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Research Article

Abstract − In this paper, we consider a diffusion operator with discrete boundary condi-
tions, which include the conformable fractional derivatives of order α such that 0 < α ≤ 1
instead of the ordinary derivatives in the classical diffusion operator. We prove that the co-
efficients of the given operator are uniquely determined by the Weyl function and spectral
data, which consist of a spectrum and normalizing numbers. Moreover, using the well-known
Hadamard’s factorization theorem, we prove that the characteristic function ∆α (ρ) is deter-
mined by the specification of its zeros for each fixed α. The obtained results in this paper can
be regarded as partial α-generalizations of similar findings obtained for the classical diffusion
operator.
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1. Introduction

Inverse spectral problems aim to reconstruct the coefficients of an operator from given data such as the
Weyl function, nodal points, and spectral data (two spectra or a spectrum and normalizing numbers).
For the last century, these kinds of problems for various classical Sturm-Liouville, diffusion, and Dirac
operators have been extensively investigated; for more details, see [1–7].

The beginning of the fractional derivative dates back to 1695, and many fractional derivative concepts
have been proposed until today, such as the Riemann-Liouville fractional derivative, the Caputo
fractional derivative, and the Atangana fractional derivative. In 2014, Khalil et al. [8] introduced
the conformable fractional derivative. Then, many researchers identified important and fundamental
properties of this derivative in [9–14]. In 2017, Jarad et al. [15] showed that this derivative is necessary
and useful for generating new types of fractional operators. In recent years, numerous significant
studies [16–20] have been conducted on inverse problems related to various conformable fractional
operators, including the diffusion operator.

We consider a conformable fractional diffusion operator with discrete boundary conditions, denoted
as Lα = Lα(p(x), q(x), h,H). The form of this operator is as follows:

ℓαy := −Tα
x T

α
x y + [2ρp(x) + q(x)] y = ρ2y, 0 < x < π (1)

Uα(y) := Tα
x y(0) − hy(0) = 0
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and
Vα(y) := Tα

x y(π) +Hy(π) = 0

where ρ is the spectral parameter, h,H ∈ R, q(x) ∈ W 1
2,α [0, π] and p(x) ∈ W 2

2,α [0, π] are real-valued
functions such that p(x) ̸= const, Tα

x y is a conformable fractional derivative of order α ∈ (0, 1] of y at
x,

Tα
x y(x) = lim

h→0

y(x+ hx1−α) − y(x)
h

, for all x > 0

W 1
2,α [0, π] = {f(x) | f(x) is absolutely continuous on [0, π] and Tα

x f(x) ∈ L2,α (0, π)}

W 2
2,α [0, π] = {f(x) | f(x) and Tα

x f(x) are absolutely continuous on [0, π] and Tα
x T

α
x f(x) ∈ L2,α (0, π)}

and the space L2,α (0, π) consists of all the functions f : [0, π] → R satisfying the condition(∫ π

0
|f(x)|2 dαx

)1/2
=
(∫ π

0
|f(x)|2 xα−1dx

)1/2
< ∞

This operator is referred to as the Conformable Fractional Diffusion Operator (CFDO).

In this paper, we have proved that the coefficients of the given operator can be uniquely determined
by the Weyl function and spectral data, which consist of a spectrum and normalizing numbers.

2. Preliminaries

This section provides some basic notions to be needed in the following sections. Let the functions
φ = φ (x, ρ;α), ψ = ψ (x, ρ;α), and S = S (x, ρ;α) be the solutions of Equation 1 satisfying the
following initial conditions

φ (0, ρ;α) = 1 and Tα
x φ (0, ρ;α) = h (2)

ψ (π, ρ;α) = 1 and Tα
x ψ (π, ρ;α) = −H (3)

S (0, ρ;α) = 0 and Tα
x S (0, ρ;α) = 1 (4)

respectively. From [19, 21, 22], these solutions satisfy the following asymptotic formulas, for |ρ| → ∞
and each fixed α,

φ = cos
(
ρxα

α
− θ(x)

)
+O

( 1
|ρ|

exp
( |Imρ|xα

α

))
(5)

Tα
x φ = −ρ sin

(
ρxα

α
− θ(x)

)
+O

(
exp

( |Imρ|xα

α

))
(6)

ψ = cos
(
ρ (πα − xα)

α
− θ(π) + θ(x)

)
+O

( 1
|ρ|

exp
( |Imρ| (πα − xα)

α

))
(7)

Tα
x ψ = ρ sin

(
ρ (πα − xα)

α
− θ(π) + θ(x)

)
+O

(
exp

( |Imρ| (πα − xα)
α

))
(8)

S = 1
ρ

sin
(
ρxα

α
− θ(x)

)
+O

( 1
ρ2 exp

( |Imρ|xα

α

))
(9)

Tα
x S = cos

(
ρxα

α
− θ(x)

)
+O

(1
ρ

exp
( |Imρ|xα

α

))
(10)

where

θ(x) =
x∫

0

p (t) dαt
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We denote

∆α (ρ) = Wα [ψ,φ] =
∣∣∣∣∣ ψ φ

Tα
x ψ Tα

x φ

∣∣∣∣∣ = ψTα
x φ− φTα

x ψ (11)

where Wα [ψ,φ] is the fractional Wronskian of the functions ψ and φ. Furthermore, the ∆α (ρ) is
called as the characteristic function of the operator Lα and is entire function in ρ for each fixed α.

Lemma 2.1. [23] For each fixed α, ∆α (ρ) does not depend on x and can be written as

∆α (ρ) = Vα (φ) = −Uα (ψ) (12)

Lemma 2.2. [23] The zeros {ρn} of the function ∆α (ρ) are coincide with the eigenvalues of the
operator Lα, and for eigenfunctions ψ (x, ρn;α) and φ (x, ρn;α), there exists a sequence {βn} such
that

ψ (x, ρn;α) = βnφ (x, ρn;α) and βn ̸= 0 (13)

are satisfied for each fixed α.

It is clear from Equations 2, 3, and 13 that βn = ψ (0, ρn;α) = 1
φ(π,ρn;α) .

Lemma 2.3. [23] The equality
.

∆α (ρn) = −2ρnβnαn is valid where
.

∆α (ρ) = d∆α (ρ)
dρ

and the
normalizing numbers are

αn =
π∫

0

φ2 (x, ρn;α) dαx− 1
ρn

π∫
0

p (x)φ2 (x, ρn;α) dαx

Definition 2.4. The data {ρn, αn}n≥1 are called the spectral data of the operator Lα.

Let {ρn} be the eigenvalues set of the operator Lα. From [23], the numbers ρn hold the following
estimate:

ρn = nα

πα−1 + cα,0 + cα,1
n

+ o

( 1
n

)
, n → ∞

where

cα,0 = α

πα

π∫
0

p(x)dαx

and

cα,1 = 1
π

h+H + 1
2

π∫
0

(
q(x) + p2 (x)

)
dαx


Let Gδ =

{
ρ |

∣∣∣ρ− nα
πα−1

∣∣∣ ≥ δ, n ∈ {1, 2, . . .}
}

where δ is a sufficiently small positive number. It is
obvious from Equations 5, 6, and 12 that the function ∆α (ρ) satisfies the inequality

|∆α (ρ)| ≥ cδ |ρ| exp
( |Imρ|

α
πα
)
, ρ ∈ Gδ (14)

3. Main Results

This section proves uniqueness theorems for the solution of inverse problems according to the Weyl
function and spectral data, which consist of a spectrum and normalizing numbers. Together with Lα,
we consider a second operator L̃α = L̃α(p(x), q̃(x), h̃, H̃) of the following form

ℓ̃αy := −Tα
x T

α
x y + [2ρp(x) + q̃(x)] y = ρ2y, 0 < x < π

Ũα(y) := Tα
x y(0) − h̃y(0) = 0
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and
Ṽα(y) := Tα

x y(π) + H̃y(π) = 0

We note that if a certain symbol σ denotes an object related to Lα, then σ̃ will denote an analogous
object related to L̃α.

It can be observed that Wα [φ, S]|x=0 = 1 ̸= 0. Thus, the functions φ and S are linearly independent,
and the function ψ can be written as

ψ (x, ρ;α) = c1 (ρ;α)φ (x, ρ;α) + c2 (ρ;α)S (x, ρ;α) (15)

where c1 (ρ;α) and c2 (ρ;α) are arbitrary constant for each fixed α. It is clear from Equation 15 that

ψ (0, ρ;α) = c1 (ρ;α)φ (0, ρ;α) + c2 (ρ;α)S (0, ρ;α)

and
Tα

x ψ (0, ρ;α) = c1 (ρ;α)Tα
x φ (0, ρ;α) + c2 (ρ;α)Tα

x S (0, ρ;α)

From Equations 2, 4, and 12,
c1 (ρ;α) = ψ (0, ρ;α)

and
c2 (ρ;α) = Tα

x ψ (0, ρ;α) − hψ (0, ρ;α) = −∆α (ρ)

Consequently, Equation 15 is rewritten as

ψ (x, ρ;α) = ψ (0, ρ;α)φ (x, ρ;α) − ∆α (ρ)S (x, ρ;α)

or
−ψ (x, ρ;α)

∆α (ρ) = −ψ (0, ρ;α)
∆α (ρ) φ (x, ρ;α) + S (x, ρ;α) (16)

If we denote

Φ (x, ρ;α) := −ψ (x, ρ;α)
∆α (ρ) and Mα (ρ) := Φ (0, ρ;α) = −ψ (0, ρ;α)

∆α (ρ) (17)

then, from Equation 16,
Φ (x, ρ;α) = S (x, ρ;α) +Mα (ρ)φ (x, ρ;α) (18)

The functions Φ (x, ρ;α) and Mα (ρ) are called as the Weyl solution and the Weyl function of the op-
erator Lα, respectively. It is obvious that Φ (x, ρ;α) is the solution of Equation 1 under the conditions
Uα (Φ) = 1, Vα (Φ) = 0, and Mα (ρ) is a meromorphic function with poles in {ρn}.

Theorem 3.1. If Mα (ρ) = M̃α (ρ) for each fixed α, then q(x) = q̃ (x), almost everywhere in [0, π],
h = h̃, and H = H̃. Thus, the Weyl function uniquely determines the operator Lα.

Proof.
Consider the functions P1 (x, ρ;α) and P2 (x, ρ;α) defined by

P1 (x, ρ;α) = φ (x, ρ;α)Tα
x Φ̃ (x, ρ;α) − Φ (x, ρ;α)Tα

x φ̃ (x, ρ;α) (19)

and
P2 (x, ρ;α) = Φ (x, ρ;α) φ̃ (x, ρ;α) − φ (x, ρ;α) Φ̃ (x, ρ;α) (20)

From Equation 18,

P1 (x, ρ;α) = φ (x, ρ;α)Tα
x S̃ (x, ρ;α) − S (x, ρ;α)Tα

x φ̃ (x, ρ;α) +
[
M̃α (ρ) −Mα (ρ)

]
φ (x, ρ;α)Tα

x φ̃ (x, ρ;α)
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and

P2 (x, ρ;α) = S (x, ρ;α) φ̃ (x, ρ;α) − φ (x, ρ;α) S̃ (x, ρ;α) +
[
Mα (ρ) − M̃α (ρ)

]
φ (x, ρ;α) φ̃ (x, ρ;α)

Since Mα (ρ) = M̃α (ρ), the functions P1 (x, ρ;α) and P2 (x, ρ;α) are entire in ρ, for each fixed α.
Moreover, from Equations 11 and 17,

Wα [φ (x, ρ;α) ,Φ (x, ρ;α)] = −Wα [φ (x, ρ;α) , ψ (x, ρ;α)]
∆α (ρ) = 1

and similarly,
Wα

[
φ̃ (x, ρ;α) , Φ̃ (x, ρ;α)

]
= 1

Thus, Equation 19 can be rewritten as

P1 (x, ρ;α) = 1 + φ (x, ρ;α)
[
Tα

x Φ̃ (x, ρ;α) − Tα
x Φ (x, ρ;α)

]
+ Φ (x, ρ;α) [Tα

x φ (x, ρ;α) − Tα
x φ̃ (x, ρ;α)]

It follows from the asymptotic formulas of Equations 5-10 and Equality 14 that

|P1 (x, ρ;α) − 1| ≤ Cδ

|ρ|
and |P2 (x, ρ;α)| ≤ Cδ

|ρ|
, x ∈ [0, π] , |ρ| ∈ Gδ

Therefore, since lim
|ρ|→∞

|P1 (x, ρ;α) − 1| = lim
|ρ|→∞

|P2 (x, ρ;α)| = 0 by the well-known Liouville’s theorem,

we obtain for x ∈ [0, π] and each fixed α that

P1 (x, ρ;α) = 1 and P2 (x, ρ;α) = 0 (21)

Hence, by using Equations 19-21, we get the following system
φ (x, ρ;α)Tα

x Φ̃ (x, ρ;α) − Φ (x, ρ;α)Tα
x φ̃ (x, ρ;α) = 1

Φ (x, ρ;α) φ̃ (x, ρ;α) − φ (x, ρ;α) Φ̃ (x, ρ;α) = 0
(22)

If System 22 is solved according to functions φ (x, ρ;α) and Φ (x, ρ;α), then

φ (x, ρ;α) = φ̃ (x, ρ;α)

and
Φ (x, ρ;α) = Φ̃ (x, ρ;α)

is obtained, for all x and ρ and each fixed α. Thus, q(x) = q̃(x), almost everywhere in [0, π], h = h̃,
and H = H̃. Consequently, Lα = L̃α.

Lemma 3.2. For each fixed α, the characteristic function ∆α (ρ) is determined by the specification
of its zeros as:

∆α (ρ) = Cρ exp (C1ρ)
∞∏

n=1

(
1 − ρ

ρn

)
exp

(
ρ

ρn

)
where

C = sin θ (π)
∞∏

n=1

ρ

ρ0
n

, C1 = −πα

α
cot θ (π)+

∞∑
n=1

( 1
ρ0

n

− 1
ρn

)
, ρ0

n =
(
n+ θ (π)

π

)
α

πα−1 , n ∈ {1, 2, · · · }

Proof.
It is clear from Equations 5, 6, and 12 that the characteristic function ∆α (ρ) holds the following
asymptotic representation:

∆α (ρ) = −ρ sin
(
ρπα

α
− θ(π)

)
+O

(
exp

( |Imρ|
α

πα
))

(23)
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Consider the function
∆0

α (ρ) = −ρ sin
(
ρπα

α
− θ(π)

)
(24)

The zeros of the function ∆0
α (ρ) are ρ = 0 and ρ0

n =
(
n+ θ(π)

π

)
α

πα−1 such that n ∈ {1, 2, 3, · · · }. Since
∆0

α (ρ) is an entire function, according to the Hadamard’s factorization theorem,

∆0
α (ρ) = −ρm exp (g(ρ))

∞∏
n=1

Ep

(
ρ

ρ0
n

)
(25)

where m ≥ 0 is the multiplicity of the zero eigenvalue, g (ρ) is a polynomial with der (g (ρ)) = p, and

Ep (ξ) =

 (1 − ξ) , n = 0

(1 − ξ) exp
(

ξ
1 + ξ2

2 + . . .+ ξn

n

)
, otherwise

Since the multiplicity of the zero is 1, m = 1. Besides, for every r > 0 and for p = 1, the series
∞∑

n=1
r1+p

|ρ0
n|1+p converges. Therefore, Equation 25 can rewrite as

∆0
α (ρ) = −ρ exp (aρ+ b))

∞∏
n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)
If we consider the following equalities to find the constants a and b,

lim
ρ→0

sin
(
ρπα

α
− θ(π)

)
= lim

ρ→0
exp (aρ+ b))

∞∏
n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)
and

lim
ρ→0

d

dρ
ln
[
sin
(
ρπα

α
− θ(π)

)]
= lim

ρ→0

d

dρ
ln
[
C0 exp (aρ))

∞∏
n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)]
then

C0 = exp (b) = − sin θ(π)

and
C0

1 = a = −πα

α
cot θ(π)

respectively. Thus,

∆0
α (ρ) = −ρC0 exp

(
C0

1ρ)
) ∞∏

n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)
(26)

Moreover,

∆α (ρ) = C exp (C1ρ)) ρm
∞∏

n=1

(
1 − ρ

ρn

)
exp

(
ρ

ρn

)
(27)

where C and C1 are constants and m ≥ 0. According to Equations 23 and 24,
∆α (ρ)
∆0

α (ρ) = 1 +O

(1
ρ

)
, |ρ| → ∞

Then, together with Equations 26 and 27,

∆α (ρ)
∆0

α (ρ) = − C

C0 ρ
m−1

∞∏
n=1

ρ0
n

ρn

∞∏
n=1

(
1 + ρn − ρ0

n − ρ

ρ0
n − ρ

)
exp

( ∞∑
n=1

ρ0
n − ρn

ρnρ0
n

+ C1 − C0
1

)
ρ

Consequently,

m = 1, C = −C0
∞∏

n=1

ρn

ρ0
n

, and C1 = C0
1 +

∞∑
n=1

( 1
ρ0

n

− 1
ρn

)
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Theorem 3.3. If {ρn, αn}n≥1 = {ρ̃n, α̃n}n≥1 for each fixed α, then q (x) = q̃(x), almost everywhere
in [0, π], h = h̃, and H = H̃. Thus, the spectral data {ρn, αn}n≥1 uniquely determines the operator
Lα.

Proof.
Since ρn = ρ̃n, according to Lemma 3.2, ∆α (ρ) = ∆̃α (ρ). Using Lemma 2.3 and αn = α̃n, βn = β̃n

and thus ψ (0, ρn;α) = ψ̃ (0, ρn;α). For each fixed α, let

Hα (ρ) := ψ (0, ρ;α) − ψ̃ (0, ρ;α)
∆α (ρ)

It is clear that Hα (ρ) is entire on ρ. Moreover, by using Equations 7 and 14,

Hα (ρ) := O

( 1
ρ2

)
, |ρ| → ∞

Hence, Hα (ρ) ≡ 0 and ψ (0, ρ;α) = ψ̃ (0, ρ;α). Consequently, from Equation 17, Mα (ρ) ≡ M̃α (ρ).
Thus, the proof is completed by Theorem 3.1.

4. Conclusion

The Weyl function and spectral data are very natural and useful spectral characteristics in inverse
problem theory. Until today, by using these concepts, many inverse problems have been studied for
various classes of operators, such as regular or singular Sturm-Liouville operators, diffusion operators,
and Dirac operators, including the classical derivatives. In [18], some inverse problems for the Sturm-
Liouville operator, including conformable fractional derivatives, are investigated.

In this study, the diffusion operator, which includes conformable fractional derivatives, is considered,
and the inverse problems are investigated for this operator for the first time according to both the
Weyl function and spectral data. This study can be considered as a partial α-generalization of similar
findings for the classical diffusion operator.

Considering this study’s results, some inverse problems can be investigated in the future for various
conformable operators with jump conditions, parameter-dependent boundary conditions, or non-local
boundary conditions.
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[19] Y. Çakmak, Inverse Nodal Problem for a Conformable Fractional Diffusion Operator, Inverse
Problems in Science and Engineering 29 (9) (2021) 1308–1322.
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