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1. INTRODUCTION 
Electrical machines are indispensable for industry, especially 

in power generation, manufacturing and transportation. In these 

applications, they play a critical role in the conversion and 

control of energy and are essential to meeting the energy 

demands of modern society. Due to occasional malfunctions in 

electrical machines, they do not operate at high efficiency and 

may consume more energy than necessary. This leads to higher 

operating costs. Failures that occur can create safety hazards 

for workers, such as electric shock or fire. These hazards can 

cause injury, equipment damage, or even death. For these 

reasons, it is necessary to detect faults before they progress and 

to implement preventive maintenance and monitoring 

programs. 

Electric motors have complex internal structures and 

mechanisms that make it difficult for humans to visually 

inspect and identify faults. Many faults occur in motor parts or 

electrical windings that are not easily accessible or visible 

without disassembling the motor. Many motor failures present 

as subtle changes in performance or behavior that are not 

immediately noticeable to humans [1]. Identifying motor 

failures often requires a deep understanding of motor operation, 

performance characteristics and failure patterns. Some faults in 

motor may occur intermittently or under certain operating 

conditions. Detecting such errors in real time requires constant 

monitoring of various parameters and being able to analyze 

large volumes of data quickly. People can find it difficult to 

constantly monitor motors at such high frequencies and to 

analyze complex data patterns effectively. In contrast, 

machine-learning models can overcome these challenges by 

analyzing large amounts of data from engines, detecting fine 

patterns, and identifying error signatures more accurately and 

efficiently. These models process data in real time, providing 

continuous monitoring and timely fault detection, increasing 

overall motor reliability and minimizing downtime. Deep 

learning methods are based on the use of raw input data, unlike 

traditional approaches where it is necessary to manually extract 

the properties of the input data. Thus, the need for expert 

knowledge is minimized [2]. Due to these advantages, deep 

learning models have been applied in many different fields 

such as detecting brain abnormalities from magnetic resonance 

images (MRI) [3], diagnosing heart diseases from 

electrocardiography (ECG) signals [4, 5], face recognition [6], 

speech recognition [7], as well as motor fault detection [8-16], 

and successful results have been obtained. 
The most preferred input data for detecting faults in motor 

bearings are current [8-10] and vibration [11-16] data. 
Vibration signals are very sensitive to the presence of bearing 
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defects or anomalies. Within the realm of deep learning 
models, convolutional neural networks (CNN) excel at learning 
features from mechanical vibration signals. As a result, many 
studies have utilized CNNs for intelligent fault diagnosis of 
machines [11-14]. 

Jia et al. [11] proposed an approach called deep normalized 
convolutional neural network (DNCNN) to solve the problem 
that CNNs do not take into account the unbalanced distribution 
of machine health conditions. In this approach, normalized 
layers based on weight normalization strategy and ReLU 
activation function are used to improve the training process. A 
weighted softmax loss has been developed to deal with the 
unbalanced distribution data problem. In addition, a neuron 
activation maximization (NAM) algorithm was developed to 
understand how DNCNN learns features from vibrational 
signals. 

Machine learning models trained with data previously 
collected from another machine may not perform satisfactorily 
when the environment and operating conditions change on 
different machine instances. Asutkar et al. [12] presented a 
transfer-learning model to address this deficiency. With 1D-
CNN and transfer learning, it has been determined that the 
accuracy rates are high even if datasets from different machines 
are used in training and testing. Shen et al. [14] developed an 
approach that embed the physical knowledge of bearing faults 
into the model training process. Fault detection has been 
successfully achieved with this deep learning approach, which 
consists of a simple threshold model and CNN model for error 
detection. In addition, generative adversarial networks (GAN) 
[15], long-short-term-memory (LSTM) [16] models were also 
used in motor fault diagnosis and motivating results were 
obtained. 

Various sensor equipment and platforms installed around 

the motor are used to obtain vibration signals for motor fault 

diagnosis [10]. These platforms are both costly and impractical 

to use. In this study, motor vibration data were collected with a 

non-invasive mobile application in order to evaluate motor 

health with an easy method that does not require the use of 

expensive sensors and minimizes the need for expert 

knowledge. Today, the possibilities of smartphones, which are 

available to almost everyone, are used in motor fault diagnosis 

and the motor health status is evaluated without any cost. With 

the CNN model, which is one of the deep learning methods and 

has proven to be successful in diagnosis and classification in 

many areas, motor fault diagnosis has been carried out without 

error. Thus, a low-cost and practical method for the problem is 

presented.  

 

Segmentation

Vibrations signals 

from smartphone

Deep 1D-CNN 

Model

Healthy Faulty

Smart Phone

Train Set

Valid Set

Test Set

Figure 1.  Illustration of the flowchart to build proposed approach. 

 

2. MATERYAL VE METOD 
In this study, a mobile application has been developed to detect 

motor failures from vibration data with 1D-CNN model. 

Illustration of the flowchart to build proposed approach is given 

in Figure 1. The phone, on which the mobile application was 

installed, was placed on the motor and data acquisition was 

performed in three axes (X, Y, Z). The data is segmented and 

divided into train set, validation set and test set. The 1D-CNN 

model was trained with the vibration data received, and then 

the performance of the model was evaluated with the test data. 

 

2.1. Mobile Application  
The mobile application used to get vibration data from the 
electric motor was realized with Flutter based on Dart 
language. Developed in 2011 by Google, Dart is defined as an 
object programming language. Flutter, developed by Google, 
makes it possible to develop applications for Android, iOS and 
web through a single toolkit. The reason why Flutter 
environment was preferred in this study is that Flutter enables 
the development of applications for different operating systems 
and devices through a single code base. The interface of the 
mobile application is as shown in Figure 2. Vibration data in 
the X-, Y- and Z-axes can be easily obtained by placing the 
phone with the application installed on it on an electric motor, 
opening the application screen and pressing the "Start 
Recording" button shown in Figure 2 (a). After starting the 
application, the application can show the vibrations in the X-, 
Y- and Z-axes both graphically and numerically as shown in 
Figure 2 (b). When the "Stop Recording" button is pressed, the 
application stops receiving vibration data and saves the 
received data in an excel spreadsheet. To delete the received 
data from the excel table, press the "Clear Table" button. Thus, 
the application becomes ready again to receive new data.  

 

(a)                                           (b) 
Figure 2. Visual interfaces of the mobile application (a) Application opening 
screen (b) When receiving real-time vibration data. 

 

2.2. Proposed 1D-CNN Model 
The CNN model proposed in this study is realized with an end-
to-end learning structure. With this model, which does not 
require any feature extraction step, it is aimed to detect the 
motor health status. Since the vibration signals are one-
dimensional, a 1D-CNN model is used. 

The designed deep network model consists of 13 layers. 
The model has 1D Convolution (Conv1D), MaxPooling 
(MaxPool), flatten and dense layers. Figure 3 shows the 
structure of the proposed model for electric motor fault 
detection. Table I shows the parameters of the model in detail. 
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Figure 3. Architecture of proposed 1D-CNN model 

 
TABLE I 

DETAILED LAYERS AND PARAMETERS OF THE PROPOSED 1D-CNN MODEL 

Layer Layer Name Kernel×Unit 
Other Layer 
Parameters 

1 Conv1D 5×32 Activation = ReLu, 
Strides = 1 

2 MaxPooling1D - Strides = 2 

3 Conv1D 3×64 Activation = ReLu, 
Strides = 1 

4 MaxPooling1D - Strides = 2 

5 Conv1D 5×128 Activation = ReLu, 

Strides = 1 
6 MaxPooling1D - Strides = 2 

7 Conv1D 3×256 Activation = ReLu, 

Strides = 1 
8 MaxPooling1D - Strides = 2 

9 Conv1D 7×256 Activation = ReLu, 

Strides = 1 
10 Conv1D 3×32 Activation = ReLu, 

Strides = 1 

11 Flatten - - 
12 Dense 1×128 ReLu 

13 Dense 1×2 Softmax 

 

Convolutional layers are the fundamental building blocks 

of CNNs. Convolutional layers consist of filters that slide over 

the input image, scanning for relevant patterns and features. 

Pooling layers reduce the spatial dimensions of feature maps 

while preserving important information. Flatten layer flattens 

the feature maps into a 1D vector before transferring the data 

to the dense layers. The dense layer, also known as the fully 

connected layer, connects every neuron (or node) in the 

previous layer to every neuron in the current layer, creating a 

dense, fully connected network of neurons. In the last layer of 

the network, the softmax layer is used to predict the class to 

which the input signals belong. The optimizer selected was the 

Adam optimizer, and loss function was selected as the binary 

cross-entropy. After developing the model, the layer numbers, 

types and parameters of the deep algorithm are changed by 

brute force technique and the performance of the CNN model 

are observed. 

 

2.3. Dataset  
A three-phase, two-pole, 50 Hz, 5.5 kW asynchronous motor 

was selected for data acquisition. Firstly, data was obtained 

from the faulty motor and then the motor was repaired and data 

was obtained from the healthy motor in three axes (X, Y, Z). 

At 40 Hz operating frequency, vibration data of 64000×3 (1280 

seconds) from the faulty motor (F) and 64000×3 (1280 

seconds) from the healthy motor (H) were taken. These data 

were segmented in 500×3 dimension with 50 sample shifts. 

Thus, 1270 samples were obtained from each of the H and F 

classes, 2540 data samples in total.  Then 80% of all data was 

used for training, 10% for validation and 10% for testing. 

Figure 4 shows the X-, Y- and Z-axes vibration signal 

samples from the faulty and healthy motor. When the vibration 

samples are analyzed, it is seen that the peak value of the 

vibration amplitude of the defective motor is approximately 1.7 

and the peak value of the vibration amplitude of the healthy 

motor is approximately 0.9. 
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(b) 

Figure 4. Vibration samples a) Faulty motor b) Healthy motor 

 
In this study, the performance of the proposed CNN model 

in motor fault detection is tested with four different cases: 

 Case 1: Motor fault detection using X-axis data. 

 Case 2: Motor fault detection using Y-axis data. 

 Case 3: Motor fault detection using Z-axis data. 

 Case 4: X-axis, Y-axis, Z-axis data were given to the 

deep learning model as three different features and 

motor fault detection was performed. 

 

3. EXPERIMENTAL RESULTS 
The 1D-CNN model was first trained on each axis data 

separately to obtain loss and accuracy values. Figure 5 shows 

the changes in the accuracy and loss values of the model over 

10 epochs for the cases where X-axis, Y-axis and Z-axis data 

are used, respectively. Looking at the performance graphs, it is 

seen that the model does not have an overfitting problem. 
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Figure 5. Accuracy and loss graphs for each case a) X-axis, b) Y-axis, c) Z-

axis 

 

The training performances of the model on each axis data 

were quite successful. However, considering the motor fault 

types, it was thought that providing all axis data to the model 

input would provide an even superior performance. In line with 

this idea, X-, Y- and Z-axes signals were combined and the 

training performance of the model was observed. Figure 6 

shows the performance graphs obtained by combining X-axis, 

Y-axis and Z-axis signals and feeding them to the model input. 

As can be seen in the graphs, combining X-axis, Y-axis and Z-

axis data provided similar performance in the performance 

measures of the model. 
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Figure 6. Accuracy and loss graphs for X-axis, Y-axis, Z-axis together 
 

Accuracy, the most widely used performance evaluation 

metric, is used to evaluate the performance of the model. The 

accuracy value is calculated as in Equation 1: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100                 (1) 

 

In the equation, TP represents true positives and TN 

represents true negatives. Similarly, FP represents false 

positives and FN represents false negatives. Table Ⅱ shows the 

validation accuracy values of the model at each epoch for the 

cases generated. When these values are analyzed, it is seen that 

the model quickly learns the motor fault condition. 

 
TABLE Ⅱ 

VALIDATION ACCURACY VALUES OF THE 1D-CNN MODEL AT EACH EPOCH  

(%) 

 X-axis Y-axis Z-axis X,Y,Z-axis 

Epoch 1 0.9724 0.9606 0.9685 0.9724 

Epoch 2 1.0 0.9881 0.9921 1.0 

Epoch 3 1.0 1.0 1.0 1.0 

Epoch 4 1.0 0.9960 1.0 1.0 

Epoch 5 1.0 1.0 1.0 1.0 

Epoch 6 1.0 1.0 1.0 1.0 

Epoch 7 1.0 1.0 0.9960 1.0 

Epoch 8 1.0 1.0 1.0 1.0 

Epoch 9 1.0 1.0 1.0 1.0 

Epoch 10 1.0 1.0 1.0 1.0 

 

The trained model was run on 254 test data. It was observed 

that the proposed model achieved 100% performance on the 

test data in all cases.  

 

4. DISCUSSION 
In this study, a deep learning model is trained using data 

obtained from a mobile platform to determine the motor fault 

status. The biggest advantage of the study is that it enables fault 

diagnosis only with the help of a smartphone without the need 

for any external sensor connection. Thus, fault conditions can 

be detected without the need for any platform installation inside 

or around the motor. The 1D-CNN model used in the study 

eliminates the need for any feature extraction step by providing 

end-to-end learning. The 1D-CNN model trained on the data 

obtained from the developed mobile application provided 

100% accurate detection. In addition, fault recognition can be 

achieved by using any of the X-, Y- and Z-axes for the motor 

used. 
In addition to its advantages, this study has several 

limitations. First of all, a single motor dataset was used for the 
study. Since the number of records in the dataset is limited, the 
number of data was increased with the 50-sample sliding 
window method. If more records are obtained, higher and more 
reliable accuracy values can be achieved. A single motor type 
was used in the study. The use of electric motors of different 
power and types will be useful in evaluating the 
generalizability of the proposed model. 

In this study, only faulty and healthy motor diagnostics 

were performed. No classification of the type of failure was 

performed. The detection of different types of faults with the 

vibration information received from the mobile phone will be 

the subject of future studies. 

 

5. CONCLUSION 
In this study, motor vibration data is obtained from a mobile 

application and the health status of a motor is evaluated with a 

1D-CNN model. The accuracy of the proposed 1D-CNN model 

is tested by first using the X-axis, Y-axis and Z-axis vibration 

data from the mobile application individually and then feeding 

these three axes data to the model simultaneously. In each case, 

the 1D-CNN model, which does not require any feature 

extraction and is easy to implement, performed an accurate 

classification with 100% accuracy rate. With this study, an 

experimental study is presented that the accelerometer sensors 
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in mobile phones are useful for evaluating the motor health 

status, and that healthy and faulty motor states can be detected 

without the need for any sensor or vibration meter. 
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