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Abstract − This article employs a novel method, namely the conformable q-Sawi homotopy 

analysis transform method (Cq-SHATM) to investigate the numerical solutions of the nonlinear 

conformable time-fractional Noyes-Field model. The proposed method, namely Cq-SHATM, is a 

hybrid approach that integrates the q-homotopy analysis transform method and the Sawi 

transform using the concept of conformable derivative. 3D graps of the solutions obtained with 

this method were drawn. Additionally, 2D graphs of the solutions were obtained in the Maple 

software program. The computer simulations were conducted in order to validate the efficacy 

and reliability of the proposed method. 

Subject Classification (2020): 65H05,26A33,35R11. 

1. Introduction 

Beyond the integer order of calculus is the arbitrary order of fractional calculus (FC). When renowned 

scientists Leibniz and L'Hospital first spoke to one another in roughly 1695, it was discussed. Because 

fractional calculus may be used to accurately describe a wide variety of nonlinear phenomena, several 

writers have recently begun to investigate it. Differential equations of the fractional order variety have 

an impact on both genetic material and non-local material features. Many well-known mathematicians 

have studied and written on fractional calculus. They created the foundation for fractional calculus 

through their work. Nowadays, systems that vary over time are frequently studied and nonlinear models 

created using fractional partial differential equations. Numerous concepts, including chaos theory, have 

been connected to fractional-order calculus theory.  In order to characterize the characteristics of 

natural systems that don't behave linearly, fractional differential equations are used. We obtain precise 

answers to fractional differential equations that model nonlinear processes using a variety of analytical 

and numerical techniques [1–13]. 

Mohand and Mahgoub [14] introduced a novel integral transform known as the Sawi transform. 

Problems with population increase and decay were satisfactorily explained using the Sawi transform 

[15]. In [16], it introduces the "Sawi decomposition method," a novel approach for solving Volterra 
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integral equations and its application. The Sawi transformation is employed in the computation of 

solutions for systems of ordinary differential equations, specifically in the context of determining the 

concentration of chemical reactants involved in a series chemical reaction [17]. A novel double fuzzy 

transform, referred to as the double fuzzy Sawi transform, is proposed. This paper presents a formal 

proof of fundamental properties associated with the single fuzzy Sawi transform and the double fuzzy 

Sawi transform. The present study employs a technique to derive the precise solution of a non-

homogeneous linear fuzzy telegraph equation, incorporating a generalized Hukuhara partial 

differentiability [18]. 

 

The Belousov–Zhabotinsky (B-Z) reaction is a classic example of a chemical oscillating reaction. It was 

discovered independently by Boris Belousov and Anatol Zhabotinsky in the 1950s. The B-Z reaction is a 

type of non-equilibrium chemical system that exhibits periodic changes in color, indicating oscillations 

between different chemical states. One of the remarkable aspects of the B-Z reaction is its ability to 

exhibit spontaneous oscillations in concentrations of different chemical species. These oscillations are 

typically observed through changes in color, and the reaction cycles through various states over time. 

The reaction is autocatalytic, meaning that one of the products of the reaction catalyzes its own 

formation. This positive feedback loop is essential for the oscillatory behavior observed in the system. 

The B-Z reaction is relatively complex and involves the interaction of multiple chemical species. It 

typically includes the oxidation of an organic compound by bromate ions in the presence of various 

catalysts, such as cerium ions. While the B-Z reaction itself is a fascinating example of chemical kinetics 

and nonlinear dynamics, its practical applications are limited. However, the principles learned from 

studying such systems contribute to our understanding of complex dynamic behavior in chemical 

systems. The Belousov–Zhabotinsky reaction has been of interest in the fields of chemistry and physics, 

particularly for its ability to illustrate concepts related to chaos and nonlinear dynamics. Researchers 

have also explored its potential relevance to understanding certain biological processes, as oscillatory 

behavior is observed in various biological systems. The B-Z reaction is often demonstrated in 

educational settings to illustrate the dynamic and unpredictable behavior that can arise in chemical 

systems, challenging the common perception of chemical reactions as static processes.In the current 

study, we take into consideration the Belousov-Zhabotinsky (B-Z) nonlinear oscillatory system with 

conformable time-fractional derivative in Caputo sense. The B-Z family of oscillating chemical reactions 

is intriguing because it can exhibit both spatial traveling concentration waves and temporal oscillations, 

both of which are accompanied by striking color changes [19]. In a closed system, this reaction can 

produce up to many thousands of oscillatory cycles, making it possible to study the chemical waves and 

patterns without having to constantly replace the reactants [20]. 

 

For this B-Z, the streamlined conformable time-fractional Noyes-Field model is given as  

  

{
 

 𝑇𝜇𝑡 𝜌(𝑥, 𝑡) = 𝜗1
𝜕2𝜌(𝑥, 𝑡)

𝜕𝑥2
+ 𝛽𝛿𝑤(𝑥, 𝑡) + 𝜌 − 𝜌2 − 𝛿𝜌𝑤(𝑥, 𝑡),

𝑇𝜇𝑡 𝑤(𝑥, 𝑡) = 𝜗2
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝛾𝑤(𝑥, 𝑡) − 𝜆𝜌(𝑥, 𝑡)𝑤(𝑥, 𝑡).

 (1) 

  

where, 𝑇𝜇𝑡  is conformable time-fractional oder 𝜇 ∈ (0,1] in Caputo sense and 0 < 𝑡 < 1.      
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Since the operator in a nonlinear problem with fractional order is described by an integral, these issues 

are frequently more challenging to solve. The exact and numerical solutions to the fractional problems, 

however, have been investigated using a variety of computing approaches that have been created. Some 

of the utilized methods are Adomian decomposition method (ADM) [21-23], variational iteration 

method (VIM) [24], homotopy analysis method (HAM) [25-28], differential transform method (DTM) 

[29-30], homotopy perturbation method (HPM) [31-33], residual power series method (RPSM) [34-36], 

Laplace decomposition method (LDM) [37], q-homotopy analysis method (q-HAM) [38-44], q-

homotopy analysis transform method (q-HATM) [45], fractional reduced differential transfofrm method 

(FRDTM) [45], conformable fractional Elzaki decomposition method (CFEDM) [46], conformable q-

homotopy analysis transform method (Cq-HATM) [47], conformable Shehu homotopy perturbation 

method (CSHPM) [47], conformable fractional q-Shehu homotopy analysis transform method (CFq-

SHATM) [48], conformable Shehu transform decomposition method (CSTDM) [48]. The main goal of 

this study is to come up with a new method: the conformable q-Sawi homotopy analysis transform 

method (Cq-SHATM). 

 

Here is a list of the rest of the study. The basics of conformable fractional calculus and the Sawi transform 

are explained in the second part. In Section 3, the new conformable fractional numerical methods are 

presented. Section 4 shows an example of the conformable time-fractional Noyes Field model. In Section 

5, the result is given. 

2. Preliminaries 

Now let's give the definitions to be used in the study. 

 

Definition 2.1. [49-52] Let a function 𝑓: [0,∞) → ℝ. Then, the conformable fractional derivative of 𝑓 

order 𝜇 is described by  

𝑇𝜇(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥 + 𝜀𝑥1−𝜇) − 𝑓(𝑥)

𝜀
,       (2) 

for all 𝑥 > 0, 𝜇 ∈ (0, 1]. 

 

Theorem 2.1. [49-50, 52] Let 𝜇 ∈ (0, 1] and 𝑓, 𝑔 be 𝜇 −differentiable at a point 𝑥 > 0. Then  

(𝑖) 𝑇𝜇(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝜇(𝑓) + 𝑏𝑇𝜇(𝑔), for all 𝑎, 𝑏 ∈  ℝ,       (3) 

(𝑖𝑖) 𝑇𝜇(𝑥
𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ,       (4) 

(𝑖𝑖𝑖) 𝑇𝜇(𝜏) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠, 𝑓(𝑡) = 𝜏,       (5) 

(𝑖𝑣) 𝑇𝜇(𝑓𝑔) = 𝑓𝑇𝜇(𝑔) + 𝑔𝑇𝜇(𝑓),       (6) 

(𝑣) 𝑇𝜇 (
𝑓

𝑔
) =

𝑔𝑇𝜇(𝑓) − 𝑓𝑇𝜇(𝑔)

𝑔2
.       (7) 

Definition 2.2. Let 0 < 𝜇 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. Then, the conformable fractional 

Sawi transform (CFST) of order 𝜇 of 𝑓 is defined by  
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𝑆𝜇𝑐 [𝑓(𝑡)](𝑣) = 𝑅𝜇(𝑣) =
1

𝑣2
∫ 𝑒𝑥𝑝 (

−𝑡𝜇

𝑣𝜇
)𝑓(𝑡)𝑡𝜇−1𝑑𝑡

∞

0

, 𝑣 > 0.       (8) 

Definition 2.3. Let 0 < 𝜇 ≤ 1,  𝑓: [0,∞) → ℝ  be real valued function. The conformable fractional Sawi 

transform for the conformable fractional-order derivative of the function 𝑓 ∈ ℂ𝜂(𝜂 ≥ −1) is defined by  

𝑆𝜇𝑐 [𝑇𝜇𝑓(𝑡)](𝑣) =
1

𝑣𝜇
𝑅𝜇(𝑣) −∑ (

1

𝑣
)
𝜇−(𝑘−1)𝜎−1

𝑘=0

𝑓(𝑘)(0+), 𝜎 − 1 < 𝜇 ≤ 𝜎.       (9) 

3. Conformable q-Sawi Homotopy Analysis Transform Method  

We will introduce a new method. Consider the conformable time-fractional nonlinear partial differential 

equation (CTFNPDE) to explain the fundamental idea of Cq-SHATM: 

𝑇𝜇𝑤(𝑥, 𝑡) +𝑡 𝐴𝑤(𝑥, 𝑡) + 𝐻𝑤(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑛 − 1 < 𝜇 ≤ 𝑛,    (10) 

where 𝐴 is a linear operator, 𝐻 is a nonlinear operator, 𝑓(𝑥, 𝑡) is a source term, and 𝑇𝜇𝑡  is a conformable 

time-fractional derivative of order 𝜇. 

 

Applying the conformable fractional Sawi transform to Eq. (10) and utilizing the initial condition, then 

we have  

 

𝑆𝜇𝑐 [𝑤(𝑥, 𝑡)]

𝑣𝜇
− ∑ (

1

𝑣
)
𝜇−(𝑘−1)

𝑤(𝑘)(𝑥, 0)

𝑚−1

𝑘=0

= 𝑆𝜇𝑐 [𝑓(𝑥, 𝑡) − 𝐴𝑤(𝑥, 𝑡) − 𝐻𝑤(𝑥, 𝑡)].    (11) 

 

Rearranging the last equation, then we get  

𝑆𝜇𝑐 [𝑤(𝑥, 𝑡)] − 𝑣𝜇 ∑ (
1

𝑣
)
𝜇−(𝑘−1)

𝑤(𝑘)(𝑥, 0)

𝑚−1

𝑘=0

+ 𝑣𝜇 𝑆𝜇𝑐 [𝐴𝑤(𝑥, 𝑡) + 𝐻𝑤(𝑥, 𝑡)]

− 𝑣𝜇 𝑆𝜇𝑐 [𝑓(𝑥, 𝑡)] = 0. 

       

(12) 

With the help of HAM, we can describe the nonlinear operator for real function 𝜑(𝑥, 𝑡; 𝑞)  as follows: 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = 𝑆𝜇𝑐 [𝜑(𝑥, 𝑡; 𝑞) ] − 𝑣𝜇 ∑ (
1

𝑣
)
𝜇−(𝑘−1)

𝜑(𝑘)
𝑚−1

𝑘=0

(𝑥, 𝑡; 𝑞)(0+) + 𝑣𝜇 𝑆𝜇𝑐 [𝐴𝜑(𝑥, 𝑡; 𝑞)  

+𝐻𝜑(𝑥, 𝑡; 𝑞)] − 𝑣𝜇 𝑀𝛼𝑐 [𝑓(𝑥, 𝑡)],    (13) 

where 𝑞𝜖 [0,
1

𝑛
]. 

 



80 

 

B.K. Öner et al. / IKJM/ 5(2) (2023) 76-91 

We construct a homotopy as follows:  

(1 − 𝑛𝑞) 𝑆𝛼𝑐 [𝜑(𝑥, 𝑡; 𝑞) − 𝑤0(𝑥, 𝑡)] = ℎ𝑞𝐻
∗(𝑥, 𝑡)𝐻[𝜑(𝑥, 𝑡; 𝑞)],    (14) 

where, ℎ ≠ 0 is an auxiliary parameter and 𝑆𝛼𝑐  represents conformable fractional Sawi transform. For 

𝑞 = 0 and 𝑞 =
1

𝑛
, the results of Eq. (14) are as follows: 

𝜑(𝑥, 𝑡; 0) = 𝑤0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝑤(𝑥, 𝑡).    (15) 

Thus, by amplifying 𝑞 from 0 to 
1

𝑛
, then the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑤0(𝑥, 𝑡) to the solution 

𝑤(𝑥, 𝑡).  

 

Using the Taylor theorem around 𝑞 and then expanding 𝜑(𝑥, 𝑡; 𝑞), we get  

𝜑(𝑥, 𝑡; 𝑞) = 𝑤0(𝑥, 𝑡) +∑𝑤𝑚(𝑥, 𝑡)𝑞
𝑚

∞

𝑖=1

,    (16) 

where  

𝑤𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0.    (17) 

Eq. (16) converges at 𝑞 =
1

𝑛
  for the appropriate 𝑤0(𝑥, 𝑡), 𝑛 and ℎ. Then, we have 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

.    (18) 

If we differentiate the zeroth order deformation Eq. (14) m-times with respect to 𝑞 and we divide by 𝑚!, 

respectively, then for 𝑞 = 0, we acquire 

𝑆𝛼𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎ𝐻
∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1),    (19) 

where the vectors are described by 

�⃗⃗� 𝑚 = {𝑤0(𝑥, 𝑡), 𝑤1(𝑥, 𝑡), … ,𝑤𝑚(𝑥, 𝑡)}.    (20) 

Applying the inverse conformable fractional Sawi transform to Eq. (20), we get  

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑆𝛼𝑐 )
−1
[𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1)],    (21) 

where 

ℛ𝑚(�⃗⃗� 𝑚−1) = 𝑆𝛼𝑐 [𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)
1

𝑣
𝑤0(𝑥, 𝑡) + 𝑣

𝜇 𝑆𝜇𝑐 [𝐴𝑤𝑚−1(𝑥, 𝑡)  

+𝐻𝑚−1(𝑥, 𝑡)−𝑓(𝑥, 𝑡)],    (22) 
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and  

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

                (23) 

Here, 𝐻𝑚
∗  is homotopy polynomial and presented by 

𝐻𝑚
∗ =

1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚
|𝑞=0   and 𝜑(𝑥, 𝑡; 𝑞) = 𝜑0 + 𝑞𝜑1 + 𝑞

2𝜑2 +⋯.    (24) 

Using Eqs. (21) - (22), we get  

𝑤𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑤𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚
𝑛
)𝑤0(𝑥, 𝑡)

+ h( 𝑆𝛼𝑐 )
−1
[𝑣𝜇 𝑆𝜇𝑐 [𝐴𝑤𝑚−1(𝑥, 𝑡) + 𝐻𝑚−1(𝑥, 𝑡)−𝑓(𝑥, 𝑡)]]. 

   (25) 

  

When Cq-SHATM is utilized, the series solution is given by  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

(
1

𝑛
)
𝑚

.    (26) 

4. Applications  

Example 4.1. [45] Consider the conformable time-fractional Noyes Field model  

{
 

 
𝜕𝜇𝜌(𝑥, 𝑡)

𝜕𝑡𝜇
=
𝜕2𝜌(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌 − 𝜌2 − 𝛿𝜌𝑤(𝑥, 𝑡),

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
=
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
− 𝜆𝜌𝑤(𝑥, 𝑡),

    (27) 

where 𝜆 ≠ 1 and 𝛿 are positive constants, 𝑥 ∈ [−10,10], 𝑡 ∈ [0,1], 0 < 𝜇 ≤ 1,  subject to initial 

conditions  

  

{
  
 

  
 𝜌(𝑥, 0) =

1

(exp(√
𝜆

6
𝑥)+1)

2 ,

𝑤(𝑥, 0) =
(1−𝜆)exp(√

𝜆

6
𝑥)(exp(√

𝜆

6
𝑥)+1)

𝛿(exp(√
𝜆

6
𝑥)+1)

2 .

    (28) 

Cq-SHATM solution 

Implementing the conformable fractional Sawi transform to Eqs. (27) and using Eqs. (28), then it is 

obtained as 

𝑆𝜇𝑐 [𝜌(𝑥, 𝑡)]

𝑣
−
𝜌(𝑥, 0)

𝑣2
= 𝑆𝜇𝑐 [

𝜕2𝜌(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌 − 𝜌2 − 𝛿𝜌𝑤(𝑥, 𝑡)],    (29) 
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𝑆𝜇𝑐 [𝑤(𝑥,𝑡)]

𝑣
−
𝑤(𝑥,0)

𝑣2
= 𝑆𝜇𝑐 [

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
− 𝜆𝜌𝑤(𝑥, 𝑡)].    (30) 

Rearranging Eqs.(29)-(30), then we have 

𝑆𝜇𝑐 [𝜌(𝑥, 𝑡)] =
𝜌(𝑥, 0)

𝑣
+ 𝑣 𝑆𝜇𝑐 [

𝜕2𝜌(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌 − 𝜌2 − 𝛿𝜌𝑤(𝑥, 𝑡)],    (31) 

     𝑆𝜇𝑐 [𝑤(𝑥, 𝑡)] =
𝑤(𝑥,0)

𝑣
+ 𝑣 𝑆𝜇𝑐 [

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
− 𝜆𝜌(𝑥, 𝑡)𝑤(𝑥, 𝑡)].    (32) 

We define the nonlinear operators by using Eqs. (31)-(32), as  

𝑁1[𝜑(𝑥, 𝑡; 𝑞) ] = 𝑆𝜇𝑐 [𝜑(𝑥, 𝑡; 𝑞) ] −
1

𝑣 (exp(√
𝜆
6
𝑥) + 1)

2 
 

+𝑣 𝑆𝜇𝑐 [
𝜕2𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ 𝜑(𝑥, 𝑡; 𝑞) − 𝜑2(𝑥, 𝑡; 𝑞) − 𝛿𝜑(𝑥, 𝑡; 𝑞)𝜓(𝑥, 𝑡; 𝑞)], 

   (33) 

𝑁2[𝜓(𝑥, 𝑡; 𝑞) ] = 𝑆𝜇𝑐 [𝜓(𝑥, 𝑡; 𝑞) ] −

(1 − 𝜆) exp(√
𝜆
6
𝑥)(exp(√

𝜆
6
𝑥) + 1)

𝛿𝑣 (exp(√
𝜆
6
𝑥) + 1)

2   

+𝑣 𝑆𝜇𝑐 [
𝜕2𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑥2
− 𝜆𝜑(𝑥, 𝑡; 𝑞)𝜓(𝑥, 𝑡; 𝑞)]. 

   (34) 

By applying the proposed algorithm, the 𝑚 − 𝑡ℎ order deformation equations are defined by 

𝑆𝜇𝑐 [𝜌𝑚(𝑥, 𝑡) − 𝑘𝑚𝜌𝑚−1(𝑥, 𝑡)] = ℎℛ1,𝑚[𝜌 𝑚−1],    (35) 

𝑆𝜇𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ2,𝑚[�⃗⃗� 𝑚−1],    (36) 

where 

ℛ1,𝑚[𝜌 𝑚−1] = 𝑆𝜇𝑐 [𝜌 𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)

1

𝑣 (exp(√
𝜆
6𝑥) + 1)

2 

 

 

−𝑣 𝑆𝜇𝑐 [
𝜕2𝜌𝑚−1(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝑚−1(𝑥, 𝑡) − ∑ 𝜌𝑟(𝑥, 𝑡)𝜌𝑚−1−𝑟(𝑥, 𝑡)

𝑚−1

𝑟=0

− 𝛿 ∑ 𝜌𝑟(𝑥, 𝑡)𝑤𝑚−1−𝑟(𝑥, 𝑡)

𝑚−1

𝑟=0

], 
  

(37) 
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ℛ2,𝑚[�⃗⃗� 𝑚−1] = 𝑆𝜇𝑐 [�⃗⃗� 𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)

(1 − 𝜆) exp(√
𝜆
6
𝑥)(exp(√

𝜆
6
𝑥) + 1)

𝛿𝑣 (exp(√
𝜆
6𝑥) + 1)

2   

−𝑣 𝑆𝜇𝑐 [
𝜕2𝑤𝑚−1(𝑥, 𝑡)

𝜕𝑥2
− 𝜆 ∑ 𝜌𝑟(𝑥, 𝑡)𝑤𝑚−1−𝑟(𝑥, 𝑡)

𝑚−1

𝑟=0

]. 
    

(38) 

On applying inverse conformable Sawi transform to Eqs. (35)-(36), then we have  

𝜌𝑚(𝑥, 𝑡) = 𝑘𝑚𝜌𝑚−1(𝑥, 𝑡) + ℎ( 𝑆𝜇𝑐 )
−1
{ℛ1,𝑚[𝑝 𝑚−1]}, 

              

(39) 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑆𝜇𝑐 )
−1
{ℛ2,𝑚[�⃗⃗� 𝑚−1]}.  (40) 

By the use of initial conditions, then we obtain 

𝜌0(𝑥, 𝑡) =
1

(exp(√
𝜆
6𝑥) + 1)

2 , 
  (41) 

𝑤0(𝑥, 𝑡) =

(1 − 𝜆) exp(√
𝜆
6
𝑥)(exp(√

𝜆
6
𝑥) + 2)

𝛿 (exp(√
𝜆
6𝑥) + 1)

2 .   (42) 

To find the values of 𝜌1(𝑥, 𝑡) and 𝑤1(𝑥, 𝑡), putting 𝑚 = 1 in Eqs. (39)-(40), then we obtain  

𝜌1(𝑥, 𝑡)

= −
2

3
ℎ

𝑡𝜇 exp(
𝑥√6𝜆
6 )((((

3
2 + 𝜆)𝛿 +

3
2𝜆 −

3
2) exp (

𝑥√6𝜆
6 ) + (−

𝜆
2 + 3)𝛿 + 3𝜆−3

)

𝜇𝛿 (exp(
𝑥√6𝜆
6 ) + 1)

4 , 
  (43) 

𝑤1(𝑥, 𝑡) =
5

3

𝑡𝜇(−1 + 𝜆)𝜆 exp(
𝑥√6𝜆
6 )

𝜇𝛿 (exp(√
𝜆
6𝑥) + 1)

3 .   (44) 

In the same way, if we put 𝑚 = 2 in Eqs. (39)-(40), we can obtain the values of 𝜌2(𝑥, 𝑡) and 𝑤2(𝑥, 𝑡) 
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𝑤2(𝑥, 𝑡) =

−5ℎ(𝑛 + ℎ)𝑡𝜇(−1 + 𝜆)𝜆 exp(
𝑥√6𝜆
6 )

3𝜇𝛿 (exp(√
𝜆
6
𝑥) + 1)

3 +
8

9𝜇2𝛿2 (exp(√
𝜆
6
𝑥) + 1)

6 

 

 

× [ℎ2𝑡2𝜇𝜆(−1 + 𝜆) exp (
𝑥√6𝜆

6
)(
−9

4
(−1 + 𝜆)(𝛿 − 1) exp(

𝑥√6𝜆

6
) + ((𝛿 +

9

16
) 𝜆 +

9

16
𝛿 

 

 

−
9

16
) exp(

𝑥√6𝜆

6
) +

3

4
(−3 + (3 +

𝛿

8
) 𝜆+3𝛿) exp(

𝑥√6𝜆

6
) −

25

32
𝜆𝛿)] . 

 

   (46) 

In this way, the other terms can be found. So, the Cq-SHATM solutions of the Eq. (27) are given by 

𝜌(𝑥, 𝑡) = 𝜌0(𝑥, 𝑡) + ∑ 𝜌𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

,   (47) 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

.    (48) 

If we put 𝜇 = 1, 𝑛 = 1, ℎ = −1 in Eqs. (47)-(48), then the obtained results  

 

∑ 𝜌𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1 , ∑ 𝑤𝑚(𝑥, 𝑡) (

1

𝑛
)
𝑚

𝑀
𝑚=1  

 

converges to the exact solutions  

 

𝜌(𝑥, 𝑡) =
exp(

5𝜆

3
𝑡)

(exp(√
𝜆

6
𝑥)+exp(

5𝜆

6
𝑡))

2 𝑤(𝑥, 𝑡) =
(1−𝜆)exp(√

𝜆

6
𝑥)(exp(√

𝜆

6
𝑥)+2exp(

5𝜆

6
𝑡))

𝛿(exp(√
𝜆

6
𝑥)+exp(

5𝜆

6
𝑡))

2   

 

of the Eqs. (27) when 𝑀 → ∞.  

 

Figure 1 shows the 3D graphs of 𝜌(𝑥, 𝑡) solution for Cq-SHATM, 𝑤(𝑥, 𝑡)solution for Cq-SHATM, exact 

solutions of 𝜌(𝑥, 𝑡), 𝑤(𝑥, 𝑡) and absolute errors. 
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Figure 1. (a) Nature of 𝜌(𝑥, 𝑡)solution with Cq-SHATM (b) Nature of 𝑤(𝑥, 𝑡)solution with Cq-SHATM (c) Exact of 

𝜌(𝑥, 𝑡) solution (d) Exact of 𝑤(𝑥, 𝑡) solution (e) Nature of absolute error=|𝜌𝑒𝑥𝑎𝑐𝑡 − 𝜌𝐶𝑞−𝑆𝐻𝐴𝑇𝑀| (f) Nature of 

absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑞−𝑆𝐻𝐴𝑇𝑀| at ℎ = −1, 𝑛 = 1, 𝜇 = 1, 𝜆 = 3, 𝛿 = 2 for Eqs. (37). 

 

Figure 2 depicts comparison 2D plots of 𝜌(𝑥, 𝑡) solution with Cq-SHATM, 𝑤(𝑥, 𝑡) solution with Cq-

SHATM, and exact solutions for distinct 𝜇 values. 

 

  

Figure 2. The comparison of the 𝜌(𝑥, 𝑡) solution with Cq-SHATM and exact solution (b) The comparison of the 

𝑤(𝑥, 𝑡) solution with Cq-SHATM and exact solution at ℎ = −1, 𝑛 = 1, 𝑥 = 0.5, 𝜆 = 3, 𝛿 = 2 with different 𝜇 for 

Eqs. (37). 
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A comparison of the absolute error for 𝜌(𝑥, 𝑡) between Cq-SHATM and FRDTM [45] for Eq. (37) with 

𝜇 = 1, 𝜆 = 3, 𝛿 = 2, ℎ = −1, 𝑛 = 1 is presented in Table 1. 

 

𝒙 𝒕 

𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟑 𝟎. 𝟎𝟎𝟓 𝟎. 𝟎𝟎𝟕 

Cq-SHATM 𝟎. 𝟎𝟎 0.0001878902 0.0005660070 0.0009472246 0.0013315278 

FRDTM  1.0149996100 1.0137464930 1.0124902750 1.0112309720 

Cq-SHATM 𝟏. 𝟎𝟎 0.0000976247 0.0002956422 0.0004973550 0.0007027695 

FRDTM  0.8256007700 0.8248666560 0.8241288453 0.8233873339 

Cq-SHATM 𝟐. 𝟎𝟎 0.0000370568 0.0001128071 0.0001907491 0.0002708944 

FRDTM  0.4254561817 0.4251463250 0.4248342767 0.4245200242 

Cq-SHATM 𝟑. 𝟎𝟎 0.0000114341 0.0000349498 0.0000593341 0.0000845935 

FRDTM  0.1584645226 0.1583613457 0.1582572998 0.1581523788 

Table 1. Comparison of absolute error for 𝜌(𝑥, 𝑡) between Cq-SHATM and FRDTM [45] for Eq. (37) with  

𝜇 = 1, 𝜆 = 3, 𝛿 = 2, ℎ = −1, 𝑛 = 1. 

 

Comparing the absolute errors for 𝑤(𝑥, 𝑡) for Eq. (37) with 𝜇 = 1, 𝜆 = 3, 𝛿 = 2, ℎ = −1, 𝑛 = 1 for Cq-

SHATM and FRDTM [45] is provided in Table 2. 

𝒙 𝒕 

𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟑 𝟎. 𝟎𝟎𝟓 𝟎. 𝟎𝟕 

Cq-SHATM 𝟎. 𝟎𝟎 3.9 × 10−7 3.5 × 10−6 9.7 × 10−6 1.9 × 10−5 

FRDTM  1.0149996100 1.0137464930 1.0124902750 1.0112309720 

Cq-SHATM 𝟏. 𝟎𝟎 4.6 × 10−7 4.1 × 10−6 0.0000115353 0.0000226217 

FRDTM  0.8256007696 0.8248666555 0.8241288453 0.8233873341 

Cq-SHATM 𝟐. 𝟎𝟎 2.7 × 10−7 2.4 × 10−6 6.8 × 10−6 0.0000134002 

FRDTM  0.4254561817 0.4251463250 0.4248342767 0.4245200246 

Cq-SHATM 𝟑. 𝟎𝟎 1.0 × 10−7 9.6 × 10−7 2.7 × 10−6 5.3 × 10−6 

FRDTM  0.1584645226 0.1583613454 0.1582572998 0.1581523789 

Table 2. Comparison of absolute error for 𝑤(𝑥, 𝑡) between Cq-SHATM and FRDTM [45] for Eq. (37) with  

𝜇 = 1, 𝜆 = 3, 𝛿 = 2, ℎ = −1, 𝑛 = 1. 
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5. Conclusion (if necessary) 

Figure 1 displays the three-dimensional graphs of the Cq-SHATM solutions 𝜌(𝑥, 𝑡) and 𝑤(𝑥, 𝑡), the exact 

solutions of 𝜌(𝑥, 𝑡) and 𝑤(𝑥, 𝑡), as well as the absolute errors for Eq. (27). Figure 2 illustrates a 

comparison of two-dimensional plots of the solutions 𝜌(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) obtained using the Cq-SHATM, 

as well as the corresponding exact solutions for different values of 𝜇. Table 1 presents a comparison of 

the absolute error for the function 𝜌(𝑥, 𝑡) between the Cq-SHATM and FRDTM methods [45] for Eq. (27), 

with the parameter values 𝜇 = 1, 𝜆 = 3, 𝛿 = 2, ℎ = −1, and 𝑛 = 1. Table 2 presents a comparison of the 

absolute errors of 𝑤(𝑥, 𝑡) for Eq. (27) with the given parameter values 𝜇 = 1, 𝜆 = 3, 𝛿 = 2, ℎ = −1, 

and 𝑛 = 1, between Cq-SHATM and FRDTM in [45]. The data presented in Tables 1-2 indicates that the 

Cq-SHATM exhibits a significantly lower error rate in comparison to the FRDTM in [45]. The results 

presented in Tables 1-2 demonstrate that the techniques proposed in this study yield significantly 

superior outcomes compared to those achieved through the utilization of FRDTM.  

 

The present study aims to examine the behavior of conformable time-fractional Noyes Field model 

through the utilization of Cq-SHATM. In addition, the utilization of the MAPLE software has been 

employed to generate two-dimensional and three-dimensional graphs that illustrate the solutions to Eq. 

(37) for various values of 𝜇 = 1. Observations have been made regarding the variations in the overall 

structure of the surface graphs produced by the Maple computational software for Eq. (37). Differences 

in the overall configuration of surface graphs generated by the Maple software for Eq. (37) have been 

observed. The study findings indicated that the approaches presented in Tables 1-2 produced results 

that are much better than those obtained through the use of FRDTM, with the independent variable 

being 𝑡 and 𝑥 being held at a constant value. A new hybrid method is proposed. This method is Cq-

SHATM, which is a combination of the conformable Sawi transform and the q-homotopy analysis 

transform method. With this new method, new numerical solutions of the conformable Noyes-Field 

model have been obtained. It has been observed that this solution provides better results than the 

FRDTM existing in the literature. The effectiveness and advantages of the recently developed method 

for tackling nonlinear conformable time-fractional models have been acknowledged. The recent method 

proposed for the resolution of nonlinear conformable time-fractional models have been determined to 

possess distinct advantages and demonstrate notable efficacy. 
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