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ABSTRACT The present study perturbs the fractional integral of a continuous function f defined on a real
compact interval, say (Iv f ) using a family of fractal functions (Iv f )α based on the scaling parameter α. To
elicit this phenomenon, a fractal operator is proposed in the space of continuous functions, an analogue to
the existing fractal interpolation operator which perturbs f giving rise to α-fractal function f α. In addition, the
composition of α-fractal function with the linear fractal function is discussed and the composition operation on
the fractal interpolation functions is extended to the case of differentiable fractal functions.
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INTRODUCTION

The launch of fractal interpolation function has initiated a new
theory of approximation concerning the naturally existing func-
tions with non-differentiable nature. Rooted from the remark of
Barnsley in (Barnsley 1986), Navascués has explored the approxi-
mation of continuous functions defined on a real closed interval by
a class of α-fractal functions, where α is the appropriately chosen
scaling parameter, in (Navascués 2005). Non-smooth analogue of
prescribed continuous function can be achieved with the choice
of non-differentiable base function. Further, Navascués has pio-
neered the fractal operator to associate each prescribed function
to its class of α-fractal functions. The theme of proposing a fractal
operator has fruitfully enabled the fractal theory to connect with
various mathematical fields not limited to operator theory. While
constructing α-fractal function, the base function choice is signifi-
cant since the fractal operator is dependent on the boundedness of
the base function. Literature survey acknowledges various interest-
ing discussions on α-fractal functions, for instance, the derivative
of α-fractal function is explored and its respective fractal operator
is studied in (Navascués and Sebastián 2006).

The Riemann-Liouville fractional integral of α-fractal function
has been discussed for the α-fractal functions with both constant
and variable scalings in (Priyanka and Gowrisankar 2021b). Fur-
ther, a fractional operator is defined to assign the continuous func-
tion to the fractional integral of its fractal version. For more works
on α-fractal functions, the readers are recommended to consult
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(Balasubramani et al. 2020; Akhtar et al. 2017; Banerjee et al. 2023).
While analysing fractals and fractal functions, the study of their
fractal dimension is an ever interesting topic. Falconer has dis-
cussed the dimension theory for the fractal interpolation functions
in (Falconer 2004). The dimensional analysis for the graphs of
α-fractal functions is investigated in (Akhtar et al. 2016). Beyond
the theoretical framework, fractal dimension has been estimated
for various physical phenomena. For more fascinating work on
the fractal dimension, the readers may visit (Banerjee et al. 2021;
Fortin et al. 1992; Sanjuán 2021; Çimen et al. 2020).

In recent times, fractional calculus has been receiving remark-
able attention among the fractal community. The Riemann-
Liouville (RL) fractional integral of affine fractal functions has
been investigated in (Pan 2014). The quadratic fractal function’s
fractional integral with constant and function scalings has been
discussed in (Gowrisankar and Prasad 2019). The fractional inte-
gral as well as the fractional derivative of different kinds of fractal
interpolation functions have been discussed by several authors (for
additional information refer, (Pan 2014; Gowrisankar and Prasad
2019; Ruan et al. 2009; Priyanka and Gowrisankar 2021a)). The
aforementioned results on α-fractal function and its fractional or-
der integral, naturally arises a question: Is it possible to generate
a class of fractal functions such that the fractional integral of a
continuous function is interpolated? To answer this question, the
present paper initiates the construction of self-referential functions
for the fractional integral of continuous functions.

The construction procedure follows Navascués’s α-fractal func-
tion in (Navascués and Sebastián 2006) and such a construction is
guaranteed with the continuity of fractional integral. In addition,
a fractal operator is defined to assign the fractional integral of a
continuous function to its fractal version. The boundedness of
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the fractional integral discussed in (Samko et al. 1993) instigates
to discuss the boundedness of the proposed operator. The base
function of the newly constructed fractal function, (i.e) the frac-
tional integral of base function of the α-fractal function, is chosen
appropriately to explicitly estimate the bound of the operator.

The recent works on fractal functions reported in (Navascués
et al. 2022; Massopust 2022b,a; Dai and Liu 2023) show the curiosity
of young researchers to develop more generalized and flexible
fractal interpolation functions. In (Priyanka and Gowrisankar
2021b), authors have demonstrated that the resultant functions
on the evaluation of the fractional integral of α-fractal functions
are again α-fractal functions obeying the end point conditions.
The work by Dai and Liu(Dai and Liu 2023) is also noticeable, in
which the composite fractal function is introduced along with the
discussion of its fractal dimension. In this direction, the present
paper investigates the composition of α-fractal function as well as
the composition of fractal spline. Further, it is observed that the
composition operator also renders new fractal functions like the
case of fractional integral operator, which is discussed in (Priyanka
and Gowrisankar 2021b). With this end, the paper directly enters
the discussion on the fractal perturbation of continuous functions
in the following section.

FRACTALIZATION OF CONTINUOUS FUNCTIONS

Let N ≥ 2 and NN denote the initial set of natural numbers of
length N. Consider the interpolation data set,

{(xj, yj) ∈ [x1, xN+1]× R : j ∈ NN+1}.

Let lj be the set of N homeomorphisms from I = [x1, xN+1] to
Ij = [xj, xj+1], j ∈ NN satisfying

|lj(s)− lj(t)| ≤ λj|s − t|, λj ∈ [0, 1),

lj(x1) = xj, lj(xN+1) = xj+1, j ∈ NN .

Define the maps Fj : X := I × R → R to be continuous in the first
argument and Lipschitz continuous in the second argument with
Lipschitz constant αj < 1 such that

Fj(x1, y1) = yj, Fj(xN+1, yN+1) = yj+1, j ∈ NN .

The space of continuous functions defined on the interval I reserves
the notation C(I). Let G = {h ∈ C(I) : h(x1) = y1, h(xN+1) =
yN+1}. For h1, h2 ∈ C(I), the metric δ, defined by δ(h1, h2) =
max{|h1(x)− h2(x)| : x ∈ I}, completes (G, δ). Further, in (Barns-
ley 1986), the Read-Bajrakteravic operator (RB), T is defined on
(G, δ) by

Th(x) = Fj(l−1
j (x), h(l−1

j (x)), j ∈ NN . (1)

The continuity properties of lj and Fj make easier to verify the
continuity of T as follows

δ(Tg1, Tg2) ≤ |α|∞δ(g1, g2), g1, g2 ∈ C(I)

where |α|∞ = max{|αj| : j ∈ NN} < 1 and α = {α1, α2, . . . , αN}.
The choice of αk makes the operator T contractive on the space
(G, δ). Hence, with the aid of Banach contraction principle, it
is concluded that T has a unique fixed point, say g, satisfying
g(xj) = yj, for all j ∈ NN+1 and from Eqn.(1), it follows that

g(x) = Fj(l−1
j (x), g(l−1

j (x)), j ∈ NN . (2)

Using the maps lj and Fj, define contractive transformations wj
from X to Ij × R as

wj(x, y) = (lj(x), Fj(x, y)), (x, y) ∈ X , j ∈ NN .

Thus, the finite collection of contractive maps wj together with the
complete metric space (X , d) forms a hyperbolic Iterated Function
System (IFS) and it is denoted by

{X ; wj(x, y) = (lj(x), f j(x, y)) : j ∈ NN}. (3)

Let H(X ) := {A ⊂ X : A ̸= ∅ and compact}. The Hausdorff
metric hd is defined on H(X ) by

hd(A, B) = max{d(A, B), d(B, A)},

where d(A, B) = supa∈A infb∈B{d(a, b)}, then the pair (H(X ), hd)
is a complete metric space whenever the metric space (X , d) is
complete. A Hutchinson-Barnsley operator W is defined as a self-
map on H(X ) by

W(C) =
N⋃

j=1
wj(C),

where C ∈ H(X ). By the Banach principle of fixed point, there
exists a unique Gg in H(X ) such that

Gg = lim
n→∞

W◦n(C),

where W◦n is the n-fold self-composition of W. Moreover, this
set Gg is the graph of the function g obeying the self-referential
equation (2). In this construction, the function g is called the
Fractal Interpolation Function (FIF) associated with the IFS (3). The
interested readers may consult (Barnsley 1986; Agathiyan et al.
2022; Gowrisankar and Uthayakumar 2016) for more details on
FIFs.

The following is the review of construction of α-fractal function
explored by Navacués in (Navascués 2005). Slightly deviating
from the theme of fractal interpolation function approximating the
given interpolation data sharing complex behaviour, Navacués has
generated a class of continuous functions with fractal properties to
approximate f ∈ C(I). For f ∈ C(I), let {(xj, f (xj)) : j ∈ NN+1}
be the interpolation points. A partition ∆ := {x1, x2, . . . , xN+1} is
considered such that x1 < x2 < · · · < xN+1 and the continuous
function b : I → R is taken as the base function equal to f only at
the endpoints x1 and xN+1. i.e.,

b(x1) = f (x1), b(xN+1) = f (xN+1), and b ̸= f . (4)

Let αj ∈ (−1, 1), j ∈ NN . Consider the maps

lj(x) = ajx + bj, Fj(x, f (x)) = αj f (x) + qj(x), j ∈ NN , (5)

where
qj(x) = f (lj(x))− αjb(x). (6)

Then, the attractor of the IFS (3) involving the maps in (5) and
(6) is the graph of the fractal interpolation function say, f α

∆,b corre-
sponding to f with respect to scale vector α, partition ∆ and base
function b. In addition, the function f α

∆,b is the fixed point of the
RB operator Tα defined on C f (I), where C f (I) is the space of con-
tinuous functions h obeying h(x1) = f (x1), h(xN+1) = f (xN+1).
The operator Tα is described as

Tαh(x) = f (x) + αj(h − b) ◦ l−1
j (x), x ∈ I, j ∈ NN .

Then, f α
∆,b obeys

f α
∆,b(x) = f (x) + αj( f α − b) ◦ l−1

j (x), x ∈ I, j ∈ NN . (7)

Definition 1. The function f α
∆,b := f α satisfying the self-referential

equation (7) is the fractal perturbation of f and it is known as the α-fractal
function corresponding to α, ∆ and b.
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According to Eqn.(7), f α interpolates f at each xj (i.e.) f α(xj) =
f (xj), for all j ∈ NN+1. Also, f α equals the prescribed function f
when all the scaling factors are taken to be zero. In addition, from
Eqn.(7), the uniform distance between f and f α can be deduced as
follows.

∥ f α − f ∥∞ ≤ |α|∞
1 − |α|∞

∥ f − b∥∞.

Let C[a, b] be equipped with sup norm

∥ f ∥∞ = max{| f (x)| : x ∈ [a, b]}.

Consider the linearly dependent base function b on f , b = L f ,
where L : C[a, b] → C[a, b] is a linear operator and bounded, its
operator norm is given by

∥L∥ := sup{∥L f ∥∞ : ∥ f ∥∞ ≤ 1}

and L f (x1) = x1, L f (xN+1) = xN+1 with L ̸= Identity.

Remark 1. The present study proceeds with L f = f ◦ c, where c
is an increasing as well as continuous function such that c(x1) =
x1, c(xN+1) = xN+1 and c ̸= Identity. For this particular choice
of b = f ◦ c, ∥b∥∞ = ∥L f ∥∞ = ∥ f ∥∞ with operator norm ∥L∥ = 1.

Lemma 1. (Navascués 2010) For any f ∈ C(I) and b = L f , the
following inequality holds

∥ f α − f ∥∞ ≤ |α|∞∥Id − L∥∞

1 − |α|∞
∥ f ∥∞,

where Id is the identity operator.

Note 1. If L f = f ◦ c, the inequality () becomes

∥ f α − f ∥∞ ≤ 2|α|∞
1 − |α|∞

∥ f ∥∞.

In (Navascués 2005), a fractal interpolation operator F α :
C(I) → C(I) is introduced to fractalize each continuous function
as

F α( f ) = f α, f ∈ C(I).

Theorem 1. (Navascués 2010) For any bounded and linear operator L
with sup norm, the following holds

∥F α( f )∥∞ ≤
(

1 +
|α|∞∥Id − L∥∞

1 − |α|∞

)
∥ f ∥∞.

In analogue to the above discussed operator, various fractal
operators have been proposed to the fractalize the given contin-
uous functions, see for instance (Navascués and Sebastián 2006;
Priyanka and Gowrisankar 2021b).

FRACTAL PERTURBATION OF FRACTIONAL INTEGRAL
OF A CONTINUOUS FUNCTION

In order to define a new class of α-fractal functions to approximate
the fractional integral of f ∈ C(I), this section commences with
the definition of RL fractional integral of a continuous function.

Definition 2. (Samko et al. 1993) Let f be the integrable function on
[a, b] ⊂ R and v > 0 be a real number. Then, the Riemann-Liouville
(RL) fractional integral of f is defined by

(Iv f )(t) =
1

Γ(v)

∫ t

a
(t − s)v−1 f (s)ds, (t > a),

here the notation Γ(·) denotes the Gamma function.

In (Samko et al. 1993), it is proved that the fractional integral
operator (Iv f ) is bounded in Lp space with 1 ≤ p ≤ ∞ and it is
precisely provided in the following lemma.

Lemma 2. For v > 0, the RL fractional integral operator is bounded
such that

∥Iv f ∥ ≤ K∥ f ∥∞, where K =
xN+1 − x1

vΓ(v)
.

Using the above lemma, the uniform distance between the germ
function f and its fractional integral Iv f can be estimated as fol-
lows.

Lemma 3. The distance between f and Iv f with respect to the uniform
norm is given by

∥ f − Iv f ∥∞ ≤ (1 +K)∥ f ∥∞,

where K = xN+1−x1
vΓ(v) .

Proof. By the definition of uniform norm,

∥ f − Iv f ∥∞ ≤ ∥ f ∥∞ + ∥Iv f ∥∞.

From Lemma 2, it follows that ∥Iv f ∥∞ ≤ K∥ f ∥∞, where K =
xN+1−x1

vΓ(v) . Then,

∥ f − Iv f ∥∞ ≤ ∥ f ∥∞ +K∥ f ∥∞

≤ (1 +K)∥ f ∥∞.

The following lemma ensures the continuity of the fractional
order integral Iv f which is proved by Pan in reference (Pan 2014).

Lemma 4. Let v > 0 and f ∈ C[a, b]. Then Iv f ∈ C[a, b].

From Lemma 4, it is straight forward to define a family of fractal
functions to approximate Iv f .

Let {xj, Iv f (xj)} be the the interpolation data with partition
∆ and scale vector α. To define a new family of self-referential
functions, consider the base function as the fractional integral of b,
expressed by

(Ivb)(t) =
1

Γ(v)

∫ x

x1

(t − s)v−1b(s)ds,

such that

(Ivb)(x1) = (Iv f )(x1),

(Ivb)(xN+1) = (Iv f )(xN+1)

and Ivb ̸= Iv f . In correspondence with the new continuous
functions (Iv f ) and (Ivb), the maps defined in (5) becomes,

lj(x) = ajx+ bj, Fj(x, y) = αjy+(Iv f )lj(x)− αj(Ivb)(x), j ∈ NN .
(8)

The attractor of the IFS with the maps in (8) is the graph of the
new kind of α-fractal function say, (Iv f )α associated with (Iv f ).
It can be verified that (Iv f )α(xj) = (Iv f )(xj) for all j ∈ NN+1.
Besides, (Iv f )α is a unique fixed point of the RB operator Tα with
the change of arguments such that

(Iv f )α(x) = Iv f (x)+ αj((Iv f )α −Ivb) ◦ l−1
j (x)), x ∈ I, j ∈ NN .

The function (Iv f )α is the α-fractal function of the RL fractional
integral of f ∈ C(I) approximating (Iv f ) with respect to base
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function (Ivb), partition ∆ and scaling parameter α. With an aim
to estimate the error, now consider the mapping

T :R × C(I) → C(I)
(α, Iv f ) → Tα(Iv f )

where R = [0, t]× [0, t]× [0, t]× · · · × [0, t] ⊂ RN , 0 ≤ t < 1, t is
fixed. For x ∈ Ij, define

Tα(Iv f )(x) = F
αj

j (l−1
j (x), (Iv f ) ◦ l−1

j (x))

= αj(Iv f ) ◦ l−1
j (x) + q

αj

j ◦ l−1
j (x)

with
q

αj

j (x) = (Iv f ) ◦ lj(x)− αj(Ivb)(x).

The uniform distance between the functions (Iv f ) and (Iv f )α is
estimated in the following theorem.

Theorem 2. If b is a bounded linear operator, then the below inequality
holds

∥(Iv f )α − (Iv f )∥∞ ≤ 2K|α|∞
1 − |α|∞

∥ f ∥∞,

where K = xN+1−x1
vΓ(v) .

Proof. Let (Iv f ) ∈ C f (I). Then for each x ∈ Ij,

|Tα(Iv f )(x)−Tβ(Iv f )(x)|

= |αj(Iv f ) ◦ l−1
j (x) + q

αj

j ◦ l−1
j (x)− β j(Iv f ) ◦ l−1

j (x)

− q
β j

j ◦ l−1
j (x)|

≤ |αj(Iv f ) ◦ l−1
j (x)− β j(Iv f ) ◦ l−1

j (x)|

+ |qαj

j ◦ l−1
j (x)− q

β j

j ◦ l−1
j (x)|

From Eqn.(), the second term is rewritten as

∥Tα(Iv f )−Tβ(Iv f )∥∞

≤ |αj − β j|∥Iv f ∥∞ + |(Iv f ) ◦ lj(x)− αj(Ivb)(x) (9)

− (Iv f ) ◦ lj(x) + β j(Ivb)(x)|
≤ |α − β|∞∥Iv f ∥∞ + |αj − β j|∥Ivb∥∞

≤ 2|α − β|∞∥Iv f ∥∞. (10)

Meanwhile, (Iv f ) is the fixed point of Tα corresponding to
q

αj

j (x) = (Iv f ) ◦ lj(x)− αj(Ivb)(x). Then,

∥(Iv f )α − (Iv f )β∥∞ = ∥Tα(Iv f )α −Tα(Iv f )β +Tα(Iv f )β

−Tβ(Iv f )β∥∞

Since Tα is contractive with contractivity factor α and applying the
inequality (9),

∥(Iv f )α − (Iv f )β∥∞ ≤ |α|∞∥(Iv f )α − (Iv f )β∥∞ + 2|α
− β|∞∥(Iv f )β∥∞

=
2|α − β|∞∥(Iv f )β∥∞

1 − |α|∞
.

Setting β = 0 ∈ RN and using the property (Iv f )0 = (Iv f ),
observe that

∥(Iv f )α − (Iv f )∥∞ =
2|α|∞∥(Iv f )∥∞

1 − |α|∞

=
2K|α|∞
1 − |α|∞

∥ f ∥∞.

The above theorem is a prelude to discuss the boundedness of
the fractal operator F α,v which is explored in the following section.

FRACTAL OPERATOR ASSOCIATED WITH THE FRAC-
TIONAL INTEGRAL

This section proposes a fractal operator to send each continu-
ous function Iv f to its fractal version (Iv f )α where the function
(Iv f )α is the α-fractal function of the RL fractional integral of a
prescribed continuous function f discussed in the previous section.
To be concise, for a fixed scale vector α and a fixed fractional order
v > 0, there exists an operator

F α,v : C(I) → C(I)
Iv f 7−→ (Iv f )α.

The linearity of b assures the linearity of F α,v. For fixed scalars λ
and µ, it can be verified that

F α,v(λIv f + µIvg) = λF α,v(Iv f ) + µF α,v(Ivg).

Theorem 3. F α,v is bounded on C(I). Moreover,

∥F α,v(Iv f )∥∞ ≤
(

1 + |α|∞
1 − |α|∞

)
K∥ f ∥∞,

where K = xN+1−x1
vΓ(v) .

Proof. From Theorem 2, one has

∥(Iv f )α − (Iv f )∥∞ ≤ 2K|α|∞
1 − |α|∞

∥ f ∥∞,

with K = xN+1−x1
vΓ(v) . Then,

∥(Iv f )α∥∞ − ∥(Iv f )∥∞ ≤ 2K|α|∞
1 − |α|∞

∥ f ∥∞

∥(Iv f )α∥∞ ≤ ∥(Iv f )∥∞ +
2K|α|∞
1 − |α|∞

∥ f ∥∞

≤ K∥ f ∥∞ +
2K|α|∞
1 − |α|∞

∥ f ∥∞,

which provides the required bound of the operator F α,v,

∥F α,v(Iv f )∥∞ ≤
(

1 +
2|α|∞

1 − |α|∞

)
K∥ f ∥∞

=

(
1 + |α|∞
1 − |α|∞

)
K∥ f ∥∞.

Hence, the required inequality.

Next, the bound for the perturbation error between f and
(Iv f )α is explored in the following theorem.

Theorem 4. For any f ∈ C(I), the following inequality

∥ f − (Iv f )α∥∞ ≤
(

1 +K+
2K|α|∞
1 − |α|∞

)
∥ f ∥∞,

holds with K = xN+1−x1
vΓ(v) .
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Proof. One can have

∥ f − (Iv f )α∥∞ = ∥ f − Iv f + Iv f − (Iv f )α∥∞

≤ ∥ f − Iv f ∥∞ + ∥Iv f − (Iv f )α∥∞.

Using Lemma 4 and Theorem 2, the above inequality is reduced to

∥ f − (Iv f )α∥∞ ≤ (1 +K)∥ f ∥∞ +
2K|α|∞
1 − |α|∞

∥ f ∥∞.

Thus, the required result follows immediately.

Remark 2. In (Priyanka and Gowrisankar 2021b), a fractal opera-
tor F v has been proposed to associate the given function f ∈ C(I) to
the Riemann-Liouville fractional integral of its fractal version namely,
Iv( f α) and discussed some of its elementary properties. Whereas, here
the fractal operator F α,v is defined on C(I) to associate the fractional
integral of f ∈ C(I) to its fractal version, namely (Iv f )α.

COMPOSITE FRACTAL FUNCTIONS

This section discusses the composition of fractal functions and
demonstrate that the compositions are again fractal functions.

Composition of α-fractal Function
Let J = [y1, yN+1] ⊂ R and l1,j : I → Ij be the homeomorphic
maps defined by l1,j(x) = a1,jx + b1,j satisfying

d(l1,j(a), l1,j(b)) ≤ r1d(a, b), 0 ≤ r1 < 1, a, b ∈ I,

where d is a Euclidean metric or its equivalent metric and

l1,j(x1) = xj, l1,j(xN+1) = xj+1, j ∈ NN . (11)

Let K1 := I × J. Define the continuous functions F1,j : K1 → R to
be contraction with respect to second variable satisfying

F1,j(x1, y1) = yj, F1,j(xN+1, yN+1) = yj+1, j ∈ NN , (12)

The general form of the maps F1,j is given by

F1,j(x, y) = αjy + qj(x),

where αj = (α1, α2, . . . , αN+1) is the free parameter chosen in the
interval [0, 1), which scales the graph vertically and referred as
vertical scaling factor, qj is a suitable continuous function satisfying

qj(x1) = yj − αjy1, qj(xN+1) = yj+1 − αjyN+1.

The system {K1; (l1,i, F1,j) : j ∈ NN} is a IFS and its attractor G f is
the graph of fractal interpolation function h : I → R interpolating
the data set {(xj, yj) ∈ I × R : j ∈ NN+1} such that h(xj) = yj, for
j ∈ NN+1. In (Dai and Liu 2023), the functional equation of h is
provided by

h(x) = F1,j(l−1
1,j (x), F(l−1

1,j (x))),

(or)
h(l1,j(x)) = αjh(x) + qj(x), x ∈ I, j ∈ NN .

On the other hand, if the data set {(xj, f (xj)) : j ∈ NN+1} is given
to approximate, where f is a continuous function, the following
choice of qj(x) = f ◦ l1,j(x)− αjb(x) generates an α-fractal function
satisfying

f α(l1,j(x)) = αj f α(x) + f ◦ l1,j(x)− αjb(x)

and f α(xj) = f (xj), ∀ j ∈ NN+1, here b is the base function obey-
ing the conditions provided in (4). Let N = [ f α(x1), f α(xN+1)]
and Nj = [ f α(xj), f α(xj+1)], j ∈ NN . Now, to interpolate the

data set {( f α(xj), zj) : j ∈ NN+1}, zj ∈ R for all j ∈ NN+1, a
new fractal interpolation function h : N → R is constructed with
the maps m1,j and G1,j defined below which respectively obey the
conditions of l1,j and F1,j,

m1,j(x) = c1,j(x) + d1,j,

G1,j( f α(x), z) = αjz + pj( f α(x)), j ∈ NN ,

where pj is a linear polynomial of x satisfying pj( f α(x0)) =
zj, pj( f α(xN+1)) = zj+1. Note that the domain of h agrees with
f α(I), thus it is possible to composite g with f α. Similar to the
composite fractal interpolation function discussed in (Dai and Liu
2023), the composite α-fractal function h( f α) can be defined such that
h( f α(xj)) = zj and its associated functional equation is expressed
by

h( f α(x)) = G1,j(m−1
1,j ( f α(x)), h(m−1

1,j ( f α(x)))), f α(x) ∈ Nj, j ∈ NN .

From the above equation, it is seen that the composite func-
tion h( f α) interpolates {(xj, zj) : j ∈ NN+1}. For instance, con-
sider the α-fractal function f α

1 corresponding to the germ func-
tion f1(x) = x2 + 2x and base function b1(x) = 3x with α =
(0.5,−0.5, 0.5). Its graphical illustration is provided in Fig. 1(a).
The linear fractal interpolation function h1 corresponding to the
data set {( f α

1 (xj), zj) = {(0, 0), (0.25, 0.2), (0.56, 0.5), (1, 0.25)}}
is represented in Fig. 1(b). The composite α-fractal function
h1( f α

1 ) is provided in Fig. 1(c). Considering the height func-
tion f2(x) = 2x3 and base function b2(x) = x with the scal-
ings α = (0.7,−0.7, 0.7). The graph of another α-fractal func-
tion f α

2 approximating f2 is provided in Fig. 2(a). The data set
{( f α

2 (xj), zj) = {(0, 0), (0.25, 0.2), (0.84, 0.5), (2, 0.25)}} is approx-
imated using the linear FIF h2 and it is graphically illustrated in
Fig. 2(b). Fig. 2(c) represents the graph of the composite α-fractal
function h2( f α

2 ).

Composition of Fractal Spline
In (Barnsley and Harrington 1989), Barnsely has extended the con-
tinuity of qj to be differentiable in order to achieve differentiable
fractal functions as narrated below. Consider l1,j and F1,j as defined
above satisfying Eqns.(11) and (12). For n > 0, suppose

|αj| < an
j ,

and qj ∈ Cn(I), then

F1,jk(x, y) =
αjy + q(k)j (x)

ak
j

,

y1,k =
qk

1(x1)

ak
1 − α1

, yN+1,k =
qk

n−1(xN+1)

ak
N − αN

, for k = 1, 2, . . . , n.

Moreover, if

F1,(j−1)k(xN+1, yN+1,k) = F1,jk(x1, y1,k), j = 2, 3, . . . , N, k = 1, 2, . . . , n,

then the IFS {K1; (l1,j, F1,j) : j ∈ NN} generates h ∈ Ck(I) and h(k)

is the FIF generated by the IFS

{K1; (l1,j, F1,jk) : j ∈ NN , k = 1, 2, . . . , n}. (13)
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Figure 1 Graphical illustration of (a) α-fractal function f α
1 , (b) linear FIF h1 and (c) its composition h1( f α
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Figure 2 Graphical illustration of (a) α-fractal function f α
2 , (b) linear FIF h2 and (c) its composition h2( f α
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Remark 3. In addition to the differentiability of qj, for the existence of a
differentiable fractal interpolation function, it is important to make sure
the scaling parameter αj obeys Eqn.(). Then, for each k = 1, 2, . . . , n,
the fractal spline h(k) : I → R interpolates a new data set {(xj, yjk) ∈
I × R : j ∈ NN+1} and its functional equation is given by

h(k)(x) = F1,jk(l
−1
1,jk(x), h(k)(l−1

1,jk(x))),

(or)

h(k)(l1,j(x)) =
1
ak

j
(αjy + q(k)j (x)), x ∈ I, j ∈ NN , k = 1, 2, . . . , n.

(14)

For each k = 1, 2, . . . , n, let {(yjk, zjk) : j ∈ NN+1} be the new
set of interpolation data, where y1,k < y2,k < . . . < yN+1,k is a
partition of J1 = [y1,k, yN+1,k] and zjk ∈ R1 = [z1,k, zN+1,k] ⊂ R.
Let J1j = [yj,k, yj+1,k], R1j = [zj,k, zj+1,k] for j ∈ NN . To interpolate
the data set

{(yjk, zjk) ∈ J1 × R1 : j ∈ NN+1}, for each k = 1, 2, . . . , n,

an another fractal interpolation function g is constructed similar to
the FIF h. Set K2 = J1 × R1. Let l2,jk : J1 → Jj,k and F2,jk : K2 → R,
for each k = 1, 2, . . . , n, obeying

l2,jk = a2,jky + b2,jk,

l2,jk(y1,k) = yj,k, l2,jk(yN+1,k) = yj+1,k,

d(F2,jk(s, t1), F2,jk(s, t2)) ≤ r2,jd(t1, t2), 0 ≤ r2 < 1, s ∈ J1, t1, t2 ∈ R1,

F2,jk(y1,k, z1,k) = zj,k, F2,jk(yN+1,k, zN+1,k) = zj+1,k, j ∈ NN .

The attractor Gg of the hyperbolic IFS

{K2; (l2,jk, F2,jk) : j ∈ NN} (15)

is the graph of g : J1 → R such that g(yjk) = zjk, for j ∈ NN+1
and for each k = 1, 2, . . . , n. Note that

g(y) = F2,jk(l
−1
2,jk(y), g(l−1

2,jk(y))), y ∈ J1, j ∈ NN , k = 1, 2, . . . , n
(16)

is the functional equation of FIF g.
Since J1 ⊆ h(k)(I), assuming h(k)(x) ∈ J1, for x ∈ I, ensures

the continuity of g(h(k)(x)) on I. An IFS is constructed to illustrate
the composition of fractal function and fractal spline g(h(k)) is
again a fractal interpolation function interpolating the data set
{(xj, zjk) ∈ I × R : j ∈ NN+1, k = 1, 2, . . . , n}. Let h(k)(I) = J1.
From Eqn.(16),

g(h(k)(x)) = F2,jk(l
−1
2,jk(h

(k)(x)), g(l−1
2,jk(h

(k)(x)))), h(k)(x) ∈ J1j,

for j ∈ NN , k = 1, 2, . . . , n. Let lj : I → Ij be the function agreeing
with l1,j(x) for all x ∈ I. And Fjk : K → R be the continuous maps
defined by

Fjk(x, z) = Fjk(l
−1
j (x1), g∗(h(k)(l−1

j (x1))))

= F2,jk(l
−1
2,jk(h

(k)(x1)), g∗(l−1
2,jk(h

(k)(x1)))), j ∈ NN , (17)

where x1 ∈ Ij, g∗ ∈ C1 = {g(y) + t, z1,k − zN+1,k ≤ t ≤ zN+1,k −
z1,k, y ∈ J1}, k = 1, 2, . . . , n, the set of continuous translation maps
and h(h(k)(l−1

j (x1))) = z.
For all x ∈ I, z, z∗ ∈ R1, there exists x∗ ∈ Ij, h1, h2 ∈ C such

that

l−1
j (x∗) = x, h1(h(k)(l−1

j (x∗))) = z, h2(h(k)(l−1
j (x∗))) = z∗.

Then

d(Fjk(x, z),Fjk(x, z∗))

=d(Fjk(l
−1
j (x∗)), h1(h(k)(l−1

j (x∗))), Fjk(l
−1
j (x∗)),

h2(h(k)(l−1
j (x∗))))

=d(F2,jk(l
−1
2,jk(h

(k)(x∗)), h1(l−1
2,jk(h

(k)(x∗)))),

F2,jk(l
−1
2,jk(h

(k)(x∗)), h2(l−1
2,jk(h

(k)(x∗))))).

From the contractivity of F2,jk with respect to second argument, it
follows that

d(Fjk(x, z), Fjk(x, z∗)) ≤ r2,jd(h1(l−1
2,jk(h

(k)(x∗))), h2(l−1
2,jk(h

(k)(x∗))))

≤ r2d(z, z∗),

where r2 = max{r2,j : j ∈ NN}. Therefore, the map Fjk satisfies
the contractivity condition with contraction ratio r2. Now, it is
necessary to verify the join-up conditions. From Eqn.(17), for
h(k)(xj) = yjk ∈ Jjk,

Fjk(x1, z1) = Fjk(l
−1
j (xj), g(h(k)(l−1

j (xj))))

= F2,jk(l
−1
2,jk(h

(k)(xj)), g(l−1
2,jk(h

(k)(xj))))

= F2,jk(y1k, z1k)

= zjk.

Meanwhile, for h(k)(xj+1) = y(j+1)k ∈ J(j+1)k,

Fjk(xN+1, zN+1) = Fjk(l
−1
j (xj+1), g(h(k)(l−1

j (xj+1))))

= F2,jk(l
−1
2,jk(h

(k)(xj+1)), g(l−1
2,jk(h

(k)(xj+1))))

= F2,jk(y(N+1)k, z(N+1)k)

= z(j+1)k.

The above contractivity maps and the join-up conditions determine
an IFS

{I × R; (lj, Fjk) : j ∈ NN , k = 1, 2, . . . , n} (18)

which corresponds to the composite fractal interpolation function
g(h(k)).

Theorem 5. Let h(k) be the differentiable fractal function generated
by the IFS (13). Then the IFS defined in (18) determines a FIF g(h(k))
satisfying

g(h(k)(xj)) = zjk, for j ∈ NN , k = 1, 2, . . . , n.

Proof. Let h∗ be the FIF generated by the IFS (18) such that

h∗(x) = Fjk(l
−1
j (x), h∗(l−1

j (x)), x ∈ Ij.

From (),

g(h(k)(lj(x)) = F2,jk(l
−1
2,jk(h

(k)(lj(x))), g(l−1
2,jk(h

(k)(lj(x))))).

Meanwhile, from (17),

g(h(k)(lj(x))) = F2,jk(l2,jk(h
(k)(x1)), g(l−1

2,jk(h
(k)(x)))).

Uniqueness of FIF yields

h∗(x) = g(h(k)(x))

such that g(h(k)(xj)) = zjk, j ∈ NN , k = 1, 2, . . . , n.
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Remark 4. Theorem 5 has illustrated that composite of fractal spline with
a non-differentiable fractal function provided a fractal function of non-
differentiable nature. Similar to this construction, one can generate the
composite α-fractal spline and explore its corresponding fractal operator.

Remark 5. Encompassing the recent trend of fractional calculus, one can
investigate the fractional integral and fractional derivative of composite
fractal functions as well as verify for the resultant functions to be again
attractors of new IFS.

CONCLUSION

As the fractional integral of a continuous function (Iv f ) enjoys the
continuity, a new family of fractal functions (Iv f )α is generated
in the present paper. In this regard, a fractal operator is also pro-

posed and its bound is estimated as
(

1 + 2|α|∞
1−|α|∞

)
K∥ f ∥∞, where

K = xN+1−x1
vΓ(v) , with the proper choice of bounded linear base func-

tion. In addition, the composition of α-fractal function is discussed.
The concept of composition operation is studied to the case of dif-
ferentiable fractal function h(k). The composition of differentiable
fractal function h(k) with a non-differentiable fractal function g
yielded a non-differentiable fractal function g(h(k)) satisfying the
necessary end point conditions. The composite fractal functions
can be employed for approximating complex real data generated
from multiple functions. For instance, in engineering the compos-
ite functions can establish a concrete relationship between different
physical quantities, especially in unit conversions.

Availability of data and material
Not applicable.

Conflicts of interest
The author declares that there is no conflict of interest regarding
the publication of this paper.

Ethical standard
The author has no relevant financial or non-financial interests to
disclose.

LITERATURE CITED

Agathiyan, A., A. Gowrisankar, and T. Priyanka, 2022 Construc-
tion of new fractal interpolation functions through integration
method. Results in Mathematics 77: 122.

Akhtar, M. N., M. Prasad, and M. Navascués, 2016 Box dimensions
of α-fractal functions. Fractals 24: 1650037.

Akhtar, M. N., M. Prasad, and M. Navascués, 2017 Box dimension
of α-fractal function with variable scaling factors in subintervals.
Chaos, Solitons & Fractals 103: 440–449.

Balasubramani, N., M. Prasad, and S. Natesan, 2020 Shape preserv-
ing α-fractal rational cubic splines. Calcolo 57: 21.

Banerjee, A., M. N. Akhtar, and M. Navascués, 2023 Local α-fractal
interpolation function. The European Physical Journal Special
Topics pp. 1–8.

Banerjee, S., D. Easwaramoorthy, and A. Gowrisankar, 2021 Fractal
Functions, Dimensions and Signal Analysis. Springer, Cham.

Barnsley, M., 1986 Fractal functions and interpolation. Constructive
Approximation 2: 303–329.

Barnsley, M. and A. Harrington, 1989 The calculus of fractal inter-
polation functions. Journal of Approximation Theory 57: 14–34.

Çimen, M., Z. Garip, O. Boyraz, I. Pehlivan, M. Yildiz, et al., 2020
An interface design for calculation of fractal dimension. Chaos
Theory and Applications 2: 3–9.

Dai, Z. and S. Liu, 2023 Construction and box dimension of the
composite fractal interpolation function. Chaos, Solitons & Frac-
tals 169: 113255.

Falconer, K., 2004 Fractal Geometry: Mathematical Foundations and
Applications. John Wiley & Sons.

Fortin, C., R. Kumaresan, W. Ohley, and S. Hoefer, 1992 Fractal
dimension in the analysis of medical images. IEEE Engineering
in Medicine and Biology Magazine 11: 65–71.

Gowrisankar, A. and M. Prasad, 2019 Riemann-Liouville calculus
on quadratic fractal interpolation function with variable scaling
factors. The Journal of Analysis 27: 347–363.

Gowrisankar, A. and R. Uthayakumar, 2016 Fractional calculus
on fractal interpolation for a sequence of data with countable
iterated function system. Mediterranean Journal of Mathematics
13: 3887–3906.

Massopust, P., 2022a Fractal interpolation: From global to local, to
nonstationary and quaternionic. Frontiers of Fractal Analysis.
Recent Advances and Challenges; CRC Press: Boca Raton, FL,
USA pp. 25–49.

Massopust, P., 2022b Fractal interpolation over nonlinear partitions.
Chaos, Solitons & Fractals 162: 112503.

Navascués, M., 2005 Fractal polynomial interpolation. Zeitschrift
fur Analysis und ihre Anwendung 24: 401–418.

Navascués, M., 2010 Fractal approximation. Complex Analysis and
Operator Theory 4: 953–974.

Navascués, M., C. Pacurar, and V. Drakopoulos, 2022 Scale-free
fractal interpolation. Fractal and Fractional 6: 602.

Navascués, M. and M. Sebastián, 2006 Smooth fractal interpolation.
Journal of Inequalities and Applications 2006: 1–20.

Pan, X., 2014 Fractional calculus of fractal interpolation function
on [0, b](b > 0). In Abstract and Applied Analysis 2014.

Priyanka, T. and A. Gowrisankar, 2021a Analysis on weyl-
marchaud fractional derivative for types of fractal interpolation
function with fractal dimension. Fractals 29: 2150215.

Priyanka, T. and A. Gowrisankar, 2021b Riemann-Liouville frac-
tional integral of non-affine fractal interpolation function and
its fractional operator. The European Physical Journal Special
Topics 230: 37889–3805.

Ruan, H.-J., W.-Y. Su, and K. Yao, 2009 Box dimension and frac-
tional integral of linear fractal interpolation functions. Journal
of Approximation Theory 161: 187–197.

Samko, S., A. Kilbas, and O. Marichev, 1993 Fractional integrals
and derivatives.

Sanjuán, M. A., 2021 Unpredictability, uncertainty and fractal struc-
tures in physics.

How to cite this article: Gowrisankar, A. Fractalization of Frac-
tional Integral and Composition of Fractal Splines. Chaos Theory
and Applications, 5(4), 318-325, 2023.

Licensing Policy: The published articles in Chaos Theory and
Applications are licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

CHAOS Theory and Applications 325

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

