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Abstract. In this study, we define the left and right fractional k−conformable
integrals and derivatives. Furthermore, we obtained the fractional k−conformable

derivatives of functions associated with some spaces and express their proper-

ties.

1. Introduction

Fractional calculus was born in 1695. Moreover, the significant of fractional cal-
culus gained more and more over the years. This field is substantial not only in
the field of mathematics, but especially in terms of applied sciences. Application of
fractional calculus were by way of majority utilized in numerous fields of science and
engineering. The most widely utilized were Caputo and Riemann-Liouville deriva-
tives. The most common use fields of Riemann-Liouville are physics, mechanics,
electronics, chemistry, biology, engineering and other fields[3− 7] . The Riemann-
Liouville approach base upon iterating n−times the integral operator and is the
fractional integral of noninteger order. The core of the standard fractional calculus
can not be enough us for the required kernel . Furthermore, we need required kernel
in order to obtain unification of fractional derivatives in their studies [8− 9] . Ad-
ditionally, Differentiation operator is the most appropriate operator for a starting
point for the iteration method. In this circumstances, Abdeljawad described the
left and right generalized conformable derivatives, respectively [10] ,

aT
αf (x) = (x− a)

1−α
f ′ (x) ,

Tαb f (x) = (b− x)
1−α

f ′ (x) .

In here, let f is a differentiable function, we have left and right integrals the fol-
lowing forms [1] ,

β
aJ

αf (t) = 1
Γ(β)

∫ x

a

(
(x−a)α−(t−a)α

α

)β−1

f (t) dt
(t−a)1−α
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and

βJαb f (x) = 1
Γ(β)

∫ x

a

(
(b−x)α−(b−t)α

α

)β−1

f (t) dt
(b−a)1−α

.

Respectively. In this point, Authors in [1] defined new fractional operators which
have two parameters and also these operators have kernels different from usual
kernels. In this article, we pay attention studies of depending on [1] and also we
obtained new k−conformable fractional integrals and derivatives by way of new
fractional operators in this paper. Additionally, we will give some basic definitions
and tools related to classical fractional calculus.

Definition 1.1. [16] , [8] A real valued function f(t), t > 0 is said to be in the
space Cµ, µ ∈ R if there exists a complex number p > µ such that f(t) = tpf1 (t) ,
where f1(t) ∈ C [0,∞] .

Definition 1.2. [16] , [8] A function f(t) ∈ Cµ, t > 0 is said to be in the Lp,k (a, b)
space if

Lp,k (a, b) =

f : ‖f‖Lp,k(a,b) =

(∫ b

a

|f(t)p| tkdt

) 1
p

<∞, 1 ≤ p <∞, k ≥ 0

 .

Definition 1.3. [16] Consider the space Xp
c (a, b) (c ∈ R, 1 ≤ p <∞) of those real-

valued Lebesgue measurable functions f on [a, b] for which

‖f‖ =

(∫ b

a

|tcf(t)|p dtt

) 1
p

<∞, (1 ≤ p <∞, cp ≥ 1)

and for the case p =∞

‖f‖X∞c = ess sup
a≤t<b

[tcf (t)] , c ≥ 0.

Additionally, If we take c = k+1
p (1 ≤ p <∞, k ≥ 0) the space Xp

c (a, b) , we have

the Lp,k (a, b)−space. Moreover, If we take c = 1
p (1 ≤ p <∞) the spaceXp

c (a, b) ,we

have the Lp (a, b)−space[16].

Katugampola obtained the generalized left and right fractional integrals for β ∈
C and Re (β) > 0 in [8] :

(1.1)
(
aI
β,αf

)
(t) = 1

Γ(β)

∫ t

a

(
tα−yα
α

)β−1

f (y) dy
y1−α

and

(1.2)
(
Iβ,αb f

)
(t) = 1

Γ(β)

∫ b

t

(
yα−tα
α

)β−1

f (y) dy
y1−α ,

respectively.
The following forms are left and right generalized fractional derivatives for β ∈ C

and Re (β) ≥ 0 in [9] :

(1.3)

(
aD

β,αf
)

(t) = ξn
(
aI
n−β,αf

)
(t)

= ξn

Γ(n−β)

∫ t

a

(
tα−yα
α

)n−β−1

f (y) dy
y1−α
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and

(1.4)

(
Dβ,α
b f

)
(t) = (−ξ)n

(
aI
n−β,αf

)
(t)

= (−ξ)n
Γ(n−β)

∫ b

t

(
yα−tα
α

)n−β−1

f (y) dy
y1−α ,

respectively, where α > 0 and where ξ = t1−α d
dt .

The following forms are the left and right generalized Caputo fractional deriva-
tives which defined by the authors in [15] by using [9] ,

(1.5)

(
C
aD

β,αf
)

(t) =
(
aI
n−β,α (ξ)

n
f
)

(t)

= 1
Γ(n−β)

∫ t

a

(
tα−uα
α

)n−β−1 ξnf(y)dy
y1−α

and

(1.6)

(
CDβ,α

b f
)

(t) =
(
aI
n−β,α (−ξ)n f

)
(t)

= 1
Γ(n−β)

∫ b

t

(
yα−tα
α

)n−β−1
(−ξ)nf(y)dy

y1−α .

Respectively.
Now, after giving k− conformable fractional integral and derivatives, respec-

tively, we will demonstrate important consequences and some basic properties
for these operators. Furthermore, we will obtain the properties of the defined
k−conformable derivative and also we will acquire the k−conformable fractional
derivatives on the Caputo setting. In conclusion, we will develop the previously
obtained results for the generalized conformable derivatives and integrals.

2. THE k−CONFORMABLE FRACTIONAL OPERATORS

In this part, Abdeljawad defined the conformable integrals and we expanded to
higher order in [10] . Furthermore, Jarad and et al. defined fractional integrals in
[1] . Now, by considering these studies, we should give the following k−conformable
derivative by using definitions of conformable derivative,

(2.1)
h
aT

αf (t) = limε→0

f

(
t+ε

(tk+1−ak+1)
1−α

tk

)
−f(t)

ε .

We should consider (2.1). In here,

(2.2) ∆t = ε
(tk+1−ak+1)

1−α

tk
⇒ ε = ∆t.tk

(tk+1−ak+1)1−α
.

We choose ∆t in the form. Then,

(2.3)
h
aT

αf (t) =
(tk+1−ak+1)

1−α

tk
lim∆t→0

f(t+∆t)−f(t)
∆t

=
(tk+1−ak+1)

1−α

tk
f
′
(t) .

We can state the left and right k−conformable derivatives, respectively, as

(2.4)

h
aT

αf (x) =
(
tk+1−ak+1

tk

)1−α
f
′
(x) ,

hTαb f (x) =
(
bk+1−tk+1

tk

)1−α
f
′
(x) .
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Moreover, we obtain k−conformable integral operator. For this,

(2.5)
∫ x
a

tk1dt1

(tk+1
1 −ak+1)

1−α

∫ t1
a

tk2dt2

(tk+1
2 −ak+1)

1−α ...
∫ tn−1

a
tknf(tn)dtn

(tk+1
n −ak+1)

1−α ,

we should get n−times repeated integral of the forms. In addition, if we apply a
method as in classic fractional integral techniques,

(2.6) k
aJ

n,αf (x) = 1
Γ(n)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−1
tkf(t)dt

(tk+1−ak+1)1−α
.

We can write the equality. Furthermore, we can obtain definition of the following
for k−conformable integrals with the help of this equality[2] .

Definition 2.1. Let f ∈ Xc. The left and right k−conformable fractional integrals
of order n ∈ C, Re (n) ≥ 0 and α > 0,

(2.7) k
aJ

n,αf (x) = 1
Γ(n)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−1
tkf(t)dt

(tk+1−ak+1)1−α

and

(2.8) kJn,αb f (x) = 1
Γ(n)

∫ b
x

[
(bk+1−xk+1)

α−(bk+1−tk+1)
α

α(k+1)

]n−1
tkf(t)dt

(bk+1−tk+1)1−α
,

respectively.

In here, we will give the following new definition by considering the k−conformable
derivative and integral operators.

Definition 2.2. Let f ∈ Xc. The left and right k−conformable fractional deriva-
tives of order β ∈ C and Re (β) ≥ 0,

(2.9)

k
aD

β,αf (x) =k
a T

n,α
(
k
aJ

n−β,α) f (x)

=
k
aT

n,α

Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1
tkf(t)dt

(tk+1−ak+1)1−α

and
(2.10)

kDβ,α
b f (x) =k Tn,αb

(
kJn−β,αb

)
f (x)

=
kTn,αb (−1)n

Γ(n−β)

∫ b
x

[
(bk+1−xk+1)

α−(bk+1−tk+1)
α

α(k+1)

]n−β−1
tkf(t)dt

(bk+1−tk+1)1−α
,

where n = [Re (β)] + 1,

(2.11)

k
aT

n,α = k
aT

α k
aT

α...kaT
α︸ ︷︷ ︸

n−times

,

kTn,αb = kTαb
kTαb ...

kTαb︸ ︷︷ ︸
n−times

,

and k
aT

α and kTαb are the left and right fractional k−conformable differential oper-
ators.
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Theorem 2.3. Let f ∈ Xc. Then, we get for fractional integrals for Re (β) > 0
and Re (γ) > 0,

(2.12)

k
aJ

β,α
(
k
aJ

γ,α
)
f (x) = k

aJ
(β+γ),αf (x) ,

kJβ,αb

(
kJγ,αb

)
f (x) = kJ

(β+γ),α
b f (x) .

Proof. We have with the aid of (2.7) ,
(2.13)
k
aJ

β,α
(
k
aJ

γ,α
)
f (x)

= 1
Γ(β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−1
(kaJ

γ,α)tkdt
(tk+1−ak+1)1−α

= 1
Γ(β)Γ(γ)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−1

×

(∫ t
a

[
(xk+1−ak+1)

α−(uk+1−ak+1)
α

α(k+1)

]γ−1
ukf(u)du

(uk+1−ak+1)1−α

)
tkf(t)dt

(tk+1−ak+1)1−α

= 1
Γ(β)Γ(γ)

∫ x
a

[
(xk+1−ak+1)

α−(uk+1−ak+1)
α

α(k+1)

]β+γ−1 (∫ 1

0
(1− z)β−1

zγ+1dz
)

ukf(u)du

(uk+1−ak+1)1−α

= 1
Γ(β+γ)

∫ x
a

[
(xk+1−ak+1)

α−(uk+1−ak+1)
α

α(k+1)

]β+γ−1
ukf(u)du

(uk+1−ak+1)1−α

= k
aJ

(β+γ),αf (x) .

In here, we have used the change of variable,(
tk+1 − ak+1

)α
=
(
uk+1 − ak+1

)α
+ z

[(
xk+1 − ak+1

)α − (uk+1 − ak+1
)α]

.

The second formula can be demonstrated in the same manner. �

Lemma 2.4. Let f ∈ Xc. We have for Re (v) > 0,

(2.14)

k
aJ

β,α
(
tk+1 − ak+1

)α(v−1)
(x) = Γ(v)

Γ(β+v)

[(xk+1−ak+1)
α
]
β+v−1

[α(k+1)]β
,

kJβ,αb

(
bk+1 − tk+1

)α(v−1)
(x) = Γ(v)

Γ(β+v)

[(bk+1−xk+1)
α
]
β+v−1

[α(k+1)]β
.

Proof. We have with the aid of (2.7) ,

(2.15)

k
aJ

β,α
(
tk+1 − ak+1

)α(v−1)
(x)

= 1
Γ(β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−1
[(tk+1−ak+1)

α
]
v−1

tkdt

(tk+1−ak+1)1−α

=
[(xk+1−ak+1)

α
]
β+v−1

Γ(β)[α(k+1)]β−1

∫ 1

0
(1− z)β−1

zv−1dz

= Γ(v)
Γ(β+v)

[(xk+1−ak+1)
α
]
β+v−1

[α(k+1)]β
.

In here, we have used the change of variable,(
tk+1 − ak+1

)α
= z

(
xk+1 − ak+1

)α
.

The second formula can be demonstrated in the same manner. �
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Lemma 2.5. Let f ∈ Xc. We have for Re (n− α) > 0,
(2.16)[

k
aD

β,α
(
tk+1 − ak+1

)α(v−1)
]

(x) = [α(k+1)]βΓ(v)
Γ(v−β)

[(
xk+1 − ak+1

)α]v−β−1
,

[
kDβ,α

b

(
bk+1 − tk+1

)α(v−1)
]

(x) = [α(k+1)]βΓ(v)
Γ(v−β)

[(
bk+1 − xk+1

)α]v−β−1
.

Proof. We have with the aid of (2.9) ,

(2.17)

[
k
aD

β,α
(
tk+1 − ak+1

)α(v−1)
]

(x)

=
k
aT

n,α

Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1
[(tk+1−ak+1)

α
]
v−1

tkdt

(tk+1−ak+1)1−α

=
k
aT

n,α[(xk+1−ak+1)
α
]
n+v−β−1

Γ(n−β)[α(k+1)]n−β

∫ 1

0
(1− z)n−β−1

zv−1dz

= [α(k+1)]βΓ(v)
Γ(v−β)

[(
xk+1 − ak+1

)α]v−β−1
.

In here, we have used the change of variable(
tk+1 − ak+1

)α
= z

(
xk+1 − ak+1

)α
.

The second formula can be demonstrated in the same manner. �

Remark 2.6. It can be shown that

(2.18)

k
aD

β,αf =k
a J

β,−α,

kDβ,α
b f =k Jβ,−αb .

3. k−CONFORMABLE FRACTIONAL DERIVATIVES ON THE
CERTAIN SPACES

In this part, we will give some definitions with related to lemma and theorem.
Moreover, we will demonstrate the substantial results of the k−conformable frac-
tional derivatives on the space Cnα,a and Cnα,b.

Definition 3.1. [10] For 0 < α ≤ 1 and an interval [a, b] define,

(3.1)
kIα ([a, b]) =

{
f : [a, b]→ R : f(x) =

(
k
aI
β,αϕ

)
(x) + f(a)

for some ϕ ∈ kLα (a)
}

and

(3.2)
k
αI ([a, b]) =

{
g : [a, b]→ R : g(x) =

(
kIβ,αb ϕ

)
(x) + g(b)

for some ϕ ∈ kLα (b)
}
.

Where

(3.3) kLα (a) =
{
ϕ : [a, b]→ R,

(
k
aI
β,αϕ

)
(x) exists ∀x ∈ [a, b]

}
and

(3.4) kLα (b) =
{
ϕ : [a, b]→ R,

(
kIβ,αb ϕ

)
(x) exists ∀x ∈ [a, b]

}
.
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Definition 3.2. We can clearly describe for α ∈ (0, 1] and n = 1, 2, 3, ...,

(3.5)

Cnα,a ([a, b]) =
{
f : [a, b]→ R such that kaT

n−1,αf ∈ka Iβ,α ([a, b])
}
,

Cnα,b ([a, b]) =
{
f : [a, b]→ R such that kTn−1,α

b f ∈k Iβ,αb ([a, b])
}
.

Lemma 3.3. Let f ∈ Cnα,a ([a, b]) and α > 0. Then, f is presented in form,

(3.6)
f (x) = 1

(n−1)!

∫ x

a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−1
ϕ(t)tkdt

(tk+1−ak+1)1−α

+
∑n−1
s=0

[
(xk+1−ak+1)

α

α(k+1)

]s
1
s!

k

a
T s,αf (a) .

In this place is ϕ (t) =
(
k
aT

s,αf
)

(t) .

Proof. Since f ∈ Cnα,a ([a, b]), kaT
n−1,αf ∈ kIα ([a, b]) and ϕ is continuous function,

we have,

(3.7)

k
aT

n−1,αf (x) =

∫ x

a

ϕ(t)tkdt

(tk+1−ak+1)1−α
+k
a T

n−1,αf (a) ,

(xk+1−ak+1)
1−α

xk
d
dx

k
aT

n−2,αf (x) =

∫ x

a

ϕ(t)tkdt

(tk+1−ak+1)1−α
+k
a T

n−1,αf (a)

d
dx

k
aT

n−2,αf (x) =

[
xk

(xk+1−ak+1)1−α

∫ x

a

ϕ(t)tkdt

(tk+1−ak+1)1−α

= + xk

(xk+1−ak+1)1−α
.kaT

n−1,αf (a)
]
.

We integrate the both of side (3.7) from a to x by replacing x → t and t → s on
the both side of the equation, then,

(3.8)

k
aT

n−2,αf (x) =

∫ x

a

[
(xk+1−ak+1)

α−(sk+1−ak+1)
α

α(k+1)

]
ϕ(s)skds

(sk+1−ak+1)1−α

+
(xk+1−ak+1)

α

α(k+1) .kaT
n−1,αf (a) +k

a T
n−2,αf (a) .

By applying the equality same method once more, we get,

(3.9)

k
aT

n−3,αf (x) =

∫ x

a

1
2

[
(xk+1−ak+1)

α−(sk+1−ak+1)
α

α(k+1)

]2
ϕ(s)skds

(sk+1−ak+1)1−α

+ 1
2

[
(xk+1−ak+1)

α

α(k+1)

]2

.kaT
n−1,αf (a)

+
(xk+1−ak+1)

α

α(k+1) .kaT
n−2,αf (a) +k

a T
n−3,αf (a) .

If the same method is applied n− 3 times, we have,

(3.10)
f (x) = 1

(n−1)!

∫ x

a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−1
ϕ(t)tkdt

(tk+1−ak+1)1−α

+
∑n−1
s=0

[
(xk+1−ak+1)

α

α(k+1)

]s
1
s! .
k
aT

s,αf (a) .

For ϕ (t) =k
a T

n,αf (t) . It is clear that a similar lemma for right k−conformable
fractional derivative. �
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Lemma 3.4. Let f ∈ Cnα,b ([a, b]) for α > 0. Then, f is presented in form,

(3.11)
f (x) = 1

(n−1)!

∫ b

x

[
(bk+1−xk+1)

α−(bk+1−tk+1)
α

α(k+1)

]n−1
ϕ(t)tkdt

(bk+1−tk+1)1−α

+
∑n−1
s=0

[
(bk+1−xk+1)

α

α(k+1)

]s
(−1)s

s! .kT s,αb f (a) .

For ϕ (t) =
(
kT s,αb f

)
(t) .

Proof. The proof is likewise as Lemma 3. �

Now we will give k−conformable fractional derivatives on Cnα,a and Cnα,b in the
theorem 2.

Theorem 3.5. Let β ∈ C, Re (β) > 0 and n = [β] + 1. The left and right
k−conformable fractional derivatives are demonstrated in the form for f ∈ Cnα,a
and f ∈ Cnα,b. Then,

(3.12)

k
aD

β,αf (x) =
(
k
aJ

n−β (k
aT

n,αf
))

(x)

+
∑n−1
m=0

k
aT

n,αf(a)
Γ(m−β+1)

[
(xk+1−ak+1)

α

α(k+1)

]m−β
and

(3.13)

kDβ,α
b f (x) =

(
kJn−βb

(
kTn,αb f

))
(x)

+
∑n−1
m=0

(−1)m.kTn,αb f(b)

Γ(m−β+1)

[
(bk+1−tk+1)

α

α(k+1)

]m−β
.

Proof. By using f ∈ Cnα,a ([a, b]) , we should choose f(x) in the Lemma 3 by re-
placing x→ t and t→ s that is as following form,

(3.14)
f (x) = 1

(n−1)!

∫ t

a

[
(tk+1−ak+1)

α−(sk+1−ak+1)
α

α(k+1)

]n−1
k
aT

n,αf(s)skds

(sk+1−ak+1)1−α

+
∑n−1
m=0

[
(tk+1−ak+1)

α

α(k+1)

]m
1
m! .

k
aT

m,αf (a) .

In here, we can state the following equality by using (2.9) for (3.14) ,
(3.15)

k
aD

β,αf (x) =
k
aT

n,α

Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1
tkf(t)dt

(tk+1−ak+1)1−α

=
k
aT

n,α

Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1

×

(
1

(n−1)!

∫ t

a

[
(tk+1−ak+1)

α−(sk+1−ak+1)
α

α(k+1)

]n−1
k
aT

n,αf(s)skds

(sk+1−ak+1)1−α

)
tkf(t)dt

(tk+1−ak+1)1−α

+
k
aT

n,α

Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1

×
(∑n−1

m=0

[
(tk+1−ak+1)

α

α(k+1)

]m
1
m! .

k
aT

m,αf (a)

)
tkf(t)dt

(tk+1−ak+1)1−α
.

We used changing the order of integration and gamma and beta functions. Addi-
tionally, we use the following the equations,
(3.16)(

tk+1 − ak+1
)α

=
(
sk+1 − ak+1

)α
+ z

[(
xk+1 − ak+1

)α − (sk+1 − ak+1
)α]
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and (
tk+1 − ak+1

)α
= u

(
xk+1 − ak+1

)α
.

We obtained following form,
(3.17)

k
aD

β,αf (x) =
k
aT

n,α

Γ(n−β)(n−1)!

∫ x

a

k
aT

n,αf(s)skds

(sk+1−ak+1)1−α

×
(∫ 1

0

(1− z)n−β−1
(z)

n−1
dz

)[
(xk+1−ak+1)

α−(sk+1−ak+1)
α

α(k+1)

]2n−β−1

+
∑n−1
m=0

k
aT

n,α.Tn,αf(a)
Γ(n−β).m!

×
(∫ 1

0

(1− u)
n−β−1

(u)
m
du

)[
(xk+1−ak+1)

α

α(k+1)

]n−β+m

.

In here, we obtain by means of operator kaT
n,α,

(3.18)

k
aD

β,αf (x) = 1
Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(sk+1−ak+1)
α

α(k+1)

]n−β−1
k
aT

n,αf(s).skds

(sk+1−ak+1)1−α

+
∑n−1
m=0

k
aT

n,αf(a)
Γ(m−β+1)

[
(xk+1−ak+1)

α

α(k+1)

]m−β
.

We completed the proof. The proof of right k−conformable fractional derivative
can be done by same way. �

Theorem 3.6. We suppose that is Re (β) > m > 0 for m ∈ N. Then,

(3.19)

k
aT

m,α
(
k
aJ

β,αf (x)
)

= k
aJ

β−m,αf (x) ,

kTm,αb

(
kJβ,αb f (x)

)
= kJβ−m,αb f (x) .

Proof. We have by using (2.7) ,
(3.20)

k
aT

m,α
(
k
aJ

β,αf (x)
)

=k
a T

m,α

[
1

Γ(β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−1
tkf(t)dt

(tk+1−ak+1)1−α

]
.

By using Leibniz rule for integrals,

(3.21)

k
aT

m,α
(
k
aJ

β,αf (x)
)

= k
aT

m−1,α

[
1

Γ(β−1)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−2
tkf(t)dt

(tk+1−ak+1)1−α

]

= k
aT

m−2,α

[
1

Γ(β−2)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−3
tkf(t)dt

(tk+1−ak+1)1−α

]
...

=

[
1

Γ(β−m)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−m−1
tkf(t)dt

(tk+1−ak+1)1−α

]
= k

aJ
β−m,αf (x) .

The poof is done. The second formula can be demonstrated similarly. �
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Corollary 3.6.1. If we take Re (γ) < Re (β) , Then,

(3.22)

k
aD

γ,α
(
k
aJ

β,αf (x)
)

= k
aJ

β−γ,αf (x) ,

kDγ,α
b

(
kJβ,αb f (x)

)
= kJβ−γ,αb f (x) .

Proof. By using Theorem 1 and Theorem 3, we obtain,

(3.23)

k
aD

γ,α
(
k
aJ

β,αf (x)
)

= k
aT

m,α
(
k
aJ

m−γ,α (k
aJ

β,αf (x)
))

= k
aT

m,α
(
k
aJ

β+m−γ,αf (x)
)

= k
aJ

β−γ,αf (x) .

The proof is done. The second formula can be demonstrated likewise. �

Theorem 3.7. Let β > 0 and f ∈ Cnα,a [a, b]
(
f ∈ Cnα,b [a, b]

)
. Then,

(3.24)

k
aD

β,α
(
k
aJ

β,αf (x)
)

= f (x) ,

kDβ,α
b

(
kJβ,αb f (x)

)
= f (x) .

Proof. If we possess by using (2.7) and (2.9) ,
(3.25)

k
aD

β,α
(
k
aJ

β,αf (x)
)

=
k
aT

n,α

Γ(n−β)Γ(β)

∫ x
a

∫ t
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1

×
[

(tk+1−ak+1)
α−(uk+1−ak+1)

α

α(k+1)

]β−1
ukf(u)du

(uk+1−ak+1)1−α
tkf(t)dt

(tk+1−ak+1)1−α

=
k
aT

n,α

Γ(n−β)Γ(β)

∫ x
a

ukf(u)du

(uk+1−ak+1)1−α

×
(∫ 1

0
(1− y)

n−β−1
(y)

β−1
dy
)[

(xk+1−ak+1)
α−(uk+1−ak+1)

α

α(k+1)

]n−1

=
k
aT

n,α

Γ(n−β)Γ(β)
Γ(n−β)Γ(β)

Γ(n)

∫ x
a

[
(xk+1−ak+1)

α−(uk+1−ak+1)
α

α(k+1)

]n−1
f(u)ukdu

(uk+1−ak+1)1−α

=k
a T

n,α
(
k
aJ

n,αf
)

(x)
= f (x) .

The proof is completed. �

Theorem 3.8. Let Re (β) > 0, n = Re (β) , f ∈ Xc and
k
aJ

β,αf ∈ Cnα,a [a, b]
(
kJβ,αb f ∈ Cnα,b [a, b]

)
.

Then, we have,

(3.26) k
aJ

β,α
(
k
aD

β,αf (x)
)

= f (x)−
∑n
j=1

k
aD

β−j,α.f(a)
Γ(β−j+1)

[
(xk+1−ak+1)

α

α(k+1)

]β−j
and
(3.27)

kJβ,αb

(
kDβ,α

b f (x)
)

= f (x)−
∑n
j=1

(−1)n.kDβ−j,αb f(b)

Γ(β−j+1)

[
(bk+1−xk+1)

α

α

]β−j
.

Proof. We can write by using (2.7) and (2.9) ,
(3.28)

k
aJ

β,α
(
k
aD

β,αf (x)
)

= 1
Γ(β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−1
k
aT

n,α(kaJ
n−β,αf(t))tkdt

(tk+1−ak+1)1−α
.
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Using the integration by parts once, we have,
(3.29)

k
aJ

β,α
(
k
aD

β,αf (x)
)

=
k
aT

1,α

Γ(β+1)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β
k
aT

n,α(kaJ
n−β,αf(t))tkdt

(tk+1−ak+1)1−α

− 1
Γ(β+1) .

k
aT

n,α
(
k
aJ

n−β,αf (t)
)
.

[
(xk+1−ak+1)

α

α(k+1)

]β
.

Using the integration by parts n−times, we have,
(3.30)
k
aJ

β,α
(
k
aD

β,αf (x)
)

=
k
aT

1,α

Γ(β−n+1)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−n
(kaJ

n−β,αf(t))tkdt
(tk+1−ak+1)1−α

−
∑n
j=1

k
aT

n−j,α(kaJ
n−β,αf(a))

Γ(β+2−j)

[
(xk+1−ak+1)

α

α(k+1)

]β−j+1

= k
aT

1,α

[
k
aJ

β−n+1,α
(
k
aJ

n−β,αf (x)
)
−
∑n
j=1

k
aT

n−j,α(kaJ
n−β,αf(a))

Γ(β+2−j)

[
(xk+1−ak+1)

α

α(k+1)

]β−j+1
]

= k
aT

1,α

[(
k
aJ

1,αf (x)
)
−
∑n
j=1

k
aT

n−j,α(kaJ
n−β,αf(a))

Γ(β+2−j)

[
(xk+1−ak+1)

α

α(k+1)

]β−j+1
]

= f (x)−
∑n
j=1

k
aD

β−j,αf(a)
Γ(β+1−j)

[
(xk+1−ak+1)

α

α(k+1)

]β−j
.

Proof is done. The second formula can be demonstrated the same way. �

4. k−CONFORMABLE FRACTIONAL DERIVATIVES IN CAPUTO
SETTING

At this stage, we will give some definitions concerned with the theorem and
we will demonstrate some properties of the k−conformable derivative on Caputo
setting.

Definition 4.1. Let α > 0, Re (β) ≥ 0 and n = [Re (β)] + 1. If we take f ∈
Cnα,a

(
f ∈ Cnα,b

)
,

(4.1)(
k,C
a Dβ,αf (x)

)
= k

aD
β,α

[
f (t)−

∑n−1
m=0

k
aT

m,αf(a)
m!

(
(tk+1−ak+1)

α

α(k+1)

)m]
(x)

and
(4.2)(
k,C
a Dβ,αf (x)

)
= kDβ,α

b

[
f (t)−

∑n−1
m=0

(−1)m.kTm,αb f(b)

m!

(
(bk+1−tk+1)

α

α(k+1)

)m]
(x) .

We acquire the left and right Caputo k−conformable fractional derivatives, respec-
tively.

Theorem 4.2. Let Re (β) ≥ 0 and n = [Re (β)]+1. If we take f ∈ Cnα,a
(
f ∈ Cnα,b

)
,

(4.3) k,C
a Dβ,αf (x) = k

aJ
n−β,α (k

aT
n,α
)

and

(4.4) k,CDβ,α
b f (x) = kJn−β,αb

(
kTn,αb

)
.
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We acquire the left and right Caputo k−conformable fractional derivatives in Ca-
puto setting, respectively.

Proof. By considering Definition 5, we have,
(4.5)(

k,C
a Dβ,αf (x)

)
= k

aD
β,α

[
f (t)−

∑n−1
m=0

k
aT

m,αf(a)
m!

[
(xk+1−ak+1)

α

α(k+1)

]m]
(x)

= k
aD

β,αf (x)−
∑n−1
m=0

k
aT

m,αf(a)
m!

h
aT

n,α

Γ(n−β)

[
(xk+1−ak+1)

α

α(k+1)

]n−β+m
Γ(n−β)Γ(m+1)
Γ(n−β+m+1)

= k
aD

β,αf (x)−
∑n−1
m=0

k
aT

m,αf(a)
Γ(m−β+1)

[
(xk+1−ak+1)

α

α(k+1)

]m−β
.

Proof is done. �

Lemma 4.3. Let α > 0, Re (β) ≥ 0, n = [Re (β)] + 1 and Re (β) /∈ N. If f ∈
Cnα,a [a, b]

(
f ∈ Cnα,b [a, b]

)
, we have,

(4.6)

k
aJ

β−s,αf (a) = 0,

k
aJ

β−s,αf (b) = 0
} for s = 0, 1, ..., n− 1.

Proof. We obtain,
(4.7)

k
aJ

β−s,αf (x) = k
aD

s,α
(
k
aJ

β,αf (x)
)

= 1
Γ(β−s)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−s−1
f(t)tkdt

(tk+1−ak+1)1−α
.

In here, we can state via Hölder’s inequality,
(4.8)∣∣k
aJ

β−s,αf (x)
∣∣

≤ 1
Γ(β−s)

(∫ x
a
|f (t)|p tk

) 1
p

(∫ x
a

([
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]β−s−1
f(t)tkdt

(tk+1−ak+1)1−α

)q) 1
q

≤ ‖f‖Xc
(re(β)−s)Γ(β−s)

(
(xk+1−ak+1)

α

α(k+1)

)(re(β)−s)

.

For x = a, we can say that

(4.9) k
aJ

β−s,αf (a) = 0.

Proof is done. �

Lemma 4.4. Let α > 0, Re (β) ≥ 0 and n = [Re (β)] + 1. If we take k
aT

n,α ∈
C [a, b]

(
kTn,αb ∈ Cnα,b

)
,we obtain,

(4.10)

k,C
a Dβ,αf (a) = 0,

k,CDβ,α
b f (b) = 0.

Proof. It is clearly seen that

(4.11)
∣∣k,C
a Dβ,αf (x)

∣∣ ≤ ‖kaTn,α‖Xc
(n−re(β))Γ(n−β)

(
(xk+1−ak+1)

α

α(k+1)

)(n−re(β))
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and

(4.12)
∣∣∣k,CDβ,α

b f (x)
∣∣∣ ≤ ‖kTn,αb ‖Xc

(n−re(β))Γ(n−β)

(
(bk+1−xk+1)

α

α(k+1)

)(n−re(β))

.

Proof is done. �

Theorem 4.5. Let Re (β) ≥ 0, n = [Re (β)]+1 and f ∈ Cnα,a [a, b]
(
f ∈ Cnα,b [a, b]

)
,

(1) If we get Re (β) /∈ N or β ∈ N, then,

(4.13)

k,C
a Dβ,α

(
k
aJ

β,αf (x)
)

= f (x) ,

k,CDβ,α
b

(
kJβ,αb f (x)

)
= f (x) .

(2) If we take Re (β) 6= 0 or Re (α) ∈ N, then,

(4.14)

k,C
a Dβ,α

(
k
aJ

β,αf (x)
)

= f (x)−
k
aJ

β−n+1,αf(a)
Γ(n−β)

[
(xk+1−ak+1)

α

α(k+1)

]n−β
,

k,CDβ,α
b

(
kJβ,αb f (x)

)
= f (x)−

kJβ−n+1,α
b f(a)

Γ(n−β)

[
(bk+1−xk+1)

α

α(k+1)

]n−β
.

Proof. By using Definition 6, we have,
(4.15)

k,C
a Dβ,α

(
k
aJ

β,αf (x)
)

= f(x)−
k
aT

n,α

Γ(n−β)

∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1

×
(∑n−1

m=0

k
aJ

n+m−β,αf(a)
m!

(
(tk+1−ak+1)

α

α(k+1)

)m)
tk.dt

(tk+1−ak+1)1−α

= f(x)−
h
aT

n,α

Γ(n−β)

(∑n−1
m=0

h
aJ

n+m−β,αf(a)
m!

)
×
∫ x
a

[
(xk+1−ak+1)

α−(tk+1−ak+1)
α

α(k+1)

]n−β−1 [
(tk+1−ak+1)

α

α(k+1)

]m
tk.dt

(tk+1−ak+1)1−α
.

In here, by using the following the change of variable,

(4.16)
(
tk+1 − ak+1

)α
= z

(
xk+1 − ak+1

)α
,

we can write,
(4.17)

k,C
a Dβ,α

(
k
aJ

β,αf (x)
)

= f (x)−
∑n−1
m=0

k
aJ

m−β,αf(a)
Γ(m−β+1)

[
(xk+1−ak+1)

α

α(k+1)

]m−β
.

In here, we have k
aJ

β−s,αf (a) = 0 and kJβ−s,αb f (b) = 0 for Re (β) /∈ N by us-
ing Lemma 4. The case β ∈ N is unimportant. Additionaly, if Re (β) ∈ N, we

state k
aJ

β−s,αf (a) = 0 and kJβ−s,αb f (b) = 0 for s = 0, 1, ..., n− 2 by using Lemma
4. �
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Theorem 4.6. Let β ∈ C and f ∈ Cnα,a [a, b]
(
f ∈ Cnα,b [a, b]

)
. We have,

(4.18)

k
aJ

β,α
(
k,C
a Dβ,αf(x)

)
= f (x)−

∑n−1
m=0

h
aT

m,αf(a)
Γ(m+1)

[
(xk+1−ak+1)

α

α(k+1)

]m
,

kJβ,αb

(
k,CDβ,α

b f(x)
)

= f (x)−
∑n−1
m=0

hTm,αb f(a)

Γ(m+1)

[
(bk+1−ak+1)

α

α(k+1)

]m
.

Proof. In here, we can write the following as,

(4.19)

k
aJ

β,α
(
k,C
a Dβ,αf (x)

)
=k
a J

β,α
(
k
aJ

n−β,α (k
aT

n,αf (x)
))

=k
a J

n,α
(
k
aT

n,αf (x)
)

= f (x)−
k
aD

β−j,αf(a)
Γ(β−j+1)

[
(xk+1−ak+1)

α

α(k+1)

]β−j
= f (x)−

k
aD

m,αf(a)
Γ(m+1)

[
(xk+1−ak+1)

α

α(k+1)

]m
.

Proof is done. �

Theorem 4.7. Let f ∈ Cp+rα,a [a, b]
(
f ∈ Cp+rα,b [a, b]

)
, Re (β) ≥ 0, Re (µ) ≥ 0,

r − 1 < [Re (β)] ≤ r and p− 1 < [Re (β)] ≤ p. Then we get,

(4.20)

k,C
a Dβ,α

(
k,C
a Dµ,α (f (x))

)
= k,C

a Dβ+µ,αf (x) ,

k,CDβ,α
b

(
k,CDµ,α

b (f (x))
)

= k,CDβ+µ,α
b f (x) .

Proof. It is clear that the proof can complete by using Theorem 1, Theorem 4,
Theorem 6 and Lemma 5. �

5. FRACTIONAL INTEGRALS AND DERIVATIVES CLASS

1. By considering k = 0 in Definition 2,

k
aJ

β,αf (x) = 1
Γ(β)

∫ x
a

[
(x−a)α−(t−a)α

α

]β−1
f(t)dt

(t−a)1−α
.

We obtain the left fractional conformable integrals in [1] .
2. By considering k = 0 and α = 1 in Definition 2,

k
aJ

β,αf (x) = 1
Γ(β)

∫ x
a

(x− t)β−1
f (t) dt.

We obtain the left Riemann-Lioville fractional integrals.
3. By considering k = 0, α = 1 and a = −∞ in Definition 2,

k
aJ

β,αf (x) = 1
Γ(β)

∫ x
−∞ (x− t)β−1

f (t) dt.

We obtain the left Liouville fractional integrals.
4. By considering k = 0, a = 0 and α = 1 in Definition 2,

k
aJ

β,αf (x) = 1
Γ(β)

∫ x
0

(x− t)β−1
f (t) dt.

We obtain the left Riemann fractional integrals.

5. By considering α = 1, k = 0 and g (x) = Eγα,β

(
ω (x− t)β

)
f (x) in

Definition 2,

Γ (β)
k
a J

β,αg (x) =
∫ x
a

(x− t)β−1
Eγα,β

(
ω (x− t)β

)
f (t) dt.

We obtain the left Prabhakar fractional integrals.
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6. By considering k = 0, α = 1 and a = c in Definition 2,

k
cJ

β,αf (x) = 1
Γ(β)

∫ x
c

(x− t)β−1
f (t) dt.

We obtain the left Chen fractional integrals.
7. By considering k = 0 in Definition 3, we have the left fractional conformable

derivatives in [1] ,

k
aD

β,αf (x) =k
a T

n,α
(
k
aJ

n−β,α) f (x)

=
k
aT

n,α

Γ(n−β)

∫ x
a

[
(x−a)α−(t−a)α

α

]n−β−1
f(t)dt

(t−a)1−α
.

8. By considering k = 0, α = 1 in Definition 3, we have Riemann-Liouville
fractional derivative,

k
0D

β,αf (x) =k
0 T

n
(
k
0J

n−β,α) f (x)

=
k
0T

n

Γ(n−β)

∫ x
0

[x− t]n−β−1
f (t) dt.

9. Taking k = 0, α = 1 in Definition 3, we have the left Caputo fractional
derivative,

k
aD

β,αf (x) =
(
k
aJ

n−β,α (k
aT

n
))
f (x)

= 1
Γ(n−β)

∫ x
a

[x− t]n−β−1 (k
aT

n
)
f (t) dt.

10. Taking k = 0, α = 1 and a = 0 in Definition 3, we have the Riemann
fractional derivative,

k
0D

β,αf (x) =
(
d
dx

)n
.k0J

n−βf (x) .

12. Taking k = 0, α = 1 and a = c in Definition 3, we have the Chen fractional
derivative,

k
cD

β,α =
(
d
dx

)n 1
Γ(n−β)

∫ x
c

(x− t)n−β−1
f (t) dt.

13. Taking k = 0, a = 0, α = 1 and g (x) = f (x) − f (0) in Definition 3, we
have Jumarie fractional derivative,

k
0D

β,α =
(
d
dx

)n
.k0J

n−β,α (f (x)− f (0)) .

14. Taking k = 0, α = 1,and g (x) = E−γρ,n−β [ω (x− t)ρ] f (x) in Definition 3,
we have the Prabhakar fractional derivative,

k
aD

β,αg (x) =
(
d
dx

)n 1
Γ(n−β)

∫ x
a

(x− t)n−β−1
E−γρ,n−β [ω (x− t)ρ] f (t) dt.

15. Taking k = 0, α = 1, a = −∞ in Definition 3, we have the Liouville
fractional derivative,

k
−∞D

β,αf (x) =
(
− d
dx

)n 1
Γ(n−β)

∫ x
−∞ (x− t)n−β−1

f (t) dt.

16. Taking k = 0, α = 1, a = −∞ in Definition 3, we have the Liouville-Caputo
fractional derivative,

k
−∞D

β,αf (x) = 1
Γ(n−β)

∫ x
−∞ (x− t)n−β−1 (− d

dx

)n
f (t) dt.

17. Taking k = 0, α = 1, b = ∞ in Definition 3, we have the Weyl fractional
derivative,

kDβ,α
∞ f (x) = (−1)

n ( d
dx

)n 1
Γ(n−β)

∫∞
x

(x− t)n−β−1
f (t) dt.
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6. Conclusion

In this research, we defined the left and right k− conformable fractional integral
and derivatives, respectively, we demonstrated important consequences and some
basic properties for these operators. Furthermore, we acquired the k−conformable
fractional derivatives on the Caputo setting. In conclusion, we expressed the clas-
sical results for the generalized conformable derivatives and integrals.
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