continuous on (−𝑏Φ, 𝑏Φ), increasing on [0, 𝑏Φ), and satisfies lim

𝑢→∞
Φ(𝑢) = ∞. If Φ is an Orlicz function,

letting also 𝑎Φ = sup{𝑢 ⩾ 0 : Φ(𝑢) = 0}, then 𝑎Φ = 0 means that Φ vanishes only at 0 while 𝑏Φ = ∞ means that Φ takes only
finite values. In this work, we assume that Orlicz function satisfies lim

𝑢→∞
Φ(𝑢)
𝑢

= ∞.
For an Orlicz function Φ, we define its complementary function Ψ by the formula

Ψ(𝑣) = sup
𝑢≥0

{𝑢 |𝑣 | −Φ(𝑢)}.

It is well-known that the complementary function is an Orlicz function as well. Let 𝑝+ denote the right derivative of an Orlicz
function Φ and 𝑞+ denote the right derivative of its complementary function Ψ with the conventions that lim

𝑢→∞
𝑝+ (𝑢) = 𝑝+ (∞) and

𝑝+ (𝑢) = ∞ for all 𝑢 ⩾ 𝑏Φ. If there exists a constant 𝐾 > 0 such that Φ(2𝑢) ⩽ 𝐾Φ(𝑢) for all 𝑢 ∈ R, we say that Orlicz function Φ

satisfies the Δ2 condition and we denote this by Φ ∈ Δ2. We know that the pair (Φ,Ψ) satisfies Young’s inequality, that is,

𝑥𝑦 ⩽ Φ(𝑥) + Ψ(𝑦) (𝑥, 𝑦 ∈ R),

where equality holds when 𝑦 = 𝑝+ (𝑥) or 𝑥 = 𝑞+ (𝑦) for 𝑥, 𝑦 ∈ R (Rao, M. M. and Ren, Z. D. (1991)).
Throughout the paper, we will assume that (𝑋, Σ, 𝜇) is a measure space with a 𝜎-finite, non-atomic and complete measure 𝜇 and

denote by 𝐿𝑐 (𝑋, Σ, 𝜇) (for short, 𝐿𝑐 (𝑋)) the space of all 𝜇-equivalence classes of complex-valued and Σ-measurable functions
defined on 𝑋 . In addition, we use the conventions 0 · ∞ = 0, 1

∞ = 0 and 1
0 = ∞.

For a given Orlicz function Φ we define on 𝐿𝑐 (𝑋, Σ, 𝜇) a convex functional 𝐼Φ by

𝐼Φ ( 𝑓 ) =
∫
𝑋

Φ( | 𝑓 (𝑡) |) 𝑑𝜇 for any 𝑓 ∈ 𝐿𝑐 (𝜇).

The Orlicz space 𝐿Φ (𝑋, Σ, 𝜇) generated by an Orlicz function Φ is a linear space of measurable functions defined by Orlicz, W.
(1932)

𝐿Φ (𝑋, Σ, 𝜇) = { 𝑓 ∈ 𝐿𝑐 (𝑋, Σ, 𝜇) : 𝐼Φ (𝜆 𝑓 ) < ∞ for some 𝜆 > 0} .

We denote the Orlicz space 𝐿Φ (𝑋,Σ, 𝜇) shortly by 𝐿Φ.
The Orlicz space 𝐿Φ is usually equipped with the Orlicz norm (Orlicz, W. (1932))

∥ 𝑓 ∥𝑜Φ = sup
{∫

𝑋

| 𝑓 (𝑡)𝑔(𝑡) | 𝑑𝜇 : 𝑔 ∈ 𝐿Ψ, 𝐼Ψ (𝑔) ≤ 1
}
,

where Ψ is the complementary function to Φ, or with the equivalent Luxemburg norm

∥ 𝑓 ∥Φ = inf
{
𝜆 > 0 : 𝐼Φ

(
𝑓

𝜆

)
≤ 1

}
.

Further, for all 1 ≤ 𝑝 ≤ ∞ the 𝑝-Amemiya norm is defined on 𝐿Φ by

∥ 𝑓 ∥Φ, 𝑝 =


inf
𝑘>0

𝑘−1 (1 + 𝐼Φ (𝑘 𝑓 ) 𝑝)1/𝑝 , if 1 ≤ 𝑝 < ∞,

inf
𝑘>0

𝑘−1 max{1, 𝐼Φ (𝑘 𝑓 )}, if 𝑝 = ∞.

The family of 𝑝-Amemiya norms includes the Orlicz and Luxemburg norms (see Cui, Y., Duan, L., Hudzik, H. and Wisła, M.
(2008)).

In 2020, the notion of the 𝑠-norm was introduced by M. Wisła and all of the following definitions can be found in Wisła, M.
(2020).

Definition 2.1. A function 𝑠 : [0,∞] → [1,∞] is called an outer function if it is convex and satisfies the inequality

max{𝑢, 1} ⩽ 𝑠(𝑢) ⩽ 𝑢 + 1

for all 𝑢 ⩾ 0.
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Let us note that an outer function 𝑠 is continuous and increasing on [0,∞). Evidently 𝑠(0) = 1 and set 𝑠(∞) = ∞.
Since it is convex, an outer function 𝑠 has both right and left derivatives. Let 𝑠′+ be the right derivative of 𝑠 so that 𝑠′+ : [0,∞) →

[0, 1] is an increasing function. Let 𝑠′+−1 : [0, 1] → [0,∞] be a general inverse of 𝑠′+ as defined in (Wisła, M. 2020, p. 11). Then
𝑠′+

−1 is an increasing function as well.
Let us give some examples of families of outer functions (see Wisła, M. (2020)).

Example 2.1. (i) For 1 ⩽ 𝑝 ⩽ ∞,

𝑠𝑝 (𝑢) =
{
(1 + 𝑢𝑝)1/𝑝 , if 1 ⩽ 𝑝 < ∞,
max{1, 𝑢}, if 𝑝 = ∞.

(1)

(ii) For 0 ⩽ 𝑐 ⩽ 1,

𝑠𝑐 (𝑢) = max{1, 𝑢 + 𝑐}. (2)

(iii) For 1 ⩽ 𝑚 ⩽ 2,

𝑠𝑚 (𝑢) =
{
(𝑚 − 1)𝑢 + 1, if 0 ⩽ 𝑢 ⩽ 1,
𝑢 + 𝑚 − 1, if 𝑢 > 1.

(3)

Definition 2.2. Let 𝑠 be an outer function and Φ be an Orlicz function. Then the 𝑠-norm of 𝑓 ∈ 𝐿Φ is defined by

∥ 𝑓 ∥Φ,𝑠 = inf
𝑘>0

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 )).

The Orlicz space equipped with the 𝑠-norm will be denoted by 𝐿Φ𝑠 .

Observe that each of the families given in Example 2.1 generates both the Orlicz norm and the Luxemburg norm. In (1), if we
take 𝑠 = 𝑠1 then ∥ 𝑓 ∥Φ,𝑠 = ∥ 𝑓 ∥𝑜

Φ
; if 𝑠 = 𝑠∞, then ∥ 𝑓 ∥Φ,𝑠 = ∥ 𝑓 ∥Φ; if 𝑠 = 𝑠𝑝 for 1 < 𝑝 < ∞ then ∥ 𝑓 ∥Φ,𝑠 = ∥ 𝑓 ∥Φ, 𝑝 (see Cui,

Y., Duan, L., Hudzik, H. and Wisła, M. (2008)). Similarly, in (2), 𝑐 = 0 gives the Luxemburg norm and 𝑐 = 1 the Orlicz norm.
Further, in (3), 𝑚 = 1 yields the Luxemburg norm and 𝑚 = 2 the Orlicz norm.

It is known that the 𝑠-norm ∥ · ∥Φ,𝑠 is equivalent to the Luxemburg norm ∥ · ∥Φ with ∥ 𝑓 ∥Φ ⩽ ∥ 𝑓 ∥Φ,𝑠 ⩽ 2∥ 𝑓 ∥Φ for any 𝑓 ∈ 𝐿Φ𝑠
(see Wisła, M. (2020)). Note that the Orlicz space 𝐿Φ𝑠 is a Banach space with the 𝑠-norm.

Definition 2.3. Let 𝑠 be an outer function. For all 0 ⩽ 𝑣 ⩽ 1, define

𝑤(𝑣) =
∫ 𝑣

0
𝑠′+

−1 (𝑡) 𝑑𝑡. (4)

It is clear that 𝑤 is a non-negative, increasing and continuous function on [0, 1].

Definition 2.4. Let 𝑠 be an outer function. For all 0 ⩽ 𝑢 < ∞ and 0 ⩽ 𝑣 ⩽ ∞,

𝛽𝑠 (𝑢, 𝑣) = 1 − 𝑤
(
𝑠′+ (𝑢)

)
− 𝑣𝑠′+ (𝑢).

Denote also 𝛽𝑠 (𝑘 𝑓 ) = 𝛽𝑠 (𝐼Φ (𝑘 𝑓 ), 𝐼Ψ (𝑝+ (𝑘 | 𝑓 |)) for all 𝑓 ∈ 𝐿Φ𝑠 .

Note that the function 𝑘 ↦→ 𝛽𝑠 (𝑘 𝑓 ) is decreasing on [0,∞).

Definition 2.5. Let 𝑠 be an outer function and Φ be an Orlicz function. For 𝑓 ∈ 𝐿Φ \ {0} and 0 < 𝑘 < ∞, we define the following
functions.

𝐷 : 𝐿Φ𝑠 → P([0,∞)), 𝐷 ( 𝑓 ) = {0 < 𝑘 < ∞ : 𝐼Φ (𝑘 𝑓 ) < ∞}
𝑘∗ : 𝐿Φ𝑠 → (0,∞], 𝑘∗ ( 𝑓 ) = inf{𝑘 ∈ 𝐷 ( 𝑓 ) : 𝛽𝑠 (𝑘 𝑓 ) ⩽ 0}
𝑘∗∗ : 𝐿Φ𝑠 → [0,∞), 𝑘∗∗ ( 𝑓 ) = sup{𝑘 ∈ 𝐷 ( 𝑓 ) : 𝛽𝑠 (𝑘 𝑓 ) ⩾ 0}

It is easy to see that 0 < 𝑘∗ ( 𝑓 ) ⩽ 𝑘∗∗ ( 𝑓 ) ⩽ ∞. Let us also define

𝐾 ( 𝑓 ) := {0 < 𝑘 < ∞ : 𝑘∗ ( 𝑓 ) ⩽ 𝑘 ⩽ 𝑘∗∗ ( 𝑓 )} .

Obviously, 𝐾 ( 𝑓 ) ≠ ∅ ⇔ 𝑘∗ ( 𝑓 ) < ∞. If 𝑘∗ ( 𝑓 ) < ∞ for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}, then the 𝑠-norm is called 𝑘∗-finite; if 𝑘∗∗ ( 𝑓 ) < ∞ for
any 𝑓 ∈ 𝐿Φ𝑠 \ {0}, then the 𝑠-norm is called 𝑘∗∗-finite. Further, if 𝑘∗ ( 𝑓 ) = 𝑘∗∗ ( 𝑓 ) < ∞ for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}, then the 𝑠-norm is
called 𝑘-unique.

Definition 2.6. Let 𝑠 be an outer function. Define the constant 𝜎𝑠 by

𝜎𝑠 = sup{𝑢 ⩾ 0 : 𝑠(𝑢) = 1}.
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Note that 0 ⩽ 𝜎𝑠 ⩽ 1 and it is obvious that 𝑠 is strictly increasing on [𝜎𝑠 ,∞). We focus on the cases of 𝜎𝑠 > 0 and 𝜎𝑠 = 0 in
the rest of this paper. The key point in defining this constant is that the equality 𝜎𝑠 = 0 provides an inverse function for the outer
function 𝑠 since this function is strictly increasing on the entire interval [0,∞) whenever 𝜎𝑠 = 0.

Let S denote the set of outer functions and define the sets

S0 = {𝑠 ∈ S : 𝜎𝑠 = 0} and S+ = {𝑠 ∈ S : 𝜎𝑠 > 0}.

The constants 𝜎𝑠 of the outer functions in Example 2.1 are obtained as follows.
(i) For 𝑠𝑝 of (1),

𝜎𝑠𝑝 =

{
0, 1 ⩽ 𝑝 < ∞,
1, 𝑝 = ∞.

(ii) For 𝑠𝑐 of (2),

𝜎𝑠𝑐 = sup{𝑢 ⩾ 0 : 𝑢 + 𝑐 ⩽ 1} = 1 − 𝑐.

Note that 0 ⩽ 𝑐 ⩽ 1.
(iii) For 𝑠𝑚 of (3),

𝜎𝑠𝑚 = sup{𝑢 ⩾ 0 : (𝑚 − 1)𝑢 + 1 = 1} =
{

1, 𝑚 = 1,
0, 1 < 𝑚 ⩽ 2.

As a consequence, we can classify the given outer functions as follows. The outer functions 𝑠𝑝 , 𝑠𝑐, 𝑠𝑚 ∈ S0 for 1 ⩽ 𝑝 < ∞,
𝑐 = 1, 1 < 𝑚 ⩽ 2 and 𝑠𝑝 , 𝑠𝑐, 𝑠𝑚 ∈ S+ for 𝑝 = ∞, 0 ⩽ 𝑐 < 1, 𝑚 = 1.

3. AUXILIARY RESULTS

We recall some technical results that will be used in the rest of paper.

Lemma 3.1. (Chen, S. (1996), Proposition 5.17) For any 𝜀 > 0, there exists 𝛿 ∈ (0, 1
2 ) such that if 𝑢, 𝑣 ∈ C and

|𝑣 | ⩾ 𝛿
8

max
𝑗

|𝑢 + 𝑗𝑣 |,

then

|𝑢 | ⩽ 1 − 2𝛿
4

∑︁
𝑗

|𝑢 + 𝑗𝑣 |,

where

max
𝑗

|𝑢 + 𝑗𝑣 | = max{|𝑢 + 𝑣 |, |𝑢 − 𝑣 |, |𝑢 + 𝑖𝑣 |, |𝑢 − 𝑖𝑣 |},

∑︁
𝑗

|𝑢 + 𝑗𝑣 | = |𝑢 + 𝑣 | + |𝑢 − 𝑣 | + |𝑢 + 𝑖𝑣 | + |𝑢 − 𝑖𝑣 |.

Lemma 3.2. (Wisła, M. (2020), Lemma 3.2) For every outer function 𝑠 and Orlicz function Φ,

∥ 𝑓 ∥Φ,∞ ≤ ∥ 𝑓 ∥Φ,𝑠 ≤ ∥ 𝑓 ∥Φ,1 ≤ 2∥ 𝑓 ∥Φ,∞

for all 𝑓 ∈ 𝐿Φ𝑠 .

Lemma 3.3. (Cui, Y., Zhan, Y. (2019), Lemma 7) If lim𝑢→∞
Φ(𝑢)
𝑢

= ∞ then 𝐾 ( 𝑓 ) ≠ ∅ for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}.

Theorem 3.4. (Wisła, M. (2020), Theorem 7.3) Let 𝑠 be an outer function and Φ be an Orlicz function.
(i) The 𝑠-norm is 𝑘∗-finite if and only if one of the following conditions is satisfied.

(a) Φ takes infinite values, i.e., 𝑏Φ < ∞,
(b) 𝑤

(
𝑠′+ (𝑢)

)
= 1 for some 0 < 𝑢 < ∞,

(c) 𝑤(1) = 1 and Φ is not linear on [0,∞),
(d) Φ does not admit an oblique asymptote.

(ii) The 𝑠-norm is 𝑘∗∗-finite if and only if one of the conditions (a), (c) or (d) is satisfied.
(iii) If Φ does not admit an oblique asymptote, then the 𝑠-norm is 𝑘∗∗-finite if and only if it is 𝑘∗-finite.
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Theorem 3.5. (Wisła, M. (2020), Theorem 6.1) Let 𝑠 be an outer function and Φ be an Orlicz function. For all 𝑓 ∈ 𝐿Φ𝑠 \ {0},
we have

𝑘∗ ( 𝑓 ) = inf
{
𝑘 > 0 : ∥ 𝑓 ∥Φ,𝑠 =

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 ))

}
,

𝑘∗∗ ( 𝑓 ) = sup
{
𝑘 > 0 : ∥ 𝑓 ∥Φ,𝑠 =

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 ))

}
.

Corollary 3.1 (Wisła, M. (2020), Corollary 6.2). Let 𝑠 and Φ be an outer and an Orlicz function, respectively. The followings
hold for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}.
(i) For every 𝑘 ∈ (0,∞) ∩ [𝑘∗ ( 𝑓 ), 𝑘∗∗ ( 𝑓 )], we have ∥ 𝑓 ∥Φ,𝑠 =

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 )).

(ii) If 𝑘∗∗ ( 𝑓 ) = ∞, then ∥ 𝑓 ∥Φ,𝑠 = lim
𝑘→∞

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 )).

4. MAIN RESULTS

In this section, we will give some results for 𝑠-norms that generalize the results obtained for the Orlicz and the 𝑝-Amemiya norms
(1 < 𝑝 < ∞). Then, we will give our main results on complex extreme points of unit ball and complex rotundity of Orlicz space
(Theorems 4.3 and Theorem 4.4).

Definition 4.1. (see Chen, S. (1996)) Let 𝐵(𝐿Φ𝑠 ) (resp. 𝑆(𝐿Φ𝑠 )) be the closed unit ball (resp. the unit sphere) of a Orlicz space 𝐿Φ𝑠 .
A function 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) is called an complex extreme point of 𝐵(𝐿Φ𝑠 ) if for any non-zero 𝑔 ∈ 𝐿Φ𝑠 implies max |𝜆 |=1 ∥ 𝑓 +𝜆𝑔∥Φ,𝑠 > 1.
The set of all complex extreme points of 𝐵(𝐿Φ𝑠 ) is denoted by Ext 𝐵(𝐿Φ𝑠 ). Orlicz space is called complex strictly rotund if every
element of 𝑆(𝐿Φ𝑠 ) is a complex extreme point of 𝐵(𝐿Φ𝑠 ).

Lemma 4.2. If 𝑓 ∈ 𝐵(𝐿Φ𝑠 ), then | 𝑓 (𝑡) | ⩽ 𝑏Φ 𝜇-a.e. on 𝑋 .

Proof. Assume that 𝑓 ∈ 𝐵(𝐿Φ𝑠 ). By Lemma 3.2, we have ∥ 𝑓 ∥Φ,∞ ≤ 1. Therefore, we obtain 𝐼Φ ( 𝑓 ) ⩽ 1 (see Chen, S. (1996)).
Hence, Φ( | 𝑓 (𝑡) |) < ∞ for 𝜇-a.e. 𝑡 ∈ 𝑋 . By definition of 𝑏Φ, we have | 𝑓 (𝑡) | ⩽ 𝑏Φ 𝜇- a.e. on 𝑋 .

Theorem 4.3. Let 𝑠 ∈ S0. Then 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) is a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ) if and only if 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | <
𝑎Φ}) = 0 for any 𝑘 ∈ 𝐾 ( 𝑓 ).

Proof. Necessity. Suppose that 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) with 𝜎𝑠 = 0 is a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ). Let us prove for any
𝑘 ∈ 𝐾 ( 𝑓 ), 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | < 𝑎Φ}) = 0. Assume that there exists 𝑘0 ∈ 𝐾 ( 𝑓 ) such that 𝜇({𝑡 ∈ 𝑋 : 𝑘0 | 𝑓 (𝑡) | < 𝑎Φ}) > 0.
Then we can find 𝑑 > 0 and measurable subset 𝐴 of 𝑋 such that 𝜇(𝐴) > 0 and

𝑘0 | 𝑓 (𝑡) | + 𝑑 ≤ 𝑎Φ

for any 𝑡 ∈ 𝐴. Letting 𝑔 = 𝑑
𝑘0
𝜒𝐴, we obtain 𝑔 ≠ 0 and for any 𝜆 ∈ C with |𝜆 | ≤ 1,

∥ 𝑓 + 𝜆𝑔∥Φ,𝑠 ≤
1
𝑘0
𝑠(𝐼Φ (𝑘0 ( 𝑓 + 𝜆𝑔))) =

1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 𝜒𝑋\𝐴) + 𝐼Φ (𝑘0 𝑓 𝜒𝐴 + 𝜆𝑑𝜒𝐴))

≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 𝜒𝑋\𝐴) + 𝐼Φ ((𝑘0 𝑓 + 𝑑)𝜒𝐴))

≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 𝜒𝑋\𝐴))

≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 )) = ∥ 𝑓 ∥Φ,𝑠 = 1.

This gives that 𝑓 ∉ Ext 𝐵(𝐿Φ𝑠 ).
Sufficiency. Suppose that for any 𝑘 ∈ 𝐾 ( 𝑓 ), 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | < 𝑎Φ}) = 0. Let us prove 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) with 𝜎𝑠 = 0 is a complex

extreme point of the unit ball 𝐵(𝐿Φ𝑠 ). Assume that 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) with 𝜎𝑠 = 0 is not a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ).
Therefore, there exist 𝜀0 > 0 and 𝑔0 ∈ 𝐿Φ𝑠 with ∥𝑔0∥Φ,𝑠 > 𝜀0 such that

max
|𝜆 | ≤1

∥ 𝑓 + 𝜆𝑔0∥Φ,𝑠 ≤ 1. (5)

By Lemma 3.1, there exists 𝛿0 ∈ (0, 1
2 ) such that if 𝑢, 𝑣 ∈ C and

|𝑣 | ≥ 𝜀0
8

max
𝑗

|𝑢 + 𝑗𝑣 |,
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then we have

|𝑢 | ≤ 1 − 2𝛿0
4

∑︁
𝑗

|𝑢 + 𝑗𝑣 |.

Define 𝐴 = {𝑡 ∈ 𝑋 : |𝑔0 (𝑡) | ≥ 𝜀0
8 max

𝑗
| 𝑓 (𝑡) + 𝑗𝑔0 (𝑡) |}. We obtain by using (5)

∥𝑔0𝜒𝑋\𝐴∥Φ,𝑠 <
𝜀0
8
∥ max

𝑗
| 𝑓 + 𝑗𝑔0 |∥Φ,𝑠 ≤

𝜀0
8

∑︁
𝑗

∥ 𝑓 + 𝑗𝑔0∥Φ,𝑠 ⩽
𝜀0
2
.

Consequently, we have ∥𝑔0𝜒𝐴∥Φ,𝑠 >
𝜀0
2 which shows that 𝜇(𝐴) > 0. For any 𝑡 ∈ 𝐴, we obtain

| 𝑓 (𝑡) | ≤ 1 − 2𝛿0
4

∑︁
𝑗

| 𝑓 (𝑡) + 𝑗𝑔0 (𝑡) |.

By Lemma 3.3, we can take any 𝑘 ∈ 𝐾 ( 1
4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |) and we have by (5)

1 ≥


 1

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |



Φ,𝑠

= 1
𝑘
𝑠

(
𝐼Φ

(
𝑘
4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |
))

≥ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

1−2𝛿0
4

∑
𝑗 | 𝑓 + 𝑗𝑔0 |

))
≥ 1

𝑘
𝑠(𝐼Φ (𝑘 𝑓 )) ≥ ∥ 𝑓 ∥Φ,𝑠 = 1

which implies that ∥ 𝑓 ∥Φ,𝑠 =
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 )) = ∥ 1

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |∥Φ,𝑠 = 1 and 𝑘 ≥ 1. Since 𝑘 | 𝑓 (𝑡) | ≥ 𝑎Φ for 𝜇-a.e. 𝑡 ∈ 𝑋 , we obtain
that

1
1 − 2𝛿0

𝑘 | 𝑓 (𝑡) | ≥ 𝑎Φ

1 − 2𝛿0
, 𝜇 − a.e.𝑡 ∈ 𝐴,

we conclude that 𝐼Φ (𝑘 | 𝑓 |
1−2𝛿0

𝜒𝐴) ≥ Φ( 𝑎Φ
1−2𝛿0

)𝜇(𝐴) > 0. Let us define 𝑏 = Φ( 𝑎Φ
1−2𝛿0

)𝜇(𝐴). To complete the proof, we consider the
following two cases.

Case 1. Let assume that 𝐼Φ (𝑘 ( 1
4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |)) ≥ 2𝛿0𝑏. In this case, we obtain the following contradiction

1 = ∥ 𝑓 ∥Φ,𝑠 =
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴))

≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1 − 2𝛿0

4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))
≤ 1
𝑘
𝑠

(
(1 − 2𝛿0)𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))
≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

))
≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

| 𝑓 |
1 − 2𝛿0

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |𝜒𝐴

))
≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝑏

)
<

1
𝑘
𝑠(𝐼Φ (𝑘 (

1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |))) = ∥ 1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |∥Φ,𝑠 = 1.

Therefore, we obtain a contradiction.
Case 2. Let assume that 𝐼Φ (𝑘 ( 1

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |)) < 2𝛿0𝑏. By using the fact that for all outer functions 𝑠(𝑢) ≤ 1 + 𝑢 for any 𝑢 ∈ R.
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1 = ∥ 𝑓 ∥Φ,𝑠 =
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴)) ≤

1
𝑘
(1 + 𝐼Φ (𝑘 𝑓 𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴))

≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1 − 2𝛿0

4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))
≤ 1
𝑘

(
1 + (1 − 2𝛿0)𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))
≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

))
≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

| 𝑓 |
1 − 2𝛿0

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |𝜒𝐴

))
≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝑏

)
<

1
𝑘
≤ 1

Therefore, we obtain a contradiction.

The following theorem gives us necessary and sufficient condition for being complex rotundity of Orlicz spaces when 𝑠 ∈ S0.

Theorem 4.4. Let 𝑠 ∈ S0. Then 𝐿Φ𝑠 is complex rotund if and only if 𝑎Φ = 0.

Proof. Necessity. Suppose that 𝐿Φ𝑠 with 𝜎𝑠 = 0 is complex strictly rotund. Let us prove 𝑎Φ = 0. Assume that 𝑎Φ > 0. Then take
𝑐 ∈ (0, 𝑎Φ). Choose measurable subset 𝐴 of 𝑋 and 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) such that 𝜇(𝐴) > 0 and supp 𝑓 = 𝑋 \ 𝐴. Take 𝑘 ∈ 𝐾 ( 𝑓 ), and define

𝑔(𝑡) =
{
𝑐
𝑘
, 𝑡 ∈ 𝐴,
𝑓 (𝑡), 𝑡 ∈ 𝑋 \ 𝐴.

Since supp 𝑓 = 𝑋 \ 𝐴, we obtain ∥𝑔∥Φ,𝑠 ≥ ∥ 𝑓 ∥Φ,𝑠 = 1. On the other hand,

∥𝑔∥Φ,𝑠 ≤
1
𝑘
𝑠(𝐼Φ (𝑘𝑔)) =

1
𝑘
𝑠(𝐼Φ (𝑐𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴))

=
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴)) = ∥ 𝑓 ∥Φ,𝑠 = 1.

Thus, ∥𝑔∥Φ,𝑠 = 1. However, for 𝑡 ∈ 𝐴, we have 𝑘 |𝑔(𝑡) | = 𝑐 < 𝑎Φ, which implies that 𝑔 ∉ Ext 𝐵(𝐿Φ𝑠 ) by Theorem 4.3.
Sufficiency. Suppose that 𝑎Φ = 0. Let us prove 𝐿Φ𝑠 with 𝜎𝑠 = 0 is complex strictly rotund. Assume that 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) is not

a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ). It follows from Theorem 4.3 that 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | < 𝑎Φ}) > 0 for some
𝑘 ∈ 𝐾 ( 𝑓 ). Then there exists 𝑡0 ∈ 𝑋 such that 𝑎Φ > 𝑘 | 𝑓 (𝑡0) | ≥ 0, which contradicts with 𝑎Φ = 0.

5. CONCLUSION

In this work, we characterize complex extreme points and complex rotundity of Orlicz Spaces equipped with the 𝑠-norms for
𝜎𝑠 = 0.
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