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Abstract: This study focuses on the optimization of power bills for a house equipped with a grid-tie solar 

PV-battery system. Rather than adhering to conventional load scheduling practices or minimizing grid 
power usage at each time interval, a novel approach is adopted wherein the optimization is performed 

for the entire 24-hour period simultaneously. By directly incorporating time-of-use rates into the cost 

function, an absolute optimal solution is attained. The findings indicate that compared to single time 

step optimization, the proposed method results in a reduction of the power bill ranging from 6% to 10%, 

depending on load-generation variations. Furthermore, if the utility or government enforces the summer 
tariff consistently throughout the year, the savings escalate to a range of 15% to 22%. Introducing a 

more intelligent tariff structure can thus serve as an effective means to expedite the transition towards 

renewable energy by incentivizing individual investments in solar PV, battery systems, and smart home 
energy management. 
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1. Introduction  

Problem overview: Electricity grids worldwide face technical, socio-economic, and 

environmental challenges, including aging infrastructure [1]. In Europe, for instance, 36% of power 

capacity is set to shut down by 2030 [2]. This aging system lacks smart grid features, resulting in 

increased power outages, particularly in impoverished nations [3]. The growing penetration of 

intermittent solar and wind energy, which rose by 15% in 2019, further adds uncertainty to generation 

[4], endangering grid stability. Without decarbonization efforts, CO2 emissions and associated climate 

change issues will worsen. 

Current solution: Smart grids and energy storage serve as tools to facilitate the energy transition 

[5]. While there is no universally agreed-upon definition of a "smart grid," research papers often consider 

any grid system enabling load control, automated power recording, tariff acquisition, and bill 

optimization as smart [3]. Presently, in standard smart grid control system, excess green energy is 

prioritized over grid power and stored in batteries, minimizing grid consumption. 

Proposed direction: From a customer perspective, incorporating time-of-use rates (ToU) into 

optimization equations and solving the problem for multiple time steps simultaneously (e.g., 24 steps 

instead of 1 step) may reduce the overall energy bill, possibly at the expense of grid power. Essentially, 

storing excess green energy and utilizing grid energy during cheaper tariff periods can contribute to bill 

reduction. The proliferation of electric cars with their substantial batteries makes load-generation-tariff-

based bill optimization more appealing to households compared to traditional grid power minimization. 

Study Scope: This paper addresses the optimization of the overall energy bill for a smart grid-connected 

solar PV-battery house, considering unpredictable load-generation variations. 
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2. Literature Review 

Since the 1973 oil crisis, optimizing energy consumption has been a concern for power industry 

stakeholders, including consumers, utilities, and governments [6]. Consumers aim to reduce bills and 

lower CO2 emissions, while utilities seek to avoid investing in low-capacity factor power plants and 

transmission systems to meet peak demand. For instance, a study optimizing a microgrid with solar PV, 

wind turbines, and batteries found that utility operation costs can be reduced by up to 28% through 

demand response programs [7]. Governments prioritize enhancing energy supply chain performance and 

reliability to strengthen the economy and social welfare. 

The residential sector accounts for around 25% of global electricity consumption [8]. Energy bill 

optimization has been addressed through energy efficiency measures, smart demand control, time-of-

use (ToU) tariff design, solar PV, and battery solutions [9]. Retrofitting old air conditioners with 

variable-speed AC units and replacing old lamps with efficient LED lamps can achieve up to 40% 

savings [10-12]. Research on smart houses focuses on load scheduling algorithm development, demand 

response optimization, and integration of renewable energy (RE) and electric energy storage (EES) 

systems. Load scheduling separates the house load into deferrable (e.g., washing machine, air 

conditioner) and non-deferrable loads (e.g., lights, TV), optimizing peak-to-average ratio (PAR) and 

energy bills [13-15]. Model predictive control (MPC) combined with ToU rates and feed-in tariffs can 

reduce costs by 13% for PV-battery houses' AC consumption [16]. Linear programming, genetic 

algorithms, quadratic programming, and neural networks have been used for cost function optimization 

[17,18]. For instance, studies optimizing thermostatically controlled AC consumption in PV-battery 

houses achieved cost reductions of 20% to 30% [19,20]. While load scheduling achieves lower PAR 

and energy bills, its implementation poses convenience issues due to deferrable load timings. However, 

IoT-based solutions can automate scheduling by adjusting AC power based on weather forecasts or ToU 

rates [21]. Financial incentive-based demand response schemes have improved power factor by 17% for 

300 houses [22]. Punishment-based optimization temporarily disconnects customers from the grid if 

they fail to comply with load reduction orders to prevent blackouts [23]. 

EES is increasingly adopted by residential houses and utilities for grid frequency stabilization. 

Although battery costs are high, their size is minimized in studies. However, controlling a group of 

residential users' EES as a single battery yields the benefits of large-scale EES, reducing power shortage 

by 23% for a group of users [24]. The concept extends to vehicle-to-grid (V2G) systems where electric 

car batteries integrate with the grid. Optimizing solar PV and V2G systems using linear programming 

resulted in payback periods ranging from 4 to 8 years based on battery charge profiles [25]. This study 

optimizes the energy bill of a smart grid-connected solar PV-battery house without imposing load 

scheduling on users. Furthermore, instead of standard time step optimization, simultaneous 24-hour 

consumption is considered for optimization. 

3. System Modeling 

The study examines four smart house system cases, as shown in Figure 1, incorporating PV 

panels, battery, and loads [26,27]. Feed-in tariff restrictions prevent residential users from feeding solar 

power into the grid, given the opposition and scalability challenges of subsidies [26,27]. Sun radiation 

data for a typical meteorological year (TMY) in California is obtained from PVGIS and soda pro, while 

system efficiency is adjusted to match the annual generation from the prediction of global solar atlas 

[26-28]. A PV cost of $1.5/Watt from TESLA is assumed [29]. The load consists of household 

appliances, HVAC, and lighting, utilizing a California residential base load profile [30]. Load 

scheduling is not considered for optimization. The battery capacity and state of charge serve as 
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simulation variables, with charge-discharge limits set at 0.5C for commercially available cells. A base 

battery capacity of 30 kWh (100% of daily mean energy production) is used, subject to revision for 

convergence [30,31]. The battery system cost is set at $150/kWh, considering projected cell costs of 

$100/kWh by 2025 [31]. ToU rates vary by country, with California's actual tariff applied [32]. The grid 

energy is assumed to be unlimited, while the house's subscribed power is limited to 150% of peak load 

for realistic modeling. The simulation scenarios are as follows: 

Case 1: Minimize hourly grid power withdrawal [33]. Multiply the obtained grid power profile by ToU 

rates to calculate the energy bill. 

Case 2: Express the cost function as the hourly energy bill. Simultaneously minimize the sum of 24-

hour bill functions to obtain the daily energy bill, as hourly optimization may yield local minima. 

Case 3: Use the battery charge-discharge profile from case 2 as a reference. Introduce an uncertain load 

to analyze its impact, adding a normally distributed random load between ±50% of peak demand. 

Case 4: Conduct a sensitivity analysis to assess the effect of PV generation variations on case 2. Utilize 

data for a specific year, such as 2015, instead of adding random solar radiation values to the TMY PV 

output. 

 

Figure 1. System Illustration 

 

4. Mathematical  Modeling 

The simulation utilizes key inputs, including solar power (A), load power (D), and Time-of-Use 

(ToU) rates (E). These inputs generate outputs: the battery charge-discharge profile (C) and grid power 

(B). Post-simulation processing yields various key performance indicators (KPIs) such as the bill, Peak-

to-Average Ratio (PAR), simple payback period (SPB), grid power standard deviation, and more. The 

system settings can be found in Table 1. 
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Table 1. System Settings 

No Items Value Unit 

1 PV rated AC power 4.77 kW 

2 PV location lat. 34.271 deg 

3 PV location long. -118.517 deg 

4 PV energy output 1813 kWh/kWp/Yr 

5 PV daily energy output 23.7 kWh/day 

6 PV cost 1.5 $/W 

7 Battery base capacity 30 kWh 

8 Battery limits 0.5 C 

9 Battery cost 150 $/kWh 

10 Peak load 4.77 kW 

11 Minimum load 0.76 kW 

12 Mean load 1.9 kW 

13 Grid power limit 7.2 kW 

 

In terms of data, a preliminary simulation using 8760 hours of data revealed extended computation 

times exceeding 10 minutes on a laptop featuring an Intel Core i3 4005U 1.7GHz processor and 4GB 

RAM running MATLAB 2018. To expedite the simulation process, the annual solar and load data points 

were reduced by calculating a representative Typical Day (TD) dataset, akin to the Typical 

Meteorological Year (TMY) approach. The TMY approach considers the most representative monthly 

data spanning a period of at least 10 years. To obtain Typical Day (TD) data, the average value of a 

specific hour is calculated for each month. For example, the average PV output at 10 am in January 

represents the TD data for that hour in January. This approach significantly reduces the data from 8760 

hours to 288 hours (24 hours multiplied by 12 months), resulting in a 96% reduction. Consequently, the 

entire year is now represented by only 12 data points. A random load is generated using the formula 

provided in equation (1). As for the PV output, the Typical Meteorological Year (TMY) output serves 

as the base, and data from the year 2015 is utilized for sensitivity analysis. 

 

𝑃𝑙𝑜𝑎𝑑𝑇𝐷𝑟𝑎𝑛𝑑 = 𝑃𝑙𝑜𝑎𝑑𝑇𝐷𝑏𝑎𝑠𝑒 (1 − 0.5 + 𝑟𝑎𝑛𝑑 [0,1])                                (1) 

𝑃𝑙𝑜𝑎𝑑𝑇𝐷𝑟𝑎𝑛𝑑 [𝑘𝑊]: Random generated load power 

𝑃𝑙𝑜𝑎𝑑𝑇𝐷𝑏𝑎𝑠𝑒[𝑘𝑊]: Base load power 

 

The actual Time-of-Use (ToU) rates, specific to California residential users with photovoltaic 

(PV) panels and energy storage systems (EES), are used. These rates are applied during both summer 

(June to October) and winter (November to May) seasons to ensure practicality and real-world 

relevance. Additionally, a semi-synthetic ToU rate, which extends the summer tariff into the winter 

period, is employed as a test tariff to assess the potential improvement of the proposed optimization 

method and its efficiency. 

CVX Optimization is a MATLAB toolbox utilized for convex function optimization. In the first 

case (Case 1), at each hourly time step k, the objective function being minimized is the grid power as 

defined in eq (2), where the only unknown variable is the battery power. The linearity of Pgrid allows 

for it to be assumed as a convex function. 
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𝑃𝑔𝑟𝑖𝑑1(𝑘) =  −𝑃𝑉𝑜𝑢𝑡(𝑘) + 𝑃𝑙𝑜𝑎𝑑(𝑘) + 𝑃𝑏𝑎𝑡𝑡(𝑘)              (2) 

𝑘 [−]: Hour time index 

𝑃𝑔𝑟𝑖𝑑1 [𝑘𝑊]: Power consumption from the grid 

𝑃𝑉𝑜𝑢𝑡 [𝑘𝑊]: Solar PV system power output 

𝑃𝑙𝑜𝑎𝑑 [𝑘𝑊]: House power consumption 

𝑃𝑏𝑎𝑡𝑡 [𝑘𝑊]: Battery charge/discharge power 

 

To incorporate losses caused by non-unity battery round trip efficiency, the term Pbatt (k) in eq 

(2) is adjusted by dividing it by the efficiency of the battery “Efficiencybatt” when the battery is in the 

charging mode. The calculation of the hourly bill for Case 1 is determined using eq (3). The total yearly 

bill is then calculated by integrating the typical daily bills over 12 months. 

 

𝐵𝑖𝑙𝑙1(𝑘) =  𝑃𝑔𝑟𝑖𝑑1(𝑘) ∗ 𝑑ℎ ∗ 𝑇𝑜𝑈𝑅(𝑘)                  (3) 

𝐵𝑖𝑙𝑙1 [$]: Bill amount in USD 

𝑑ℎ [ℎ]: Time step in hour 

𝑇𝑜𝑈𝑅 [$ / 𝑘𝑊ℎ]: Electricity time of use rate in USD/kWh 

 

The optimization problem is subject to several constraints, including the maximum (max), 

minimum (min) limits on grid power, the battery power as well as the energy state of charge as specified 

in eq (4)-(6). 

 

𝑃𝑔𝑟𝑖𝑑𝑚𝑖𝑛 ≤  𝑃𝑔𝑟𝑖𝑑1(𝑘)  ≤  𝑃𝑔𝑟𝑖𝑑𝑚𝑎𝑥       (4) 

 

𝑃𝑏𝑎𝑡𝑡𝑚𝑖𝑛 ≤  𝑃𝑏𝑎𝑡𝑡1(𝑘)  ≤  𝑃𝑏𝑎𝑡𝑡𝑚𝑎𝑥       (5) 

 

𝑆𝑜𝐶𝑚𝑖𝑛 ∗ 𝑄𝑏𝑎𝑡𝑡 ≤  𝐸𝑏𝑎𝑡𝑡(𝑘 + 1))  ≤  𝑆𝑜𝐶𝑚𝑎𝑥 ∗ 𝑄𝑏𝑎𝑡𝑡     (6) 

𝑆𝑜𝐶[%]: Battery state of charge 

𝑄𝑏𝑎𝑡𝑡[𝑘𝑊ℎ]: Battery capacity  

𝐸𝑏𝑎𝑡𝑡 [𝑘𝑊ℎ]: Battery energy at time k 

 

The bill and grid energy are calculated by integrating the function Bill1(k) and Pgrid1(k) 

respectively. The Peak-to-Average Ratio (PAR) is defined according to equation (7). 

 

𝑃𝐴𝑅 =  𝑚𝑎𝑥 (𝑃𝑔𝑟𝑖𝑑1)/𝑚𝑒𝑎𝑛(𝑃𝑔𝑟𝑖𝑑1)       (7) 

 

In order to determine the simple payback period (SPB), it is crucial to have knowledge of the bill 

before and after making the investment in the PV-Battery system. The bill when solely relying on the 

grid as the power source is considered as the baseline for comparison as in eq (8). 

 

𝐵𝑖𝑙𝑙0 = ∫ ∫ 𝑃𝑙𝑜𝑎𝑑(𝑛 + 𝑘) ∗ 𝑑ℎ ∗ 𝑇𝑜𝑈𝑅(𝑛 + 𝑘)
𝑘=24

𝑘=1
 

𝑛=12

𝑛=1
      (8) 

𝑛[−]: Month index 

 

The simple payback period (SPB) is calculated according to eq (9), where CAPEX represents the 

capital expenditure required for constructing the Renewable Energy System (RES) and Energy Storage 

System (EES). A comprehensive analysis would typically include additional factors such as operational 
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expenditure (OPEX), cost of capital, inflation rate, materials depreciation, and other relevant 

considerations. However, for the purpose of showcasing the value trend of the proposed method, these 

factors have been omitted in this study to maintain simplicity. 

 

𝑆𝑃𝐵 = (𝐶𝐴𝑃𝐸𝑋𝑃𝑉 + 𝐶𝐴𝑃𝐸𝑋𝑏𝑎𝑡𝑡)/(𝐵𝑖𝑙𝑙0 − 𝐵𝑖𝑙𝑙1)      (9) 

 

In the second proposed case (Case 2), a different approach is taken where instead of optimizing 

the grid power and subsequently calculating the bill, the cost function is directly formulated as shown 

in eq (10). This means that the bill for a specific day, denoted as 'n', is determined by minimizing the 

sum of the bills for all 24 hours. In eq (10), each optimization involves 24 unknown variables: Pbatt1, 

Pbatt2, ..., Pbatt24, representing the battery power at each hour. Since this is a linear combination of 

linear functions, the cost function (Bill2) remains linear as well, allowing it to be assumed as convex for 

optimization purposes. 

 

𝐵𝑖𝑙𝑙2 = ∫ ∫ (𝑃𝑉𝑜𝑢𝑡(𝑛 + 𝑘) + 𝑃𝑙𝑜𝑎𝑑(𝑛 + 𝑘) + 𝑃𝑏𝑎𝑡𝑡(𝑛 + 𝑘)) ∗ 𝑑ℎ ∗ 𝑇𝑜𝑈𝑅(𝑛 + 𝑘)
𝑘=24

𝑘=1
 

𝑛=12

𝑛=1
 (10) 

 

The optimization constraints for the cost function (Bill2) are similar to those of the grid power 

(Pgrid1). There are 24 constraints for the hourly limits of grid power and 24 constraints for the limits of 

battery charge and discharge power. However, since the hourly battery power profile is not available as 

in Case 1, it is not possible to directly calculate the battery energy level and ensure it stays within the 

desired state of charge. To address this issue, an additional constraint is introduced in eq (11) where the 

sum of the 24-hour battery power is set to nearly zero. This constraint ensures that the net energy transfer 

of the battery over the course of the day is zero. 

 

At the end of the simulation, the cumulative battery power is computed to examine the range of 

charge and discharge levels. If this range falls within the battery's state of charge (SoC) requirements, 

the optimization results are considered valid. Otherwise, lower charge or discharge rates are set for a 

new optimization attempt. The bill, grid energy, and Peak-to-Average Ratio (PAR) are calculated using 

the established methodology as mentioned previously. 

 

−0.01 ≤ 𝑃𝑏𝑎𝑡𝑡1 + 𝑃𝑏𝑎𝑡𝑡2+. . . . . +𝑃𝑏𝑎𝑡𝑡24 ≤ 0.01      (11) 

 

In both Case 1 and Case 2, a base load (PloadTDB) and a base PV generation (PVoutTDTMY) 

are utilized. In Case 3, the load is replaced by a randomly variable load (PloadTDRand), and in Case 4, 

the PV generation is replaced by PVoutTD2015. The optimized battery charge/discharge profile 

obtained in Case 2 serves as a model for charge/discharge in Case 3 and Case 4. This means that 

whenever the calculated state of charge and power of the battery for the next time step fall within the 

specified limits, the current battery power is used as the command for charge/discharge. If the limits are 

exceeded, the battery power is set to zero for that time step. 

Case 3 and Case 4 examine how an offline optimized battery power profile can still be effective 

under varying load and generation conditions. In practice, historical load and PV generation data can be 

employed to calculate the optimal battery power profile. The key performance indicators (KPIs) of the 

system are calculated using the same methodology as in Case 1. 
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5. Simulation Results 

The absolute key performance indicators (KPIs) for Case 1 are summarized in table 2, considering 

both the official Time-of-Use (ToU) rates and the synthetic rates. The synthetic ToU rates result in a 

16% increase in the base bill. However, it is worth noting that the simple payback period (SPB) 

decreased by 16% as well. These seemingly contradictory figures can be explained by the fact that the 

synthetic ToU rates yield a base bill0 that is 17% higher than that of the real ToU rates. In reality, the 

savings achieved with the synthetic ToU rates are nearly 20% higher compared to the savings with the 

real ToU rates. The grid energy, grid mean power, and Peak-to-Average Ratio (PAR) remain consistent 

regardless of the ToU rates. This outcome confirms that Case 1 optimizes only for grid power and not 

the overall bill. 

Table 2. Reference Case Absolute Results 

 KPI Real ToUR Synthetic ToUR 

Bill0 (No Investment) [$] 5048 5938 

Bill1 [$] 2202.9 2533.0 

GridEnergy1 [kWh] 7185.0 7185.0 

PAR1 [-] 5.0 5.0 

GridPmean1 [kW] 0.8 0.8 

SPB1 [Month] 49.1 41.0 

 

In Figures 2-3, the grid power profiles of Case 1 and the compared cases under real Time-of-Use 

(ToU) rates are analyzed. It can be observed that, relative to Case 1, the peak hours of Case 2 are shifted 

forward. Upon closer examination, a zoomed view reveals that the peak hours in Case 2 occur between 

midnight and 6 am, unlike Case 1 where they are between 10 pm and 2 am. Additionally, in the summer 

season, the peak hours in Case 2 last longer compared to the winter season. The extended duration of 

peak hours during the night indicates that the optimization method used in Case 2 prioritizes storing 

energy during low tariff periods for later utilization. This is further supported by the fact that the grid 

power in Case 2 drops to nearly zero between 8 am and 10 pm. Furthermore, in Figure 3, it can be 

observed that the grid power profiles of Case 3 and Case 4 closely resemble that of Case 2. This suggests 

that load or generation variations have minimal influence on the optimized battery power profile. 
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Figure 2. Grid Power Case 1-2 

 

 

Figure 3. Grid Power Case 3-4 

 

The bill profiles shown in Figure 4 illustrate that Case 2 has a lower bill during nighttime 

compared to Case 1. This outcome can only be achieved if the power tariff is low during that period, 

which is indeed the case. Despite the power profile of Case 2 being higher during the same time period, 

the optimized strategy allows for cost savings due to the lower tariff at night. Similarly, the bill profiles 

of Case 3 and Case 4 in Figure 5 closely resemble that of Case 2, indicating that the billing patterns 

align with the optimized power profiles. 
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Figure 4. Energy Bill 1-2 

 

 

Figure 5. Energy Bill 3-4 

 

The hourly grid power and bill profiles presented earlier are not easily understandable when 

comparing different optimization methods to Case 1. However, a more effective comparison can be 

made using the Key Performance Indicators (KPIs) shown in Figure 6. Analyzing the bill reductions, 

Case 2 and Case 4 exhibit approximately a 6% reduction, while Case 3 shows a higher reduction of 

10%. This indicates that variations in the load have a greater impact on the system compared to 

variations in generation. The Simple Payback Periods (SPBs) are directly proportional to the bills, 

meaning they follow a similar trend. All the compared cases consume 6%-14% more grid energy than 

Case 1. 

Regarding the Peak-to-Average Ratios (PARs), it is noteworthy that PAR 3 is exceptionally high 

at 16.6%. This occurs when the load changes, and the optimized battery peak charge power coincides 
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with the new peak load, resulting in a high overall peak power from the grid. The slight reduction in 

PAR 4 can be explained if the peak PV power aligns with the peak load power or if the battery's peak 

discharge matches the peak load. In both cases, less power is required from the grid, resulting in a lower 

PAR value. 

 

Figure 6. Real ToU Rates KPIs 

The KPIs results for the synthetic Time-of-Use (ToU) rates are presented in Figure 7. The profiles 

of the KPIs are similar to those of the real ToU rates, but the magnitude of the bills differs significantly. 

In all three cases studied, the bill reduction with synthetic ToU rates is more than double (15%-22%). 

This highlights the crucial importance of the ToU rates for the effectiveness of the optimization process. 

In countries where the ToU rates are flat, storing energy for later use would not provide any benefit. 

From a customer perspective, the overall results of 24-hour simultaneous bill minimization are positive. 

However, from a utilities standpoint, the increased Peak-to-Average Ratio (PAR) and the higher 

consumption of grid energy may not be welcomed. Nevertheless, it is worth noting that the peak grid 

power occurs during off-peak times, which can still be considered a positive outcome by utilities since 

it increases the plant capacity factor. 

 

 

Figure 7. Synthetic ToU Rates KPIs 
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6. Conclusion 

This study focuses on minimizing a household's energy bill by optimizing the 24-hour bill profile 

instead of individual time step power usage. The method efficiently utilizes Time-of-Use (ToU) rates to 

store energy during low tariff periods for use during peak tariff periods. By avoiding the need for load 

scheduling methods, bill reductions of 6% to 10% are achieved, depending on load or PV output 

variations. If the summer ToU rates are extended to the winter, savings can potentially reach 15%-22%, 

highlighting the potential of ToU rates to promote PV-battery system investments. 

In comparison, load scheduling methods only provide 6%-10% savings according to a cited study, and 

they come with customer constraints. The proposed method achieves greater savings without imposing 

any constraints on customers. Although the Peak-to-Average Ratio (PAR) ratios increase up to 16%, a 

closer examination of the grid power profile reveals that the peak occurs during a low tariff off-peak 

period, which does not add extra stress to the grid. This indicates a better utilization of generation 

capacity, leading to improved return on investment for power plants. 

From the customer's perspective, the Simple Payback (SPB) period is reduced by 4% to 14%, resulting 

in a time gain of up to 14 months. The next step in the study is to implement this optimization strategy 

in hardware using affordable electronics, making the solution accessible to a larger number of 

households. 
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