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Abstract 

Reducing food waste is paramount for a sustainable future as its implications are important to 

achieving sustainable development goals set by the United Nations. In many industry groups, the 

public awareness of reducing food waste that may potentially emerge along firms’ operations has 

grown. In the era of Big Data, one of the most pursued exercises of this escalating attention on 

reducing food waste is to utilize artificial intelligence techniques to incorporate sustainability 

concerns into the decision framework. Many firms embrace machine learning methods to build 

effective decision mechanisms that help make efficient and sustainable decisions. In this study, 

we analyze the impact of blending machine learning approaches with demand forecasting and 

order quantity decisions for a firm operating in a setting where the market demand is random, and 

the demand structure is not observable to the firm. The performance of the methodology is 

evaluated on sunflower seed demand data taken from Tadım company. Our results suggest that 

the joint consideration of forecasting and ordering decisions using the quantile regression 

approach can lead the firm to decrease its operational cost by 8,11% on average. 
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1. INTRODUCTION 

 

Food waste has reached unprecedented levels. According to the study conducted by [1], about 133 billion 

pounds of the total food produced (equivalently, around 31%) could not be brought for consumption in 

2010, delineating the fact that how resources along various tiers of the supply chain are inefficiently used 

and allocated. To reduce food waste and manage their operations in line with the agenda adopted by the 

United Nations, many firms have attempted to construct data-driven decision mechanisms that help make 

both efficient and sustainable decisions.  

 

In particular, for products with limited life cycles, the mismatch between supply and demand is one of the 

primary reasons for accelerating the accumulation of food waste along a supply chain. Matching supply 

with demand lies at the core of operations management; when the demand is uncertain, firms make their 

ordering decisions considering the trade-off between having excess units in inventory and falling short of 

demand: if the order quantity exceeds the realized demand, firms have extra units that cannot be sold, and 

thus, these units become waste. Otherwise, firms do not match supply with demand and lose the potential 

profit that could have been earned if the order quantity had been higher. 
  

Operational inefficiencies occur especially when the demand is uncertain, and the demand distribution 

parameters are unknown, corresponding to the case many firms have encountered in practice as opposed to the 

case where distribution parameters are assumed to be known as many theoretical models consider (i.e., 
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traditional newsvendor problem). The need for following a holistic approach and involving machine 

learning approaches in decision mechanisms emerges at this stage where the demand distribution cannot 

be fully characterized (i.e., data-driven newsvendor problem). In the era of big data, the accessibility of 

customer data helps the demand characterization problem and elevates the fit of inventory models to real-world 

settings [2]. 

 

We formulate the problem as a data-driven newsvendor problem. In the presence of uncertain demand with 

unknown distribution parameters, we pursue two methodologies to estimate demand structure and determine 

order quantity, which we dub as sequential approach and joint approach, respectively. The reason behind 

taking the two mechanisms into account is to quantify and highlight the impact of integrating demand 

forecasting with ordering decisions on the profit that the firms could achieve. The sequential approach 

comprises two steps. In the first step, the future demand is estimated using historical demand patterns and 

other features. While generating the demand estimates, we consider both traditional and machine learning 

methods and select the procedure with the minimum estimation errors. The second step is determining the 

order quantity. In this step, we employ data-driven optimization methods that do not need any inputs about 

the structure of demand distribution, unlike traditional optimization approaches. In particular, we utilize 

approaches such as Sample Average Approximation (SAA) at the optimization stage of this approach. 

The integrated approach takes a holistic view and combines demand forecasting and data-driven 

optimization: it determines the optimal order quantity using historical demand patterns and features. 

 

We partner with a leading Turkish packaged nuts company, i.e., Tadım, to establish a data-driven 

mechanism that aims to reduce food waste by matching supply with demand as best as possible. 

Complying with the short-lived nature of the firm’s products, the proposed mechanism generates demand 

estimates for weekly demand. In this context, we would like to answer the following questions: What 

do machine learning methods bring about to the firm regarding food waste? What is the value of 

coordinating demand forecasting and optimization stages? 

 

Our numerical experiment suggests that machine learning methods perform better than conventional methods 

in forecasting, thereby lowering the potential waste that occurred due to inefficiency at this stage. In 

particular, Random Forest and Linear Regression methods yield results with 10% higher accuracy than 

those obtained by the reference method. The firm decreases the total cost in the optimization stage using 

machine learning methods. On average, Quantile Regression (QR) achieves the best results that yield a 6% 

improvement in the total cost incurred by the firm. 

 

The organization of the paper is as follows: section 2 provides a summary of the relevant literature and 

the contributions of this study. In section 3, we delineate the problem setting and present the structure of 

the dataset we work on. Sections 4 and 5 examine the approaches we employ to solve the problem and 

compare the impact of incorporating machine learning methods into the decision-making framework by 

comparing the results with those obtained by traditional methods. In section 6, we provide a summary of our 

findings and conclude with avenues for future research. 

 

2. LITERATURE REVIEW 
 

The primary objective is to quantify the impact of employing machine learning methods in the decision-

making framework on a dataset of a firm facing uncertain demand with an unknown distribution 

parameter. Hence, we focus on the studies that examine the data-driven newsvendor problem in different 

contexts in the relevant literature. We cluster the existing studies with respect to the path they take in the 

development of solution approaches into two classes: i) the sequential approach (i.e., estimating demand 

and optimizing order quantity separately) and ii) the joint approach (i.e., estimating demand and 

optimizing order quantity jointly). 

 

Studies that fall into the first cluster, though few, focus on either developing a solution approach only for 

optimizing the order quantity or building a two-stage method composed of demand estimation and 

optimization. [3] suggests a sampling-based algorithm to address the single-period newsvendor problem 

where the demand structure is unknown and develops bounds on the number of samples needed to ensure 
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that the expected cost obtained by the sampling-based policies is close to that of the optimal policies; the 

developed bounds are distribution-free. For a similar problem setting considered in [3], [4] derives a new 

analytical bound for the relative regret of the sample average approximation (SAA); the bound is tighter 

than the already existing bounds. Through computational experiments, the authors show the empirical 

accuracy of the bound, and conclude that the performance of SAA is dependent on the demand 

distribution’s weighted mean spread. [5] studies the data-driven newsvendor problem when both the firm 

and consumers learn the product’s value over time, revealing that two-sided learning lowers the firm’s 

optimal inventory level compared to the case of one-sided learning. 

 

Most studies in the relevant literature investigate joint consideration of demand estimation and order 

quantity optimization. [6] develops a maximum entropy-based approach that allows decision-makers to 

form an expectation about the demand distribution and update it over time as new data becomes available 

and shows that the closed-form solution they derive for the updating mechanism generalizes the traditional 

Bayesian approach. Besides, numerical experiments conducted in the study of [6] reveal the importance 

of incorporating partial distributional information into the mechanism. [7] deals with the pricing and order 

quantity problem of a retailer in a setting where the demand function is unknown. The authors develop a 

maximin framework and, to solve the maximin model, they propose a two-sided cutting surface algorithm; 

they use a real dataset to test the proposed algorithm. They conclude that a risk-averse retailer opts to 

achieve less expected profit when the true demand information is lacking. Besides, they state that the 

number of iterations needed by the proposed algorithm is dependent on the initial region of uncertainty 

for the demand function. [8] builds a single-step learning mechanism to solve a data-driven newsvendor 

problem, where the decision-maker has limited information about demand features and presents 

performance bounds of the proposed approaches. In particular, algorithms are developed based on the 

empirical risk minimization principle and kernel-weight optimization, respectively. The authors test the 

algorithms using a large data set and conclude that the proposed algorithms produce better results than the 

best practice benchmark by around 25% in terms of the out-of-sample cost, and the kernel-weight 

optimization-based algorithm is faster than the empirical risk minimization principle-based algorithm. [2] 

works on gleaning value from data in the context of a data-driven newsvendor problem; the authors, 

particularly, develop solution methods relying on Machine Learning and Quantile regression; based on 

the numerical experiments conducted in the study, they conclude that machine learning techniques 

perform better than traditional methods when the data set is sufficiently large. [9] develops a method that 

relies on artificial neural networks for the newsvendor problem and studies the impact of a machine-

learning-based approach in demand forecasting on optimizing order quantity level. The authors conclude 

that the proposed method brings up to about 30% cost savings. [10] proposes a solution framework that 

utilizes deep learning techniques for the data-driven newsvendor problem. Based on numerical 

experiments, the authors conclude that their approach performs better than existing methods, mainly when 

demand volatility is high. [11] develops a robust optimization approach to make decisions for the 

newsvendor problem with an unknown demand distribution and tests the performance of the proposed 

method using real data sets. [11] shows the proposed approach yields greater profits than the level existing 

approaches can achieve. 

 

To summarize, this study contributes to the relevant literature by employing various learning and 

optimization methods in the decision-making framework and quantifying its impact on the firm’s 

objective. Besides, we unravel the value of using data-driven methods by comparing them with model-

based counterparts. In particular, the contributions of this study can be stated as follows: i) the comparison 

of the performance of sequential and integrated policies in terms of the total costs that they bring about 

on a new case study, and ii) the revelation of the value of employing data-based operational policies over 

a new case study.  

 

3. PROBLEM SETTING 
 

Each week, the firm must choose an inventory level for the sunflower seed to be roasted (i.e., the sunflower 

seed is the raw material in the roasted sunflower production) before the demand for the roasted sunflowers 

is realized. The demand depends on various external factors and is subject to change; so, it is uncertain, 

i.e., it is not known in advance. 
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Because the final product is short-lived, the firm determines its production schedule for each week 

separately and does not prefer carrying inventory to future periods. It follows the lot-for-lot (L4L) policy 

as the production strategy. The goals of the firm are twofold: i) to match supply (i.e., the sunflower seed) 

with demand (i.e., the roasted sunflower) at the targeted service level and ii) to minimize the amount of 

excess waste that occurs due to mismatch between supply and demand. In this context, the firm 

experiences two different cases: excess supply (i.e., overage) and excess demand (i.e., underage). In the 

case of excess supply, the firm would incur higher inventory-related costs as the demand falls short of the 

supply and higher production-related costs due to a greater volume of production. Otherwise, when excess 

demand is present, the firm cannot fully satisfy the demand and would miss the potential profit it would 

receive if it had a higher inventory level for the raw material. Besides, the firm would incur substitution-

related costs that emerge due to customers who purchase another product when the firm’s product is 

stocked out. Matching supply with demand requires minimizing the total expected cost the firm would 

incur in both cases of excess supply and excess demand. Hence, we formulate the firm’s single-period 

inventory problem as the Newsvendor problem as follows:  

  

min
𝑞≥0

𝐸[𝐶(𝑞)] ≔ 𝐸[𝐶(𝑞; 𝐷)]. (1) 

 

Equation (1) shows the objective function of the firm, where q denotes the order quantity the firm chooses 

for the product, 𝐷 represents uncertain demand, and 𝐶(𝑞; 𝐷) corresponds to the function, comprised of 

shortage and overage costs, that depends on 𝑞 and the random demand 𝐷. Because demand 𝐷 is not known 

in advance, the firm minimizes the expected total cost of shortage and overage. The function 𝐶(𝑞; 𝐷) can 

be given by: 

 

𝐶(𝑞; 𝐷) ≔ 𝑏(𝐷 − 𝑞)+ + ℎ(𝑞 − 𝐷)+, (2) 

 

where b is the unit cost associated with being unable to satisfy demand (i.e., underage cost), and h is the 

unit cost of having excess inventory (i.e., overage cost). In Equation (3), if the cumulative demand 

distribution function (CDF) of the random variable D, denoted by F, is known, the optimal solution, as 

shown in [12], is to determine the order quantity by the critical fractile as follows: 

  

𝑞∗ = inf {𝑦: 𝐹(𝑦) ≥
𝑏

𝑏+ℎ
}. (3) 

 

In practice, the demand distribution cannot be easily characterized. In most cases, decision-makers need 

to learn the structure of the demand distribution to deal with the inventory problem. Utilizing historical 

demand data helps revamp this obstacle by replacing the true theoretical expectation with a sample average 

expectation through machine learning methods [2]. In the following sections, we present a data-driven 

solution approach to predict demand and determine the optimal order quantity. 

 

4. DATA 

 

Our access to the uncensored demand dataset for sunflower seeds covers 167 weeks between January 2018 

and March 2021, provided in Figure 1. 
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Figure 1. Weekly Demand in Tonnes 

 
Figure 1 demonstrates that the weekly demand over approximately three years has fluctuated. The firm 

has experienced demand shocks at some intervals. In the figure, we mark these dramatic increases and 

decreases with circles. A closer look at Figure 1 reveals that the periods during which demand shocks have 

been observed actually coincide with the weeks right before, during, and right after Eid. Since Eid is an 

official holiday in Turkey, the demand piles up immediately before and after this period. The company 

executes a particular working program for these periods; the production schedule is built together with the 

sales and supply chain departments. 

 

After observing the general structure of the aggregate demand data, it is helpful to analyze the shape 

of its distribution that will serve as input toward the proposed data-driven mechanism. Figure 2 

demonstrates the distribution of the aggregate demand data with respect to particular intervals of tonnes. 

We can state that the distribution shape shown in Figure 2 is right-skewed. 

 

 
Figure 2. Histogram of Weekly Demand 

 

In order to verify the skewness of the data, we apply the Chi-square test and obtain the p-value of 7.47E 

− 08, implying that the distribution does not satisfy the requirements for normality. Besides, after further 

investigating and receiving information from the firm, we notice that the inventory levels are kept at 

different levels and vary across seasons. 

 

Figure 3 presents the seasonal demand distributions over three years. After clustering the aggregate 

demand data into seasons, we apply the Chi-square test on seasonal demand distributions. We obtain p-

values of 0.176, 0.637, 0.001, and 0.549 for the spring, summer, autumn, and winter seasons, respectively. 

The resulting p-values imply that, except for the distribution belonging to the autumn season, demand 

distributions observed in the remaining three seasons comply with the requirements for the normal 

distribution, which can also be underpinned by the shape of the seasonal distributions provided in Figure 

3. 
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Figure 3. Seasonal Demand Distributions 

 
After thoroughly examining the dataset, presented in Figures 1, 2, and 3, we exclude those above three 

standard deviations and label them as outliers. Analyzing the weeks in which outliers are eliminated 

reveals an important observation associated with them: fill rates from distribution centers fell below 70% 

in the previous week. Being unable to supply sufficient units of products that would satisfy the demand of 

the previous week caused an excessive rise in demand realized in the relevant week, thereby creating 

anomalies due to the orders that fell short of demand during harvest. Hence, we extract these outliers from 

the data. 

 

Finally, we consider internal and external features that could affect the demand to be incorporated into 

machine learning models. Table 1 presents the list of these explanatory variables that are related to the 

firm’s operational performance, calendar, and transactional data. 

 

Table 1. Features of the machine learning framework 

Features Data Type Description 

Lag1-Lag16 Continuous Demand that realized in the last between one and 

sixteen weeks, given in terms of tonnes. 

Holiday  

Nominal 

It equals 1 if that particular week includes a 

religious holiday (Kurban or Ramazan); 

otherwise, it is set to 0. 

Ramazan Nominal It equals 1 if that particular week includes 

Ramazan; otherwise, it is set to 0. 

NewYear Nominal It equals 1 if that particular week includes New 

Year; otherwise, it is set to 0. 

Before holiday Nominal It equals 1 if that particular week is followed by 

a religious holiday; otherwise, it is set to 0. 

After holiday Nominal It equals 1 if that particular week follows a 

religious holiday; otherwise, it is set to 0. 

Bnewyear Nominal It equals 1 if that particular week is one week 

before New Year week; otherwise, it is set to 0. 

Workdays Ordinal The number of days the company runs to meet 

demand. 

LagStonnes Continuous The supply amount in tonnes the company has 

in previous weeks. 

LagFullfilment Continuous The supply amount in percentage the company 

has in previous weeks. 
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LagChange Continuous The realized change between the consecutive last 

two weeks. 

LagChangeBinary  

Nominal 

It equals 1 if the percentage change between the 

consecutive last two weeks is positive; 

otherwise, it is set to 0. 

Seasonality1-2 Continuous Seasonal description 

 

Table 1 presents all the features to make the model more interpretable. In Section 4.1, we determine the 

number of features that sufficiently explain the variations in demand. 

 

4.1. Best Subset Selection 

 

In this procedure, a separate least square regression is fit for each possible combination of the explanatory 

p features presented in Table 1. As provided in [13], the steps of the procedure can be given as follows: 

 

Step 1. Let 𝑀0 denote the null model, containing no predictors. 𝑀0 predicts the sample mean for 

each observation. 

Step 2. For  𝑘 = 1,2, … , 𝑝: 
a) Fit all (𝑝

𝑘
) models that contain exactly k predictors. 

b) Select the best among these (𝑝
𝑘

) models, and label it 𝑀𝑘. “best” is defined as having 

the smallest residual sum of squares (RSS), or, equivalently, the largest 𝑅2. 

Step 3. Select a single best model from among 𝑀0, … , 𝑀𝑝 using cross-validated prediction error, 

𝐶𝑝, (AIC) (i.e., Akaike Information Criterion), BIC (Bayesian Information Criterion), or adjusted 

𝑅2. 

 

The best subset selection method suffers from computational burden. The number of models that need to 

be investigated quickly increases in the number of explanatory features (i.e., d). For instance, when we 

increase the number of features to p from p − 1, the additional number of models that we need to analyze 

equals ∑ (p
k

)
p
k=1 − ∑ (p−1

k
)

p−1
k=1 = (2p − 1) − (2p−1 − 1) = 2p − 2p−1.  

 

In total, there are 29 different variables that we can use, and putting all of those provided in Table 1 into 

the best subset selection method would produce more than 536 million (i.e., 229) different models. To 

circumvent this computational cumbersome, we first simultaneously ran all the variables and removed 

those with p-value levels above 0.05. This way enabled us to decrease the number of variables. For 

example, in the case of having 10 variables in the model, the number of models we excluded equals 229 −
210 > 536 million, saving a significant amount of time. 

 

Another problem that we should be cautious of is overfitting. We select two models with seven and ten 

variables, presented in Table 2, to prevent the problem of overfitting after implementing indirect and 

validation set approaches on train and test data [13]. 

 

Table 2. Selected models with input variables 

Model Input Variables 

7 variables Lag1, Lag2, Lag6, Lag11, Holiday, Aholiday, Bholiday 

10 variables Lag1, Lag2, Lag6, Lag11, Holiday, Aholiday, Bholiday, LagFullfill- 

ment, NewYear, Bnewyear 

 

The selected variables in the two models reveal that the recent demand and the holiday periods help 

explain the variation. As shown in Step 3 of the procedure, we employ the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC),  𝐶𝑝, and adjusted 𝑅2 statistics to measure the quality of 

these two models [14]. For a model with 𝑑 estimators, the 𝐶𝑝 estimate can be given by: 𝐶𝑝 =
1

𝑛
(𝑅𝑆𝑆 + 2𝑑𝜎̂2), where 𝑅𝑆𝑆 is the residual sum of squares and 𝜎̂2 is an estimate of the variance of the 
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error, and 𝑛 is the number of observations in the training set. Likewise, the AIC is another estimator of the 

prediction error that deals with the model's trade-off between complexity and simplicity. AIC can be 

expressed as follows: 𝐴𝐼𝐶 =
1

𝑛𝜎̂2
(𝑅𝑆𝑆 + 2𝑑𝜎̂2). As their expressions suggest, 𝐶𝑝 and AIC are 

proportional to each other. Similar to 𝐶𝑝, the lower the AIC score, the better model we have.  

 

The third estimator is BIC, which can be given by: 𝐵𝐼𝐶 =
1

𝑛𝜎̂2
(𝑅𝑆𝑆 + log(𝑛) 𝑑𝜎̂2). This criterion adds a 

logarithmic penalty to the RSS. This estimator takes on a small value when the test error is low, so a lower 

BIC value is preferred. The final indirect estimation is the adjusted 𝑅2 and can be calculated as follows: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
𝑅𝑆𝑆

(𝑛−𝑑−1)⁄

𝑇𝑆𝑆
(𝑛−1)⁄

 , where 𝑇𝑆𝑆 is the total sum of squares, 𝑅𝑆𝑆 is the residual sum of 

squares and 𝑛 is the number of observations in the training set. Unlike 𝐶𝑝, AIC, and BIC, a larger value 

of 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 indicates a lower test error. 

 

Among these statistics, only BIC’s result suggests the model with fewer variables. We implemented both 

because we could not see that one model was superior. Figures 4 and 5 demonstrate the suggested number 

of explanatory variables using 𝐶𝑝, AIC, BIC, and adjusted 𝑅2, respectively. 

 

 
Figure 4. Subset Selection Using 𝐶𝑝 and AIC 



1861  Afsin SANCAKTAROGLU, Burak GOKGUR, Ayse KOCABIYIKOGLU / GUJ Sci, 37(4):1853-1869 (2024) 

 

 
 

 
Figure 5. Subset Selection Using BIC and adjusted 𝑅2 

 

In Figure 4, 𝐶𝑝 and AIC suggest a 10-variable model. In Figure 5, BIC produces a 7-variable model, and 

the model proposed by adjusted 𝑅2, on the other hand, includes the number of variables between 10 and 

12; because we want to refrain the model from being overfitted, we take the number of variables as 10 

suggested by the adjusted 𝑅2 criterion. 
 

In the next section, we focus on the stage where we present the proposed optimization models for the 

firm’s inventory problem. First, we present the model that rests on some assumptions on demand. Then, 

we move on to the model that is data-driven. 

 

5. METHODOLOGY 

 

This section explains the solution methodology followed in this study. First, we detail the sequential 

approach composed of two steps. In the first step, we employ forecasting models to estimate future 

demand. We introduce a model-based optimization method using assumptions regarding demand and cost 

structure [13]. Besides, we present a data-driven approach using Sample Average Approximation (SAA). 

Then, we focus on developing an integrated data-driven demand estimation and optimization model using 

quantile regression (QR). 

 

5.1. Sequential Approach 

 

This section details the stages through which the approach is constructed. Firstly, we zero in on demand 

estimation for the focal product and then the cost-minimizing (optimal) order quantity. The sequential 

approach requires first estimating the mean demand and the error distribution and then finding the optimal 

order quantity by solving the newsvendor problem. 

 

The demand estimation stage considers traditional forecasting and machine learning-based forecasting 

methods. We first present five traditional approaches followed by the firm, which are Naive, Seasonal 

Naive (S-Naive), Median, Seasonal Median (S-Median), and Moving Average (MA): 

1. Naive uses the realized sales observed in the last period as the forecast for the current period. 

2. Seasonal Naive uses the realized sales observed in the same period a season ago as the forecast for 

the same period of the current season. For instance, in the prediction of the second fall week of the 

year, the realized demand for the same week of the previous year is used. 



1862  Afsin SANCAKTAROGLU, Burak GOKGUR, Ayse KOCABIYIKOGLU / GUJ Sci, 37(4):1853-1869 (2024) 

 

 
 
3. Median chooses the order quantity level separating the higher half from the lower half as future 

demand in the determined sample. 

4. Seasonal Median clusters the available data sets into seasons and then chooses the seasonal order 

quantity levels separating the higher half from the lower half as the expected demand for each season. 

5. Moving Average takes the average of the order quantities placed in the most recent predetermined 

number of periods before the current period. In the train dataset, the chosen level produces the best 

result for the weeks between two and sixteen. 

 

When we turn to machine learning approaches that we employ in the study and compare them with 

traditional methods, we choose six procedures that have been heavily performed in the relevant literature. 

We introduce these methods as follows: 

1. Linear Regression analyzes the linear relationship between independent and dependent variables. It 

has been applied to predict quantitative responses [14]. 

2. Random Forest builds independent tree-structured vectors that are independent and identically 

distributed in the same forest [15]. This approach can be used in regression and classification 

problems. 

3. XGBoost (eXtreme Gradient Boosting) uses a gradient-boosted decision tree algorithm. Scalability 

and computational power can be considered as the distinguishing features of XGBoost [16]. What 

differentiates XGBoost from Random Forest is the way in which trees are constructed: trees are 

sequentially created in XGBoost, whereas multiple trees are produced in parallel in Random Forest. 

Besides, in XGBoost, the result is a total of outcomes from all the trees; however, in Random Forest, 

the outcome is determined via the majority vote. 

4. LightGBM uses learning algorithms in a Gradient Boosting Decision Tree (GBDT) framework by 

utilizing GOSS (i.e., Gradient-based One-Side Sampling helps eliminate some of the data points while 

maintaining the prediction accuracy at a certain level) and EFB (i.e., Exclusive Feature Bundling helps 

reduce the computational burden) [17]. In the case of extensive data sets, LightGBM produces 

promising results. 

5. LSTM (Long Short-Term Memory) generates the best outcomes by employing time series data and 

eliminating gradient problems [18]. In this approach, advanced RNN (i.e., recurrent neural network) 

stores memory states, which helps obtain information that enables us to understand the possible 

scenarios that will be realized in the next period. 

 

The model-based optimization approach requires a particular forecast error distribution whose mean and 

standard deviation are estimated using past prediction errors [2]. We obtain these parameters in the 

estimation stage. To find the best quantity provided in Equation (3), the cost structure (i.e., ℎ and 𝑏) and 

the forecast error distribution must be known. As we have presented in Section 4, the seasonal demands, 

except for autumn, comply with the requirements for the normal distribution, so we adopt normal 

distribution. However, in most business scenarios, the actual demand distribution has not been regularly 

predicted [19]. Using data-driven approaches attenuates the multiplier effect of a prediction error arising 

at the demand forecasting stage that may negatively impact the scale of a mistake to be made in the 

optimization phase; so leading to better results. 

 

Now, we turn our attention to explaining how we adopt the sample average approximation (SAA) method, 

a robust data-driven technique with uncertainty [20], to the problem proposed in this study. The SAA is 

generally employed to solve stochastic optimization problems. In general, it is a promising approach for 

the two problem settings: 1) the actual demand distribution is known but computationally cumbersome, 

and 2) the actual demand distribution is unknown and computational evaluation is easy, like the problem 

we study, newsvendor, [4]. In SAA, empirical data replaces the demand distribution assumptions. In our 

case, using historical data as presented in the study of [4], we can express the problem as follows: 

 

min
𝑞≥0

𝑅̂(𝑞; 𝑫(𝑛)) =
1

𝑛
∑[𝑏(𝐷𝑖 − 𝑞)+ + ℎ(𝑞 − 𝐷𝑖)+],

𝑛

𝑖=1

 (4) 

 

where the notation ^ indicates quantities are estimated from data. 𝑅̂(𝑞; 𝑫(𝑛)) denotes the total expected 
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cost of the firm when the samples of the demand are drawn from the empirical distribution. 𝑫(𝑛) is the 

historical demand with 𝑛 representing the total independent samples of the demand and 𝐷𝑖 indicating the 

𝑖𝑡ℎ demand point, 𝑞 is the forecasted quantity, 𝑏 is the unit-understocking cost, and ℎ is the unit-

overstocking cost (interested readers on the SAA approach are referred to [21]). 

 

In Equation (4), obtaining close to the optimal order quantity depends entirely on demand estimation and 

cost ratio, making forecasting accuracy an important element in choosing the efficient order quantity [22]. 

In SAA, to determine the optimal order quantity, we need to incorporate the service level quantile of the 

empirical demand distribution. If the demand distribution was assumed to own a certain structure, such as 

normal distribution with mean μ and standard deviation σ, the service level quantile could have been given 

by the following expression: inf {𝑦: 1 − 𝐹(𝑦, 𝜃) ≥
𝑏

𝑏+ℎ
}, where θ represents parameters of the normal 

distribution (i.e., μ and σ), and then adding this level to the mean forecast value would have given the 

optimal order quantity. When the true demand distribution (i.e., F) is unknown to the firm, the service 

quantile can be calculated using the demand data as follows: inf {𝑦: 1 − 𝐹̂(𝑦, 𝒙) ≥
𝑏

𝑏+ℎ
}, where F̂(∙) 

represents the empirical demand distribution and 𝐱 corresponds to the vector of demand features we have 

provided in Table 1; the summation of this level and the point forecast gives the optimal order quantity, 

as shown in the studies conducted by [2] and [8]. 

 

5.2. Integrated Approach 

 

This approach directly incorporates the forecasting model into the order quantity optimization stage [2]. 

As discussed in [22], machine learning techniques can be used to build learning platforms for estimation 

and optimization in operations problems like newsvendor. 

 

In the integrated approach, the optimal order quantity is estimated from the feature data by treating the 

optimal order quantity 𝑞∗ of the standard newsvendor model provided in Equation (3) defined in terms of 

the feature data x. [8] develops a linear programming model for this problem. [2] extends the approaches 

put forward in [8] by accommodating non-linear relationships. In line with the method proposed in [2], 

we predict the optimal order quantity from the feature data. The objective function we consider in the 

integrated approach can be given by: 

 

min
𝜙

1

𝑛
∑ [𝑏(𝐷𝑖 − 𝑞𝑖(𝜙, x𝑖))

+
+ ℎ(𝑞𝑖(𝜙, x𝑖) − 𝐷𝑖)+] ,

𝑛

𝑖=1

 (5) 

 

where 𝑞𝑖(𝜙, x𝑖) is the order quantity obtained by employing the machine learning method in period (or 

demand point) i, 𝑖 ∈ {1,2, … , 𝑛}, x𝑖 corresponds to the vector of the features, and 𝜙 represents the vector 

of parameters of the learning method, i.e., Linear, Artificial Neural Networks, and Decision Trees. Also, 

𝐷𝑖 indicates the 𝑖𝑡ℎ demand point, 𝑏 is the unit-understocking cost, and ℎ is the unit-overstocking cost.  

 

Following the approach proposed in [2], the optimization problem provided in Equation (5) can be 

reformulated as a non-linear mathematical model that aims to minimize the empirical total cost of 

understocking and overstocking. Solving the non-linear model, based on the empirical data, gives us the 

total cost-minimizing parameters for the learning method (i.e., 𝜙∗). After the training phase, the optimal 

order quantity for period 𝑖 corresponds to the quantile forecast with 𝑞𝑖
∗( 𝜙∗, x𝑖). 

 

6. RESULTS 

 

In this section, we first present results regarding the performances of the forecasting model and 

optimization approach. Then, we turn our attention to comparing the sequential and integrated approaches 

that form the base of this study.  

 

To analyze the impact of machine learning methods, we consider various conventional forecasting 

methods that serve as a benchmark in comparison. Because the number of observations we have is 
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relatively low, we consider 70% of the data as a train set and 30% as a test set. Then, we run all the methods 

and compare their performances on both sets. All the models are coded in Google Colab [23]. We employ 

two models with seven variables and ten variables, respectively, for linear regression (i.e., LinearReg7 

and LinearReg10), XgBoost (i.e., XgBoost7 and XgBoost10), Random Forest (i.e., RandomForest7 and 

RandomForest10) and LightGBM (i.e., LgbmDT7 and LgbmDT10) using the inputs generated by the best 

subset selection method. In these methods, the train and test sets are chosen randomly, and the same 

observations are used. Besides, to prevent overfitting, we use cross-validation to determine the number of 

leaves and learning rates in tree-based ensemble methods. 

 

In LSTM, 70% of the set is allocated to the train set, and the remaining portion is considered as the test 

set since the observations must be time series. Also, LSTM only takes tonnage data as the input parameter. 

On the other hand, in the ensemble method, which combines the existing models, we choose the method 

that yields the best result. Trying different combinations of machine learning methods, we seek to find the 

best possible ensemble model. Hence, from these attempts, we conclude that LightGBM and Random 

Forest models with seven variables achieve the best results. 

 

In the model-based approach (relying on normally distributed seasonal demand) and the data-based 

approach (employing the SAA method), overage and underage costs taken from the company and the 

forecasting results are used. Besides, we perform the integrated model using the QR approach. Then, we 

examine the total expected cost the firm incurs with each strategy. 

 

6.1. The Analysis of the Forecasting Methods 

 

To assess the forecasting methods, we use the following criteria: root mean squared error (RMSE), mean 

absolute percentage error (MAPE), and mean absolute error (MAE). Table 3 compares the performance 

of forecasting methods using RMSE, MAPE, and MAE. Table 3 shows that ML methods yield better 

results than conventional methods in estimating demand. 

 

Table 3. The comparison of forecasting methods 

 
Train Set Test Set 

Method RMSE* MAPE** MAE* RMSE* MAPE** MAE* 

Naive 156.84 0.39 91.76 169.51 0.35 108.72 

SNaive 161.34 0.4 95.03 181.09 0.38 117.39 

Median 160.64 0.35 112.51 173.07 0.41 124.76 

SMedian 116.14 0.33 72.45 152.34 0.38 115.87 

Moving Average 129.39 0.37 84.08 168.2 0.38 120.93 

LinearReg7 84.61 0.21 63.87 88.9 0.22 62.66 

XgBoost7 161.88 0.32 127.09 165.09 0.35 127.66 

RandomForest7 49.18 0.1 32.54 98.74 0.23 65.74 
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LgbmDT7 129.19 0.35 105.04 123.11 0.32 93.48 

LinearReg10 83.09 0.19 61.42 87.23 0.21 60.48 

XgBoost10 158.36 0.32 127.21 166.19 0.37 130.22 

RandomForest10 50.89 0.11 33.63 102.11 0.24 69.45 

LgbmDT10 129.19 0.35 105.04 123.11 0.32 93.48 

LSTM 148.35 0.32 97.33 149.85 0.38 111.2 

*scale-dependent error measure (RMSE and MAE allow comparing data sets on the same scale)  

**percentage-based error measure (MAPE, a scaled version of MAE, allows comparing data sets on different scales) 
 

In Table 3, Random Forest generates the results with minimum deviations (shown in bold font) on the 

train set. Furthermore, Linear regression achieves the results with minimum variations (shown in bold 

font) on the test set. The change in the methods that achieve the best results between train and test sets 

underpin that Random Forest overfits the test data. 

 

6.2. The Analysis of the Optimization Methods 

 

In the optimization stage, we consider seasonal normalization (S-Norm) as an additional model-based 

method to adopt varying seasonal demand distributions. The model-based method assumes the underlying 

demand structure to follow a normal distribution. Following the interview with the firm’s supply chain 

manager, the ratio of the overage cost to the underage cost (i.e., the critical fractile) is set to 1/3, and we 

set the service level (i.e., the proportion of demand that can be met from stock) to 0.75. 

 

Tables 4 and 5 present the cost performance of the proposed approaches for the target service level on the 

train and the test sets, respectively. Tables 4 and 5 report the percentage cost increase for each strategy 

relative to the benchmark case where the firm is assumed to know the demand structure. For instance, in 

Table 4, estimating demand using the Naive method and optimizing inventory level with S-Norm increases 

the firm's total cost by 44.92% as opposed to the total cost if the firm had perfectly observed the demand 

and placed its orders accordingly. The larger the percentage value is, the greater the distance a method has 

from the optimal quantity. 
 

Table 4. Performance Analysis: Train Set 

  Optimization Methods 

Forecasting Methods 

∆ Cost  

S-Norm  

(Model-based) 

∆ Cost  

SAA 

(Sequential) 

∆ Cost  

QR 

(Integrated) 

Naive 44,92% 50,45% 42,48% 

SNaive 42,29% 49,98% 45,48% 

Median 74,56% 63,53% 62,84% 

SMedian 40,94% 38,88% 35,77% 

Moving Average 40,24% 45,99% 37,04% 

LinearReg7 31,14% 36,85% 30,89% 

XgBoost7 83,18% 47,09% 26,75% 

RandomForest7 25,07% 19,59% 15,13% 
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LgbmDT7 59,61% 60,61% 32,76% 

LSTM 59,65% 48,69% 41,42% 

LinearReg10 30,99% 35,44% 30,30% 

XgBoost10 82,38% 44,84% 25,38% 

RandomForest10 25,19% 20,00% 15,37% 

LgbmDT10 59,61% 60,61% 32,76% 

Average 49,98% 44,47% 33,88% 

 

In Table 4, we observe that, on average, the integrated approach brings about a cost 33,88% higher than the 

benchmark case, followed by the sequential approach with a cost increase of around 44,47% and the model-

based approach with 49,98%. Based on the training set, the best-performing strategy is the integrated 

approach, leading to 31,2% (47,5%) cost reduction compared to the sequential (model-based) strategy. 

Besides, total cost decreases in all models when the RandomForest7 is employed at the forecasting stage. 

 

In Table 4, the difference between the average ∆Cost S-Norm and average ∆Cost SAA gives the economic 

value of operationalizing data-driven mechanisms, amounting to a cost reduction of 11,02% (= 1-
44,47%

49,98%
). 

Also, the difference between the average ∆Cost SAA and average ∆Cost QR identifies the economic impact 

of employing approaches that integrate estimation and optimization phases, corresponding to a cost 

reduction of 23,81% (= 1-
33,88%

44,47%
). 

 

Table 5. Performance Analysis: Test Set 

  Optimization Methods 

Estimation Methods 
∆ Cost  
S-Norm  

(Model-based) 

∆ Cost  
SAA 

(Sequential) 

∆ Cost  
QR 

(Integrated) 

Naive 49,22% 62,21% 54,62% 

SNaive 55,57% 62,05% 56,91% 

Median 78,16% 71,73% 79,91% 

SMedian 58,82% 58,40% 59,43% 

Moving Average 61,65% 68,20% 62,77% 

LinearReg7 30,36% 37,76% 30,83% 

XgBoost7 91,66% 77,20% 46,76% 

RandomForest7 36,26% 40,53% 37,36% 

LgbmDT7 52,44% 52,53% 57,31% 

LSTM 59,15% 63,97% 64,60% 

LinearReg10 29,53% 37,83% 29,11% 

XgBoost10 93,25% 56,69% 46,48% 

RandomForest10 36,22% 44,14% 38,77% 

LgbmDT10 52,44% 52,53% 57,31% 

Average 56,05% 56,13% 51,58% 

 

Table 5 reports that, on the test set, deviations of the results obtained by all three methods from the 

benchmark case increase. The integrated approach yields solutions that generate an average total cost 

51,58% higher than the benchmark case, still being the best-performing policy among the other strategies. 

The sequential approach brings about a cost increase of around 56,13%, and the model-based approach 

increases the cost by 56,05%. Based on the test set, each policy reaches its best with different forecasting 

methods. The model-based approach yields the best result with the LinearReg10 estimation method. The 
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integrated approach, too, produces the best results with the LinearReg10 method. Employing the 

LinearReg7 forecasting method leads to the sequential approach to achieve its best result.  

 

In Table 5, the results the integrated approach puts forward bring about, on average, a cost of 8,11% (=1-
51,58%

56,13%
) less than that of the sequential approach and a cost of 7,98% (=1-

51,58%

56,05%
) less than that of the model-

based approach. It is also noteworthy that the averages of the results the model-based and the sequential 

approaches produce are almost equal, representing a case where the sequential approach increases the 

impact of the error (as stated in [2] and [8]), leading to the marginal effect of data-driven operationalization 

being at its minimum.  
 

On the test set, employing LinearReg10 and QR in the estimation and optimization stages, respectively, 

yields the firm a 29.11% cost deviation from the optimal level. In machine learning methods, explanatory 

variables increase prediction quality, implying that forecast performance significantly impacts total cost. 

For example, the results achieved via XgBoost are far from the optimum level, almost doubling the cost. 

On the other hand, similar to what we conclude in the estimation stage, Random Forest performs better 

on the train set; however, it is surpassed by linear regression on the same set, showing that tree-based 

methods perform worse than linear regression. 

 

In summary, the results reported in Tables 4 and 5 emphasize the operational value the integrated approach 

brings to the firm. On average, the joint consideration of estimation and optimization phases engenders 

23,81% and 8,11% cost improvement on the train and test sets, respectively. On the other hand, when we 

draw our attention to the marginal value of using data-driven mechanisms, we observe that, as discussed 

in [2] and [8], the sequential approach increases the impact of the error as opposed to the integrated 

approach: employing the sequential approach decreases the cost by 11,02% relative to the model-based 

scenario on the training set; whereas, it increases the cost too slightly by 0,14% on the test set.  

 

7. CONCLUSION 

 

This study considers the newsvendor problem with a single product in which the demand structure is 

estimated using learning algorithms. We propose two methods: i) predicting demand and determining the 

order quantity in sequence (i.e., sequential approach), and ii) the incorporation of estimation results with 

the optimization phase (i.e., integrated approach). We first use machine learning methods to estimate the 

demand and seasonal normalization and sample average approximation to optimize quantity sequentially. 

We then introduce integrated demand estimation and optimization based on machine learning and quantile 

regression.  

 

The insights that can be taken from this study can be given by: when the underlying demand distribution 

is unknown, machine learning methods perform better than traditional methods. Besides, uniting 

forecasting and optimization phases into one framework (such as QR) leads to more effective decisions 

compared to the approach in which the two stages are sequentially executed. In the forecasting stage, the 

performance of Random Forest and Linear Regression is 10% better than the results achieved via the best-

performing benchmark. In the optimization stage, we observe that the QR method yields solutions with 

8,11% and 7,98% less costs than the sequential and model-based methods, respectively. Moreover, we 

find that the demand forecasting method is the key to performance, which aligns with the study of [2]. 

 

Our use of machine learning methods gives us a great advantage. Including variables such as holidays and 

fulfillment rate in the model increases the prediction power. Comparing it with traditional methods, we 

can observe the effect more clearly. Among the machine learning methods used in the study, Linear 

regression and Random Forest are the approaches with the highest performance. In contrast, the 

performance of techniques such as Xgboost and LightGBM is insufficient. This is because Xgboost and 

LightGBM need more training data to reach a reliable level. In our study, we have 167 data points. 

 

Lastly, we point out future research directions. In this study, we partnered with a Turkish company, 

focusing on a single product. A direct line of future research is to cover all processes based on other 
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products. Second, this study can be extended to a case where the firm manages its operations in a finite 

horizon that includes multiple periods. Finally, working with different companies could be another 

research area, contributing to the generalizability of the insights we put forward in this study. 
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