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Abstract
This paper presents common fixed point results for a pair of self-mappings in multiplicative
m-metric space. Also, we present the multiplicative partial metric structure as a specific
caseăof a multiplicative m-metric space and demonstrate some common fixed point results.
To support our conclusions, we present an illustrative example with discontinuous self-
mappings. We also provide numerical iterations to approximate the common fixed point
and graphs to visually substantiate the results. As the consequences of our results, we
demonstrate several common fixed point results in m-metric space and partial metric space.
Our findings generalize various fixed point results from the literature. Furthermore, we
employ the results to demonstrate the existence and uniqueness of solutions to a system
of multiplicative Fredholm integral equations.
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1. Introduction
Non-Newtonian calculus provides a new perspective to intricate systems and phenom-

ena, with applications in diverse fields such as economics, engineering, and physics. This
theory opens up new possibilities for analyzing and understanding these systems, offering a
fresh perspective that can lead to innovative solutions and advancements in these fields. In
1972, Grossman and Katz [8] contributed significantly to non-Newtonian calculus, build-
ing on Robinson’s foundational development of non-standard analysis [16] in the 1960s.
Their work introduced a comprehensive framework based on ultrapowers and hyperreals,
providing a rigorous structure for non-Newtonian calculus that aligns with conventional
mathematics. Stanley [18] made substantial contributions to the discipline of “multiplica-
tive calculus,” commonly known as “geometric calculus.” He was a pioneer in formulating
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the theory of alternative calculus, where the essential notions of differentiation and inte-
gration are defined using multiplicative algebraic operations. Multiplicative calculus has
applications in various fields, including physics, biology, and economics, where multiplica-
tive processes are more natural or relevant than additive ones. It provides a framework
for dealing with such processes and offers insights that may not be easily obtained using
traditional calculus.

The concept of a metric space is widely used in mathematics to explore distances and
topology. In a typical metric space, the distance function is clearly defined and meets
specific criteria, such as non-negativity, commutativity, and triangle inequality. However,
in certain cases, these characteristics may be insufficient, necessitating the use of a gen-
eralized metric space. In such spaces, the distance function may not adhere to all the
traditional prerequisites.

Alternative approaches always have a significant role in understanding and broadening
a number of aspects in mathematics and related branches. The developments in multi-
plicative calculus and its applications to metric spaces offer new perspectives and tools for
studying mathematical structures, particularly in areas where conventional calculus may
not be suitable or applicable. These advancements have implications for various fields,
including mathematics, physics, and computer science, providing alternative approaches
to modeling and analyzing complex systems.

In 2008, Bashirov et al. [6] utilized multiplicative absolute values and established a
new distance function in multiplicative calculus. This approach led to the establishment
of a framework for a multiplicative metric space, which serves as an alternative to the
conventional metric space. Subsequently, in 2012, Ozavsar and Cevikel [14] explored
some fixed point results in multiplicative metric spaces for various types of contractions,
including Banach-type, Kannan-type, and Chatterjea-type contractions (see [5, 7, 11]).
These results have applications in the study of functional analysis and nonlinear analysis.

The generalization of metric space is always a key aspect of fixed point theory in order to
extend the applicability to a broader class of spaces. In 1994, Matthews [12] gave insights
to the scenario of non-zero self distance and conceptualized the notion of partial metric
space. The space was further generalized in 2014 by Asadi et al. [4] by introducing the
notion of an m-metric space. The generalized space possesses a rich topological structure as
an extended version of partial metric space in several prerequisites. Later many researcher
presented fixed point result using various contraction condition (for reference, see [1–3,9,
10,13,15,17,19,21]).

In this manuscript, we present some common fixed point results for a pair of self map-
ping in the framework of multiplicative m-metric space extending the fixed point results
proved in [20]. We establish the multiplicative partial metric structure as a special case
of multiplicative m-metric space and proved some common fixed point results. In order to
prove the authenticity of the results we provide an illustrative example with discontinuous
self mappings. We present some numerical iterations to approximate the common fixed
point and graphs to provide the visual support to our findings. The proven results gen-
eralize a number of fixed point results in the existing literature. Additionally, we utilize
the novel results to check the existence and uniqueness of the solution to a system of
multiplicative integral equations.

2. Preliminaries
In this section, we discuss some definitions and results regarding the multiplicative m-

metric space. Also, the symbols, R denote the set of real numbers, N denote natural
numbers, R0 denote non-negative real numbers. Also, for non-empty set Ω, the multi-
plicative, usual and m-metric spaces are symbolize by the pairs (Ω, u), (Ω, d), (Ω,m).
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Definition 2.1 ([20]). A mapping δ : M × M → [1, ∞) is said to be multiplicative
m-metric if :

(i) δ(ρ, ϑ) = δ(ϑ, ϑ) = δ(ρ, ρ) ⇔ ρ = ϑ;
(ii) δρϑ ≤ δ(ρ, ϑ);
(iii) δ(ρ, ϑ) = δ(ϑ, ρ);

(iv) δ(ρ, ϑ)
δρϑ

≤ δ(ρ, ζ)
δρζ

.
δ(ζ, ϑ)

δζϑ
,

where δρϑ = min
{

δ(ρ, ρ), δ(ϑ, ϑ)
}

, and δ∗
ρϑ = max

{
δ(ρ, ρ), δ(ϑ, ϑ)

}
for all ρ, ϑ, ζ ∈ M .

Also, (M, δ) is said to be a multiplicative m-metric space (M.m-MS ).

Example 2.2 ([20]). Let M = [0, ∞) and δ(ρ, ϑ) = e
ρ+ϑ

2 , then (M, δ) is a M.m-MS. But
(M, δ) is not a multiplicative metric space. As, for ρ ̸= 0, δ(ρ, ρ) = eρ ̸= 1.

Remark 2.3 ([20]). Consider a M.m-MS (M, δ). Then, we have
(i) 1 ≤ δ∗

ρϑ.δρϑ = δ(ρ, ρ).δ(ϑ, ϑ);

(ii) 1 ≤
δ∗

ρϑ

δρϑ
=
∣∣∣∣∣ δ(ρ, ρ)
δ(ϑ, ϑ)

∣∣∣∣∣
∗
;

(iii)
δ∗

ρϑ

δρϑ
≤

δ∗
ρζ

δρζ
.
δ∗

ζϑ

δζϑ
,

for all ρ, ϑ, ζ ∈ M , where δρϑ = min
{

δ(ρ, ρ), δ(ϑ, ϑ)
}

, δ∗
ρϑ = max

{
δ(ρ, ρ), δ(ϑ, ϑ)

}
and

|a|∗ =

a, a ≥ 1;
1
a , a < 1.

for a ∈ R+.

Remark 2.4 ([20]). Consider a M.m-MS (M, δ). Then,

(i) (a) δw(ρ, ϑ) =
δ(ρ, ϑ).δ∗

ρϑ

δρϑ.δρϑ
,

(b) δs(ρ, ϑ) =


δ(ρ,ϑ)

δρϑ
, if ρ ̸= ϑ

1, if ρ = ϑ,

are multiplicative metric on M .

(ii) (a) δ(ρ, ϑ)
δ∗

ρϑ

≤ δw(ρ, ϑ) ≤ δ(ρ, ϑ); δ∗
ρϑ.

(b) δ(ρ, ϑ)
δ∗

ρϑ

≤ δs(ρ, ϑ) ≤ δ(ρ, ϑ),

for all ρ, ϑ ∈ M .

Definition 2.5 ([20]). A sequence {ρκ} in (M, δ) is said to be multiplicative
(i) convergent to ρ if

lim
κ→∞

δ(ρκ, ρ)
δρκρ

= 1.

(ii) mmm-Cauchy if

lim
κ,ℓ→∞

δ(ρκ, ρℓ)
δρκρℓ

and lim
κ,ℓ→∞

δ∗
ρκρℓ

δρκρℓ

exist finitely.

Also, (M, δ) is said to be complete if for every multiplicative m-Cauchy sequence {ρκ} in
M , there exists a point ρ ∈ M such that

lim
κ→∞

δ(ρκ, ρ)
δρκρ

= 1 and lim
κ→∞

δ∗
ρκρ

δρκρ
= 1.
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Lemma 2.6 ([20]). Let {ρκ} → ρ and {ϑκ} → ρ be two sequences in (M, δ) such that
ρκ → ρ and ϑκ → ϑ. Then,

lim
κ→∞

δ(ρκ, ϑκ)
δρκϑκ

= δ(ρ, ϑ)
δρϑ

.

Lemma 2.7 ([20]). Let {ρκ} be a sequence in (M, δ) such that ρκ → ρ and ρκ → ϑ. Then
δ(ρ, ϑ) = δρϑ. Also, in case δ(ρ, ρ) = δ(ϑ, ϑ), then ρ = ϑ.

Lemma 2.8 ([20]). Let {ρκ} be a sequence in (M, δ). If there exists some r ∈ [0, 1) such
that

δ(ρκ+1, ρκ) ≤ δ(ρκ, ρκ−1)r, for all κ ∈ N. (2.1)
Then,

(i) limκ→∞ δ(ρκ+1, ρκ) = 1.
(ii) limκ→∞ δ(ρκ, ρκ) = 1.
(iii) limκ,ℓ→∞ δρκρℓ

= 1.
(iv) {ρκ} is a multiplicative m-Cauchy sequence.

3. Main result
In this section, we have established some common fixed point results using generalized

contraction in the framework of m-metric space. Moreover, we have discussed the structure
of multiplicative partial metric as a subcase of the M.m-MS and proved some common fixed
point results.

Theorem 3.1. Let S, T : M → M be self mappings defined on complete M.m-MS (M, δ).
If there exist a1, a2, a3 ∈ [0, 1) with a1 + a2 + a3 < 1 such that

δ(Sρ, Tϑ) ≤
(
δ(ρ, ϑ)

)a1 (δ(ρ, Sρ)
)a2 (δ(ϑ, Tϑ)

)a3 , for all ρ, ϑ ∈ M. (3.1)
Then, either S or T has a fixed point say ρ0 ∈ M . Moreover, if δ∗

Sρ0,T ρ0
≤ δ(Sρ0, Tρ0),

then S, T have a unique common fixed point.

Proof. For ρ0 ∈ M , we can easily construct a sequence in M defined as
ρ2κ+1 = Sρ2κ, and ρ2κ+2 = Tρ2κ+1 for κ ∈ N0.

If for some κ0 ∈ N0 we have ρ2κ0+1 = ρ2κ0+2. Then,
ρ2κ0+1 = Sρ2κ0 = ρ2κ0+2 = Tρ2κ0+1

implies that ρ2κ0+1 = ρ2κ0+2 is the fixed point of mapping T .
Now, consider ρ2κ+1 ̸= ρ2κ+2 for κ ∈ N0. Then,

δ(ρ2κ+1, ρ2κ+2) = δ(Sρ2κ, Tρ2κ+1)
≤ (δ(ρ2κ, ρ2κ+1))a1(δ(ρ2κ, Sρ2κ))a2(δ(ρ2κ+1, Tρ2κ+1))a3

= (δ(ρ2κ, ρ2κ+1))a1(δ(ρ2κ, ρ2κ+1))a2(δ(ρ2κ+1, ρ2κ+2))a3 ,

or

δ(ρ2κ+1, ρ2κ+2)1−a3 ≤ (δ(ρ2κ, ρ2κ+1))a1+a2 ⇔ δ(ρ2κ+1, ρ2κ+2) ≤ (δ(ρ2κ, ρ2κ+1))
a1+a2
1−a3 .

Using similar arguments, we have

δ(ρ2κ+2, ρ2κ+3) ≤ (δ(ρ2κ+1, ρ2κ+2))
a1+a2
1−a3 .

Therefore,

δ(ρκ, ρκ+1) ≤ δ(ρκ−1, ρκ)
a1+a2
1−a3 or δ(ρκ+1, ρκ) ≤ δ(ρκ, ρκ−1)

a1+a2
1−a3 , for all κ ∈ N.

As a+b
1−c < 1. Using Lemma 2.8, we have

lim
κ→∞

δ(ρκ+1, ρκ) = 1, (3.2)



Common fixed point theorems in multiplicative m-metric space with applications 5

lim
κ→∞

δ(ρκ, ρκ) = 1, (3.3)

lim
κ,ℓ→∞

δρκ,ρℓ
= 1 (3.4)

and {ρκ} is a multiplicative m-Cauchy sequence. As, (M, δ) is multiplicative m-complete,
therefore there exist some ρ ∈ M such that

lim
κ→∞

δ(ρκ, ρ)
δρκ,ρ

= 1 and lim
κ→∞

δ∗(ρκ, ρ)
δ∗

ρκ,ρ

= 1. (3.5)

Moreover, using (3.3), we have

lim
κ→∞

δρκρ = lim
κ→∞

min{δ(ρκ, ρκ), δ(ρ, ρ)} ≤ lim
κ→∞

δ(ρκ, ρκ) = 1. (3.6)

Using (3.5), (3.6) and Remark , we have

lim
κ→∞

δ(ρκ, ρ) = 1, lim
κ→∞

δ∗
ρκρ = 1 and δ(ρ, ρ) = 1. (3.7)

Also,
δρ,Sρ = min{δ(ρ, ρ), δ(Sρ, Sρ)} ≤ δ(ρ, ρ) = 1, (3.8)

and
δρ,T ρ = min{δ(ρ, ρ), δ(Tρ, Tρ)} ≤ δ(ρ, ρ) = 1. (3.9)

Further, using (3.6), (3.9) and the triangle inequality, we have

δ(ρ, Tρ) = δ(ρ, Tρ)
δρ,T ρ

≤ δ(ρ, ρ2κ+2)
δρ,ρ2κ+1

.
δ(ρ2κ+1, Tρ)

δρρ2κ+1,T ρ

≤ lim sup
κ→∞

δ(ρ, ρ2κ+2)
δρ,ρ2κ+1

.
δ(ρ2κ+1, Tρ)

δρ2κ+1,T ρ

≤ lim sup
κ→∞

δ(ρ2κ+1, Tρ),

or
δ(ρ, Tρ) ≤ lim sup

κ→∞
δ(Sρ2κ, Tρ). (3.10)

Using (3.1), (3.6), (3.9) and the triangle inequality in (3.10), we have

δ(ρ, Tρ) ≤ lim sup
κ→∞

δ(Sρ2κ, Tρ)

≤ lim sup
κ→∞

(δ(ρ2κ, ρ))a1(δ(ρ2κ, Sρ2κ))a2δ(ρ, Tρ)a3

≤ lim sup
κ→∞

(δ(ρ2κ, ρ))a1(δ(ρ2κ, ρ2κ+1))a2δ(ρ, Tρ)a3

= δ(ρ, Tρ)a3 .

Since, a3 < 1. Hence,
δ(ρ, Tρ) = 1. (3.11)

Similarly, one can easily observe that

δ(ρ, Sρ) = 1. (3.12)

Using (3.1), (3.7), (3.11) and (3.12), we have

δ(Sρ, Tρ) ≤ (δ(ρ, ρ))a1 .(δ(ρ, Sρ))a2 .(δ(ρ, Tρ))a3 = 1,

or
δ(Sρ, Tρ) = 1. (3.13)

Also,
δSρ,T ρ = min{δ(Sρ, Sρ), δ(Tρ, Tρ)} ≤ δ(Sρ, Tρ) = 1.
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Suppose, δ(Sρ, Sρ) ≤ δ(Tρ, Tρ). Then δ(Sρ, Sρ) = 1. Hence, δ(Sρ, Sρ) = 1 = δ(ρ, ρ) =
δ(ρ, Sρ) implies Sρ = ρ, i.e., ρ is the fixed point of S.
Further, suppose that δ∗

Sρ,T ρ ≤ δ(Sρ, Tρ). Then,
δ(Tρ, Tρ) = max{δ(Sρ, Sρ), δ(Tρ, Tρ)} = δ∗

Sρ,T ρ ≤ δ(Sρ, Tρ) = 1,

or
δ(Tρ, Tρ) = 1.

Therefore,
δ(Sρ, Tρ) = δ(Sρ, Sρ) = δ(Tρ, Tρ) = 1,

implies Sρ = Tρ = ρ.
Uniqueness: Suppose that ϑ ̸= ρ ∈ M is a common fixed point of S, T . Then, using
(3.1), we have

δ(ρ, ϑ) = δ(Sρ, Tϑ)

≤
(

δ(ρ, ϑ)
)a1(

δ(ρ, Sρ)
)a2(

δ(ϑ, Tϑ)
)a3

=
(

δ(ρ, ϑ)
)a1(

δ(ρ, ρ)
)a2(

δ(ϑ, ϑ)
)a3

=
(

δ(ρ, ϑ)
)a1

< δ(ρ, ϑ),

a contradiction. Hence, ϑ = ρ. □
Definition 3.2. A mapping ℘ : M ×M → [1, ∞) is said to be multiplicative partial-metric
if :

(i) ℘(ρ, ϑ) = ℘(ϑ, ϑ) = ℘(ρ, ρ) ⇔ ρ = ϑ;
(ii) ℘(ρ, ρ) ≤ ℘(ρ, ϑ);
(iii) ℘(ρ, ϑ) = ℘(ϑ, ρ);
(iv) ℘(ρ, ϑ) ≤ ℘(ρ,ζ).℘(ζ,ϑ)

℘(ζ,ζ) ,
for all ρ, ϑ, ζ ∈ M . Also, (M, ℘) is said to be a multiplicative partial-metric space.

Example 3.3. For M = R0 with ℘(ρ, ϑ) = emax{ρ,ϑ}, (M, ℘) is a multiplicative partial-
metric space(MPMS).

Remark 3.4. Every MPMS is a M.m-MS. But, converse is not true. For instance, M = R0

with δ(ρ, ϑ) = e
ρ+ϑ

2 is a multiplicative m-metric. Clearly, it is not a multiplicative partial-
metric as δ(1, 1) = e, δ(2, 2) = e2 but δ(1, 2) = e

3
2 < δ(2, 2).

Theorem 3.5. Let S, T : M → M be self mappings defined on complete MPMS (M, ℘).
If there exist a1, a2, a3 ∈ [0, 1) with a1 + a2 + a3 < 1 such that

℘(Sρ, Tϑ) ≤ (℘(ρ, ϑ))a1(℘(ρ, Sρ))a2(℘(ϑ, Tϑ))a3 , for all ρ, ϑ ∈ M. (3.14)
Then S, T have a unique common fixed point.

Proof. As every MPMS is a M.m-MS. Therefore, the result can be easily obtained us-
ing the approach discussed in Theorem 3.1 by taking in account of the fact that ℘ is a
multiplicative partial metric and ℘(Sρ, Sρ), ℘(Tρ, Tρ) ≤ ℘(Sρ, Tρ). □
Corollary 3.6. Let S, T : M → M be self mappings defined on complete MPMS (M, ℘).
If there exists a ∈ (0, 1) such that

℘(Sρ, Tϑ) ≤ (℘(ρ, ϑ))a, for all ρ, ϑ ∈ M.

Then S, T have a unique common fixed point.
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Corollary 3.7. Let S, T : M → M be self mappings defined on complete MPMS (M, ℘).
If there exists k ∈ (0, 1

2) such that

℘(Sρ, Tϑ) ≤ (℘(ρ, Sρ).℘(ϑ, Tϑ))k, for all ρ, ϑ ∈ M.

Then S, T have a unique common fixed point.

Example 3.8. Let M = [0, ∞) equipped with multiplicative m-metric δ(ρ, ϑ) = emax{ρ,ϑ}.
Let S, T are self mapping defined on M = [0, ∞) as

Sρ =

ρ
5 , if ρ ∈ [0, 1)
1
10 , otherwise.

Tρ =

ρ
7 , if ρ ∈ [0, 1)
1
14 , otherwise.

.

The, (M, δ) is a complete M.m-MS. Also,
(i) for ρ, ϑ ∈ [0, 1), we have

δ(Sρ, Tϑ) = emax{Sρ,T ϑ}

= emax{ ρ
5 , ρ

7 } = e
ρ
5

≤ δ(ρ, ϑ)
1
5

(ii) for ρ, ϑ ≥ 1, we have

δ(Sρ, Tϑ) = emax{Sρ,T ϑ}

= emax{ 1
10 , 1

14 } = e
1

10

≤ (emax{ρ,ϑ})
1
5 = δ(ρ, ϑ)

1
5

(iii) for ρ > 1, ϑ ≤ 7
10 , we have

δ(Sρ, Tϑ) = emax{Sρ,T ϑ}

= emax{ 1
10 , ϑ

7 } = e
1

10

≤ (emax{ρ,ϑ})
1
5 = δ(ρ, ϑ)

1
5

(iv) for ρ > 1, 7
10 < ϑ < 1, we have

δ(Sρ, Tϑ) = emax{Sρ,T ϑ}

= emax{ 1
10 , ϑ

7 } = e
ϑ
7

≤ (emax{ρ,ϑ})
1
7 ≤ δ(ρ, ϑ)

1
5

(v) for ϑ > 1, ρ ≤ 5
14 , we have

δ(Sρ, Tϑ) = emax{Sρ,T ϑ}

= emax{ ρ
5 , 1

14 } = e
1

14 ≤ (eϑ)
1
7

≤ (emax{ρ,ϑ})
1
7 ≤ δ(ρ, ϑ)

1
5

(vi) for ϑ > 1, 5
14 < ρ < 1, we have

δ(Sρ, Tϑ) = emax{Sρ,T ϑ}

= emax{ ρ
5 , 1

14 } = e
ρ
5 ≤ (eρ)

1
5

≤ (emax{ρ,ϑ})
1
5

and δ∗
Sρ,T ρ = max{δ(Sρ, Sρ), δ(Tρ, Tρ)} = max

{
eSρ, eT ρ

}
≤ emax{Sρ,T ρ} = δ(Sρ, Tρ).

Therefore, S, T satisfies all the conditions of Theorem (3.1) with a1 = 1
5 , a2 = 0 = a3.

Hence, S, T have a unique common fixed point.



8 K. Yadav, D. Kumar

4. Comparison with existing literature
In this section, we have examined the potential consequences of the findings presented

in the main section of the manuscript. The previous section’s finding can be utilized to
obtain some fixed point results in the framework of m-metric space [4] and partial metric
space [12].

Remark 4.1. Let (M, δ) be a M.m-MS.Then, m(ρ, ϑ) = ln(δ(ρ, ϑ)) is an m-metric. Also,
if (M, ℘) be a MPMS, then p(ρ, ϑ) = ln(℘(ρ, ϑ)) is an partial-metric.

Theorem 4.2. Let S, T : M → M be self mappings defined on complete m-metric space
(M,m). If there exist α, β, γ ∈ [0, 1) with α + β + γ < 1 such that

m(Sρ, Tϑ) ≤ α
(
m(ρ, ϑ)

)
+ β

(
m(ρ, Sρ)

)
+ γ

(
m(ϑ, Tϑ)

)
, for all ρ, ϑ ∈ M.

Then either S or T have a fixed point say ρ0 ∈ M . Moreover, if MSρ0,T ρ0 ≤ m(Sρ0, Tρ0),
then S, T have a unique common fixed point.

Proof. Consider δ(ρ, ϑ) = em(ρ,ϑ). Then, S, T satisfies all the conditions of Theorem 3.1.
Hence, S, T have a unique common fixed point. □

Theorem 4.3. Let T : M → M be a self mapping defined on complete m-metric space
(M,m). If there exist α, β, γ ∈ [0, 1) with α + β + γ < 1 such that

m(Tρ, Tϑ) ≤ α
(
m(ρ, ϑ)

)
+ β

(
m(ρ, Tρ)

)
+ γ

(
m(ϑ, Tϑ)

)
, for all ρ, ϑ ∈ M.

Then T has a unique fixed point.

Proof. The result follows from Theorem 4.2 by substituting S = T . □

Theorem 4.4. Let S, T : M → M be self mappings defined on complete partial-metric
space (M, p).If there exist α, β, γ ∈ [0, 1) with α + β + γ < 1 such that

p(Sρ, Tϑ) ≤ α
(
p(ρ, ϑ)

)
+ β

(
p(ρ, Sρ)

)
+ γ

(
p(ϑ, Tϑ)

)
, for all ρ, ϑ ∈ M.

Then, S, T have a unique common fixed point.

Proof. Consider ℘(ρ, ϑ) = ep(ρ,ϑ). Then, S, T satisfies all the conditions of Theorem 3.5.
Hence, S, T have a unique common fixed point. □

Theorem 4.5. Let T : M → M be a self mapping defined on complete partial-metric
space (M, p). If there exist α, β, γ ∈ [0, 1) with α + β + γ < 1 such that

p(Tρ, Tϑ) ≤ α
(
p(ρ, ϑ)

)
+ β

(
p(ρ, Tρ)

)
+ γ

(
p(ϑ, Tϑ)

)
, for all ρ, ϑ ∈ M.

Then T has a unique fixed point.

Proof. The result follows from Theorem 4.3 by substituting S = T . □

Remark 4.6. Several other consequences of the results can be seen as :
(i) Theorem 1, Corollary 1 and Corollary 2 of [20], can be obtained using Theorem

3.1;
(ii) Theorem 4.3 is an generalization of fixed point result proved in Theorem 3.1 and

Theorem 3.2 of [4];
(iii) Theorem 4.2 extends the results of [4] for a pair of self mapping.
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5. Existence of the solution to the system of multiplicative Fredholm
integral equation using multiplicative m-distance

In this section, we have presented the applicability of the proved results by establishing
the existence of solution to a system of multiplicative integral equation.

Definition 5.1 ([8]). Consider a positive function g : R → R+. Then

d∗ g(ρ)
dρ

= g∗(ρ) = lim
h→0

(
g(ρ + h)

g(ρ)

) 1
h

,

∫ b

a
g(ρ)dρ = e

∫ b

a
ln(g(ρ)) dρ,

are respectively the multiplicative derivative and integral of g.

Theorem 5.2 ([8]). Consider two multiplicative integral function f and g defined on [a, b].
Then

(i)
∫ b

a (f(ρ).g(ρ))dρ =
∫ b

a f(ρ)dρ.
∫ b

a g(ρ)dρ;

(ii)
∫ b

a
f(ρ)
g(ρ)

dρ
=
∫ b

a
f(ρ)dρ∫ b

a
g(ρ)dρ

;

(iii)
∫ b

a ((g(ρ))κ)dρ = (
∫ b

a g(ρ)dρ)κ;
(iv)

∣∣∣∫ b
a g(ρ)dρ

∣∣∣ ≤
∫ b

a

∣∣g(ρ)
∣∣dρ.

Theorem 5.3. Consider the following system of multiplicative integral equation of Fred-
holm type 

ϑ(z) =
[∫ 2

1

(
ϑ(s)K1(s,z)

)ds
]α

, where s, z ∈ I = [1, 2]

ϑ(z) =
[∫ 2

1

(
ϑ(s)K2(s,z)

)ds
]α

, where s, z ∈ I = [1, 2],
(5.1)

where K1(s, z), K2(s, z) are continuous function defined on I × I such that
∣∣Ki(s, z)

∣∣ ≤ βi

for 1 ≤ i ≤ 2. If βα < 1, where β = max{β1, β2}, then we have a unique solution to the
system of integral equations (5.1).

Proof. Consider the collection of all multiplicative continuous positive function on [1,2]
denoted as C∗[1, 2]. Then the mapping δ : C∗[1, 2] × C∗[1, 2] → [1, ∞) defined as

δ(ρ, ϑ) = sup
z∈[1,2]

∣∣∣∣∣ρ(z)
ϑ(z)

∣∣∣∣∣
∗

. min

 sup
z∈[1,2]

∣∣ρ(z)
∣∣
∗ , sup

z∈[1,2]

∣∣ϑ(z)
∣∣
∗

 ,

where |a|∗ =

a, a ≥ 1;
1
a , a < 1.

is a multiplicative m-metric. Moreover, C∗[1, 2] is a complete

M.m-MS.
Define the self mappings T1 and T2 on C∗[1, 2] as

T1(ϑ(z)) =
[∫ 2

1

(
ϑ(s)K1(s,z)

)ds
]α

,

T2(ϑ(z)) =
[∫ 2

1

(
ϑ(s)K2(s,z)

)ds
]α

.

Consider

δ(T1(ϑ1), T2(ϑ2)) = sup
z∈[1,2]

∣∣∣∣∣T1(ϑ1(z))
T2(ϑ2(z))

∣∣∣∣∣
∗

. min

 sup
z∈[1,2]

∣∣T1(ϑ1(z))
∣∣
∗ , sup

z∈[1,2]

∣∣T2(ϑ2(z))
∣∣
∗
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= sup
z∈[1,2]

∣∣∣∣∣∣∣∣∣

∫ 2

1

(
ϑ1(s)K1(s,z)

)ds

∫ 2
1

(
ϑ2(s)K2(s,z)

)ds


α
∣∣∣∣∣∣∣∣∣
∗

× min

 sup
z∈[1,2]

∣∣∣∣∣∣
(∫ 2

1

(
ϑ1(s)K1(s,z)

)ds
)α
∣∣∣∣∣∣
∗

, sup
z∈[1,2]

∣∣∣∣∣∣
(∫ 2

1

(
ϑ2(s)K2(s,z)

)ds
)α
∣∣∣∣∣∣
∗


≤ sup

z∈[1,2]

∫ 2

1

∣∣∣∣∣ϑ1(s)
ϑ2(s)

∣∣∣∣∣
ds

∗

βα

. min

 sup
z∈[1,2]

(∫ 2

1

∣∣ϑ1(s)
∣∣ds
∗

)βα

, sup
z∈[1,2]

(∫ 2

1

∣∣ϑ2(s)
∣∣ds
∗

)βα


≤

 sup
z∈[1,2]

∣∣∣∣∣ϑ1(s)
ϑ2(s)

∣∣∣∣∣
∗

. min

 sup
z∈[1,2]

∣∣ϑ1(z)
∣∣
∗ , sup

z∈[1,2]

∣∣ϑ2(z)
∣∣
∗




βα

=
(
δ (ϑ1, ϑ2)

)βα
.

Also, δT1(ϑ),T2(ϑ) ≤ δ(T1(ϑ), T2(ϑ)) . Therefore, T1, T2 satisfies all the conditions of Theo-
rem 3.1 with a1 = βα < 1, a2 = a3 = 0. Hence, T1, T2 have a unique common fixed point
i.e., system of equations (5.1) has a unique solution. □

6. Numerical approximation of common fixed point
In this section, we presented some iterations for approximating the common fixed point

of S, T in Example 3.8. In addition, we graphically demonstrated the convergence of
Iterative sequence and concluded that the fixed point of the mapping is independent of
the iterative procedure’s initial point (see Figures 1 and 2). The iteration scheme used for
the approximation is given as

For initial point x0, x2κ+1 = Sx2κ and x2κ+2 = Tx2κ+1

Figure 1. Convergence behaviour of iteration scheme at different initial points
for Example 3.8
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Figure 2. Numerical iteration for Example 3.8

7. Conclusion
In the present manuscript, we discuss common fixed point results for a pair of self-

mappings within the framework of multiplicative m-metric spaces, building upon previous
fixed point results. We establish the multiplicative partial metric structure as a special
case of a multiplicative m-metric space and prove common fixed point results. To validate
our findings, we provide an illustrative example with discontinuous self mappings and
present numerical iterations to approximate the common fixed point, supported by graphs.
Our results have consequences for common fixed point results in m-metric spaces and
partial metric spaces, and the results generalize several fixed point results in the literature.
Additionally, we utilize these results to verify the existence and uniqueness of solutions to
a system of multiplicative integral equations.
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