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Abstract. The objective of this article is to characterize each of compact,
sober, and Ti for i = 0, 1, 2 constant limit spaces as well as to investigate the

relationships between them. Finally, we compare our results in some topolog-

ical categories.

1. Introduction

The lack of natural function spaces in Top, the category of topological spaces and
continuous maps which is not cartesian closed has been recognized as an awkward
situation for various applications in the field of functional analysis and homotopy
theory. The category Lim of limit spaces and continuous maps which is carte-
sian closed [17] supercategory of Top. Limit spaces with compatible vector space
structures are used to develop a calculus for vector spaces without norm [22].

Baran, in [2], introduced the notion of (strong) closedness in terms of final lifts,
initial lifts, and discrete structures which are available in a topological category.
He used these notions to generalize each of compact, sober, and Ti, i = 1, 2, 3, 4
objects in topological categories in [2, 7, 12].

The sober spaces were introduced in [18] and used in the theory of non-T2 spaces.
In 2022, Baran and Abughalwa [12] gave various forms of sober objects in a topo-
logical category and investigated relationships among these various forms.
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The objective of this article is to characterize each of compact, sober, and Ti for
i = 0, 1, 2 constant limit spaces as well as to investigate the relationships between
them. Finally, we compare our results in some topological categories.

2. Preliminaries

Definition 1. Let B ̸= ∅, F (B) be the set of filters (proper or improper) on B, and
the map K : B −→ P (F (B)). We call (B,K) is a constant limit space if K satisfies:

(i) [s] ∈ K, ∀s ∈ B, where [s] = {U ⊂ B : s ∈ U},

(ii) if α ∈ K and α ⊂ β, then β ∈ K,

(iii) if α, β ∈ K, then α ∩ β ∈ K.

Let (B,K) and (C,L) be constant limit spaces. If f(α) ∈ L for every α ∈ K, then
a map f : (B,K) −→ (C,L) is called continuous, where f(α) = {U ⊂ C : ∃V ∈ α
such that f(V ) ⊂ U}.

We denote ConLim by the category of constant limit spaces and continuous
maps.

Proposition 1. ( [5]) (1) Let {(Bi,Ki), i ∈ I} in ConLim, B be a set, and
{fi : B −→ (Bi,Ki), i ∈ I} be a source in Set. {fi : (B,K) −→ (Bi,Ki), i ∈ I} in
ConLim is an initial lift iff K = {α ∈ F (B) : fi(α) ∈ Ki,∀i ∈ I}.

(2) An epi sink {fi : (Bi,Ki) −→ (B,K)} in ConLim is a final lift iff α ∈ K
implies

⋂n
i=1 f(αi) ⊂ α for some αi ∈ Ki, i ∈ I.

(3) K = {α : α = [U ], U ⊂ B is finite } is discrete structure on B, where
[U ] = {V ⊂ B : U ⊂ V }.

The constant limit structure on a finite set B is unique. Let B = {a1, a2, ..., an}.
The discrete structure on B, K = {α : α = [U ], U ⊂ B} = F (B), the indiscrete
structure on B.

3. Closed Subobjects

Let X be a set, X∞ = X ×X × ... be the countable product of X, and a ∈ X.∨∞
a X (resp., X

∨
a X) is formed by taking countably many disjoint (resp., two

distinct) copies of X identifying them at the point a.

Definition 2. ( [2, 6]) Define Sa : X
∨

a X −→ X2 by

Sa(ti) =

{
(t, t) if i = 1

(a, t) if i = 2
,
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▽a : X
∨

a X −→ X by ▽a(ti) = t,

A∞
a :

∨∞
a X −→ X∞ by A∞

a (ti) = (a, a, ..., a, t, a, a, ...),

and ▽∞
a :

∨∞
a X −→ X by ▽∞

a (ti) = t for each i ∈ I, where I is the index
set {i : ti is in the i-th component of

∨∞
a X}.

Definition 3. ( [2]) Let U : E −→ Set be a topological functor [1] and X be an
object of E with U(X) = B.

(1) If the initial lift of the U-source Sa : B
∨

a B −→ U(X2) = B2 and ▽a :
B
∨

a B −→ UD((B)) = B is discrete, then X is called T1 at a, where D is the
discrete functor.

(2) If the initial lift of the U-source
A∞

a : ∨∞
a B −→ U(X∞) = B∞ and ∇∞

a : ∨∞
a B −→ UD((B)) = B

is discrete, then {a} is called closed.

(3) If {∗} is closed in X/M , then M ⊂ X is called closed, where X/M is the
final lift of the epi U -sink

q : B = U(X) → B/M = (B\M) ∪ {∗},
identifying M with a point *.

(4) If X/M is T1 at ∗, then M is called strongly closed in X.

(5) If B = M = ∅ iff then M is to be (strongly) closed.

(6) M ⊂ X is open (resp., strongly open) iff M c is closed (resp., strongly closed)
in X.

Remark 1. (1) In Top, by Corollary 2.2.6 of [2], M ⊂ B is closed iff M is closed
in the usual sense. Moreover, the notion of strong closedness implies closedness
and they coincide when a topological space is T1 [4].

(2) In an arbitrary topological category, in general, the notions of closedness and
strong closedness are independent of each other [4].

Theorem 1. Let (B,K) ∈ ConLim. ∅ ≠ M ⊂ B is closed (open) iff M = B.

Proof. Suppose ∅ ̸= M ⊂ B and M ̸= B. Then ∃t ∈ B with t /∈ M . Take
σ =

⋂∞
i=1[ti] with ti ∈ B/M . We have ▽∗σ = [t] and πjA

∞
∗ σ = [∗] ∩ [t] ∈ K1 for

all i, where K1 is the final structure on B/M . Since σ is generated by the infinite
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set {t1, t2, ..., tn, ...}, σ does not contain a finite set which contradicts {∗} is being
closed. Hence, B = M .

If M = B, then
∨∞

∗ (B/M) = {∗} and by Definition 3 (5), {∗} =
∨∞

∗ (B/M) is
closed and consequently, M is closed.

The proof for openness follows from Definition 3. □

Theorem 2. Every subset of constant limit space is both strongly closed and strongly
open.

Proof. Let (B,K) ∈ ConLim and M ⊂ B. If M = ∅, then by Definition 3,
M is strongly open (strongly closed). Suppose M ̸= ∅ and let K1 be the quotient
structure on B/M induced by q : (B,K) −→ (B/M,K1), Kq be the initial structure
on (B/M)

∨
∗(B/M) induced by

S∗ : (B/M) ∨∗ (B/M) −→ ((B/M)2,K2
1 )

and

▽∗ : (B/M) ∨∗ (B/M) −→ (B/M,Kd),

where K2
1 is structure on (B/M)2 and Kd is the discrete structure on B/M .

Suppose σ ∈ Kq. Then by Proposition 1, π1S∗σ, π2S∗σ ∈ K1 and ▽∗σ ∈ Kd. It
follows that ▽∗σ = [∅] or [U ], U ⊂ B/M is finite with card(U) = m. If ▽∗σ = [∅],
then σ = [∅]. If ▽∗σ = [U ], then ∃V ∈ σ such that U ⊃ ▽∗V . Since U is finite,
card(V ) ≤ 2m and consequently, V is finite. Hence, by Definition 2, (B/M,K1)
is T1 at ∗ and M is strongly closed. The proof for strongly open follows from
Definition 3. □

Theorem 3. (1) Let f : (A,L) −→ (B,K) be in ConLim. If M ⊂ B is (strongly)
closed, then f−1(M) ⊂ A is (strongly) closed.

(2) Let (B,K) ∈ ConLim. If M ⊂ N and N ⊂ B are (strongly) closed, then
M ⊂ B is (strongly) closed.

(3) Let (Bi,Ki) ∈ ConLim for ∀i ∈ I and Mi ⊂ Bi be (strongly) open (resp.,
closed) for each i ∈ I. Then

∏
i∈I Mi is (strongly) open (resp., closed) in

∏
i∈I Bi.

Proof. We get the proof from Theorems 1 and 2. □

Let X be a set and the wedge X2
∨

∆ X2 be two distinct copies of X2 identified
along the diagonal ∆ [2]. Define A : X2

∨
∆ X2 −→ X3 by

A((s, t)i) =

{
(s, t, s) if i = 1

(s, s, t) if i = 2
,

S : X2
∨

∆ X2 −→ X3 by
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S((s, t)i) =

{
(s, t, t) if i = 1

(s, s, t) if i = 2
,

and ∇ : X2
∨

∆ X2 −→ X2 by

▽((s, t)i) = (s, t)

for i = 1, 2.

Definition 4. ( [2, 5]) (1) If the initial lift of the U-source

A : B2 ∨△ B2 −→ U(X3) = B3 and ∇ : B2 ∨△ B2 −→ U(D(B2)) = B2

(resp.,

id : B2∨△B2 −→ U(B2∨△B2)′ = B2∨△B2 and ∇ : B2∨△B2 −→ U(D(B2)) = B2)

is discrete, then X is called T 0 (resp., T
′

0), where (B2
∨

△ B2)′ is the final lift of the

U -sink {i1, i2 : U(X2) = B2 −→ B2 ∨△ B2} and i1, i2 are the canonical injections.

(2) If X does not contain an indiscrete subspace with (at least) two points, then
X is called a T0 object.

(3) If the initial lift of the U-source

S : B2 ∨△ B2 −→ U(X3) = B3 and ∇ : B2 ∨△ B2 −→ U(D(B2)) = B2

is discrete, then X is called T1.

(4) If the initial lift of the U-sources A : B2
∨

△ B2 −→ U(X3) = B3 and

S : B2
∨

△ B2 −→ U(X3) = B3 agree, then X is called preT 2.

(5) If the initial lift of the U-source S : B2∨△B2 −→ U(X3) = B3 and the final

lift of the U-sink {i1, i2 : U(X2) = B2 −→ B2∨△B2} agree, then X is called preT
′

2.

(6) X is KT2 iff X is preT 2 and T
′

0.

(7) X is LT2 iff X is preT
′

2 and T 0.

(8) X is NT2 iff X is preT 2 and T0.

Remark 2. In Top, by Theorem 2.2.11 of [2] and Remark 1.3 of [6], all of T0,
T ′
0 and T0 (resp., KT2, NT2, and LT2) are equal to T0 (resp., T2). In the realm of

preT2 topological spaces, by the Theorem 2.4 of [14], all T0, T1, and T2 spaces are
equivalent.

Theorem 4. Let (B,K) ∈ ConLim. Then (B,K) is LT2 iff (B,K) is KT2.
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Proof. Let (B,K) be KT2. By Theorem 2.3 of [5], (B,K) is T ′
0. Let KA (resp.,

KF ) be the initial lift of A (resp., final lift of {i1, i2 : B2 −→ B2 ∨△ B2} and
σ ∈ F (B2∨△B2)) with σ ∈ KF . By Proposition 1, ∃α, β ∈ K2 with σ ⊃ i1α∩ i2β,
where K2 is structure on B2. Hence,

π1Aσ ⊃ π1A(i1α ∩ i2β) = π1α ∩ π1β,

π2Aσ ⊃ π2A(i1α ∩ i2β) = π2α ∩ π1β,

π3Aσ ⊃ π3A(i1α ∩ i2β) = π1α ∩ π2β.

Since K is a constant limit structure on B and π1α, π2α, π1β, π2β ∈ K, we have
π1α ∩ π1β, π2α ∩ π1β, π1α ∩ π2β ∈ K, and consequently, π1Aσ, π2Aσ, π3Aσ ∈ K.
By Proposition 1, σ ∈ KA. Hence, KF ⊂ KA.

Suppose σ ∈ F (B2 ∨△ B2) with σ ∈ KA. If σ = [∅], then σ ∈ KF . Suppose
σ ̸= [∅]. Let α11 = π1Aσ, α21 = π2Aσ, and α12 = π3Aσ. In case of (1) of The-
orem 3.8 of [3], we have π1Aσ = π2Aσ.Let σ1 = π−1

1 (π1Aσ) ∪ π−1
2 (π3Aσ). Since

π1Aσ1 = π1Aσ = π2Aσ ∈ K and π2Aσ1 = π3Aσ ∈ K, we get σ1 ∈ K2.

We now show i1σ1 = (π1A)−1(π1Aσ) ∪ (π2A)−1(π2Aσ) ∪ (π3A)−1(π3Aσ) = σ0.

If U ∈ i1σ, then U ⊃ (U1 × U2)1 for some U1 ∈ π1Aσ = π2Aσ and U2 ∈ π3Aσ.
Since case 1 of Theorem 3.8 of [3] holds and π1Aσ ∪ π3Aσ is improper, we may
assume U1 ∩ U2 = ∅.
Note that

(π1A)−1(U1) ∩ (π2A)−1(U1) ∩ (π3A)−1(U2) = (U1 × U2)1 ∈ σ0

and consequently, U ∈ σ0. Hence, i1σ1 ⊂ σ0.

If U ∈ σ0, then U ⊃ (U1×U2)1
∨
((U1 ∩U2)×U2)2 for some U1 ∈ π1Aσ = π2Aσ

and U2 ∈ π3Aσ.

Since case (1) of Theorem 3.8 of [3] holds and π1Aσ∪π3Aσ is improper, we may
assume U1 ∩ U2 = ∅. Hence, U ⊃ (U1 × U2)1 and consequently, U ∈ i1σ1. Thus,
i1σ1 = σ0. By Corollary 3.3 of [3], i1σ1 = σ0 ⊂ σ.

In case (2) of Theorem 3.8 of [3] holds, we have π1Aσ = π3Aσ. Let σ1 =
π−1
1 (π1Aσ) ∪ π−1

2 (π2Aσ).

Note that

π1σ1 = π1Aσ ∈ K,

π2σ1 = π2Aσ ∈ K.



SEPARATION, COMPACTNESS, AND SOBRIETY IN CONLIM 325

Consequently, σ1 ∈ K2.

Let σ0 = (π1A)−1(π1Aσ) ∪ (π2A)−1(π2Aσ) ∪ (π3A)−1(π3Aσ). Since case (2) of
Theorem 3.8 of [3] holds, then i2σ1 = σ0 and by Corollary 3.3 of [3], i2σ1 ⊂ σ.

In case (3) of Theorem 3.8 of [3] holds, we have π3Aσ ∩ π2Aσ ⊂ π1Aσ.

Let

σ1 = π−1
1 (π3Aσ) ∪ π−1

2 (π2Aσ)

and

σ0 = (π1A)−1(π3Aσ) ∪ (π2A)−1((π2Aσ) ∩ (π3Aσ)) ∪ (π3A)−1(π3Aσ).

By Corollary 3.3 of [3], σ0 ⊂ σ, π1Aσ0 = π3Aσ ∈ K, π2Aσ0 = (π2Aσ) ∩ (π3Aσ) ∈
K, and π3Aσ0 = π3Aσ ∈ K since K is a constant limit structure on B. We show
that σ0 = i1σ1 ∩ i2σ1.

If U ∈ σ0, then U ⊃ (U1 × (U2 ∩ U3))1
∨
((U1 ∩ U3)× U2)2 for some U1 ∈ π3Aσ,

U3 ∈ (π2Aσ) ∩ (π3Aσ), and U2 ∈ π3Aσ.

Note that

((U1 ∩ U3)× (U2 ∩ U3)) ∈ σ1,

((U1 ∩ U3)× (U3 ∩ U2))1 ∈ i1σ1,

((U1 ∩ U3)× (U3 ∩ U2))2 ∈ i2σ1,

and

((U1 ∩ U3)× (U3 ∩ U2))1
∨

((U1 ∩ U3)× (U3 ∩ U2))2 ∈ i1σ1 ∩ i2σ1.

Hence, U ∈ i1σ1 ∩ i2σ1 and so σ0 ⊂ i1σ1 ∩ i2σ1.

If U ∈ i1σ1 ∩ i2σ1, then U ⊃ (U1 × U2)1
∨
(U1 × U2)2 for some U3 ∈ π2Aσ and

U2 ∈ π3Aσ. Note that

U3 ∪ U2 ∈ (π2Aσ) ∩ (π3Aσ)

and

(π1A)−1(U3) ∩ (π2A)−1(U3 ∪ U2) ∩ (π3A)−1(U3) = (U3 × U2)1
∨

(U3 × U2)2 ∈ σ0

and consequently, U ∈ σ0. Hence, σ0 = i1σ1 ∩ i2σ1 ⊂ σ. Therefore KA ⊂ KF and
consequently, KA = KF . Since (B,K) is KT2, by Definition 4, KS = KA, where
KS is the initial lift of S. Hence, by Definition 4, KS = KF and (B,K) is LT2.
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Suppose (B,K) is LT2. By Theorem 2.3 of [5], (B,K) is T
′

0 and by Remark 3.6
of [11], (B,K) is preT 2. Hence, by Definition 4, (B,K) is KT2. □

Let T ′
0E (resp., T0E, T 0E, T1E, KT2E, LT2E, and NT2E) be the subcategory

of E consisting of T ′
0 (resp., T0, T 0, T1, KT2, LT2, and NT2) objects of E .

Remark 3. (1) By Theorem 2.3 of [5] and Theorem 4, T0, T
′
0 and T1 constant

limit spaces are equivalent. Furthermore, a constant limit space (B,K) is NT2 iff
B is a point or the empty set. Moreover, NT2 ⇒ KT2 ⇐⇒ LT2 but the converse is
not true, in general. For example, let be B = {a, b}, and K = {[a], [b], [a]∩ [b], [∅]}.
(B,K) is LT2 but it is not NT2.

(2) By Theorem 4 and Theorem 2.3 of [5], T0ConLim, T 0ConLim, T ′
0ConLim,

T1ConLim, KT2ConLim, LT2ConLim, and ConLim are pairwise isomor-
phic categories. Since ConLim is a cartesian closed, all of these categories are
cartesian closed.

(3) By Theorems 1 and 4, we have Tietze Extension Theorem for constant limit
spaces. If (B,K) is a KT2 constant limit space and A is non-empty closed subspace
of (B,K), then every morphism f : (A,L) → (R, S) has an extension morphism
g : (B,K) → (R, S), where R is the set of real numbers and S is any constant limit
structure on R.

(4) By Theorem 1, we have Urysohn’s Lemma for constant limit spaces. Suppose
(B,K) is a KT2 constant limit space and M and N are any nonempty disjoint
subsets of B. Then there exists a morphism f : (B,K) → ([0, 1], L), where L is any
constant limit structure on [0, 1] with f(w) = 0 if w ∈ M and f(w) = 1 if w ∈ N .

Note that Tietze Extension Theorem and Urysohn’s Lemma for constant filter
convergence spaces (resp., extended pseudo-quasi-semi metric spaces) are presented
in [21,23,24].

Definition 5. Let (B,K) ∈ ConLim and Z ⊂ B.

scl(Z) =
⋂
{H ⊂ B : Z ⊂ H and H is strongly closed} is said to be

the strong closure of Z.

cl(Z) =
⋂
{H ⊂ B : Z ⊂ H and H is closed} is said to be the closure of

Z.

Q(Z) =
⋂
{H ⊂ B : Z ⊂ H,H is closed and open} is called the quasi-

component closure of Z.

SQ(Z) =
⋂
{H ⊂ B : Z ⊂ H,H is strongly closed and strongly open}

is said to be the strong quasi-component closure of Z.
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Theorem 5. cl = ı = Q, the indiscrete closure operator and scl = δ = SQ, the
discrete closure operator of ConLim.

Proof. Combine Definition 5, Theorems 1, and 5. □

Definition 6. ( [19])Let c be a closure operator of E.

(1) E0c = {W ∈ E : s ∈ c({t}) and t ∈ c({s}) implies s = t with s, t ∈ W},

(2) E1c = {W ∈ E : c({s}) = {s}, ∀s ∈ W},

(3) E2c = {W ∈ E : c(△) = △, the diagonal}.

Theorem 6. A constant limit space (B,K) ∈ ConLimicl for i = 0, 1, 2 iff B = ∅
or B = {a}, a one point set.

Proof. We get the proof from Theorem 1. □

Theorem 7. ConLimiscl, i = 0, 1, 2 are isomorphic to ConLim.

Proof. We get the proof from Theorem 5. □

4. Sober Constant Limit Spaces

In this section, we characterize irreducible, sober, and quasi-sober constant limit
spaces.

Definition 7. ( [12,16]) Let E be a topological category and X ∈ Ob(E).

(1) X is called irreducible if Z1, Z2 are closed subobjects of X and X = Z1 ∪Z2,
then X = Z1 or X = Z2.

(2) X is called quasi-sober if every nonempty irreducible closed subset of X is
the closure of a point .

(3) X is called T0 sober if X is T0 and a quasi-sober.

(4) X is called T ′
0 sober if X is T ′

0 and a quasi-sober.

(5) X is called T0 sober if X is T0 and a quasi-sober.

Remark 4. In Top, by Remark 3.4 of [12], all of T ′
0 sober, T0 sober, and T0 sober

are equivalent and they reduce to the usual sober. Also, the notion of irreducibility
reduces to notion of the usual irreducibility [16].

Theorem 8. Let (B,K) ∈ ConLim.
(A) The following are equivalent:
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(1) A constant limit space (B,K) is quasi-sober.

(2) (B,K) is T0 sober.

(3) (B,K) is T ′
0 sober.

(4) (B,K) is irreducible.

(B) The following are equivalent:

(1) (B,K) is T0.

(2) (B,K) is T0 sober.

(3) card(B) ≤ 1.

Proof. (A) By Theorem 2.4 of [5] and Definition 7, we get (1) ⇐⇒ (2) ⇐⇒ (3).

(1) =⇒ (4): Suppose (B,K) is quasi-sober and B = B1 ∪B2, where B1 and B2

are closed subsets of B. By Theorem 1, B1 = B or ∅ and B2 = B or ∅. Hence, by
Definition 7, (B,K) is irreducible.

(4) =⇒ (1): Suppose (B,K) is irreducible and ∅ ≠ B1 ⊂ B is irreducible closed.
Since B1 is closed, by Theorem 1, B1 = B and by Theorem 5, B = B1 = cl({b})
for some b ∈ B. Hence, by Definition 7, (B,K) is quasi-sober. Thus, (1) ⇐⇒ (4).

(B) (1) =⇒ (2): Suppose (B,K) is T0 and ∅ ̸= B1 ⊂ B is irreducible closed.
Since B1 is closed, by Theorem 1, B1 = B and hence, by Theorem 5, B1 = B =
cl({b}) for some b ∈ B. Hence, consequently, (B,K) is quasi-sober and by Defini-
tion 7, (B,K) is T0 sober.

(2) =⇒ (3): Suppose (B,K) is T0 sober and B ̸= ∅ and B ̸= {a}. Then, ∃s, t ∈ B
with s ̸= t and ({s, t}, F ({s, t})) is the indiscrete subspace of (B,K), contradicting
to (B,K) is being T0 sober. Hence, card(B) ≤ 1.

(3) =⇒ (1): If card(B) ≤ 1, then by Definition 4, (B,K) is T0. □

5. Compact Constant Limit Spaces

Definition 8. ( [7]) Let E be a topological category, A,B ∈ Ob(E), and f : A −→ B
be a morphism in E.
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(1) If the image of every (strongly) closed subobject of A is a (strongly) closed
subobject of B, then f is said to be (strongly) closed.

(2) If the projection π2 : A×B −→ B is (strongly) closed for every object B in
E, then A is called (strongly) compact.

Remark 5. In Top, by Remark 2.2 of [7], the notion of compactness reduces to
usual one, the notion of strong compactness implies compactness and they coincide
when a topological space is T1.

Theorem 9. A constant limit space is compact iff it is strongly compact.

Proof. Suppose (B,K) is a compact constant limit space. We need to show that
for each constant limit space (C,L), the projection π2 : (B,K)× (C,L) −→ (C,L)
is strongly closed. Suppose M ⊂ B×C is strongly closed. If M = ∅, then π2M = ∅
is strongly closed. If M ̸= ∅, then by Theorem 2, π2(M) is strongly closed subset
of C and hence, by Definition 8, π2 : (B,K)× (C,L) −→ (C,L) is strongly closed
and consequently, (B,K) is strongly compact.

Suppose (B,K) is a strongly compact constant limit space. We show π2 :
(B,K) × (C,L) −→ (C,L) is closed for each constant limit space (C,L). Sup-
pose M ⊂ B × C is closed. By Theorem 1, M = ∅ or M = B × C. If M = ∅, then
π2M = ∅ is closed in C. If M = B × C, then C = π2M is closed. By Definition 8,
π2 : (B,K)× (C,L) −→ (C,L) is closed and hence, (B,K) is compact. □

Theorem 10. Let f : (B,K) −→ (C,L) be morphism in ConLim.

(1) If (B,K) is (strongly) compact, then the subspace f(B) is (strongly) compact.

(2) If (B,K) is connected (resp., strongly connected, D-connected, scl-connected,
cl-connected), then the subspace f(B) is connected (resp., strongly connected, D-
connected, scl-connected, cl-connected).

(3) If (B,K) is T 0 (resp., T ′
0, T1, KT2 or LT2), then the subspace f(B) is T 0

(resp., T ′
0, T1, KT2 or LT2).

Proof. It follows from Theorems 1, 2, 4, and 9.
□

6. Comparative Evaluation

We compare our findings in some topological categories and we infer:

(1) In Top,
(i) By Theorem 2.2.11 of [2], Remark 1.3 of [6], and Remark 2.6 of [9],

Top2cl = Top2scl = LT2Top = NT2Top = KT2Top ⊂ Top1cl
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= Top1scl ⊂ Top0cl = Top0scl = T 0Top = T ′
0Top = T0Top.

and
Top1Q = Top2Q

(ii) By Remark 3.4 of [12],

T ′
0SobTop = T 0SobTop = T0SobTop

(iii) By Remark 4.4 of [14], there is no implication between preT2 and each of
T0, T1 and soberity. By Theorem 4.3 of [14], in the realm of PreT2 topological
spaces, all T0 T1, T2, and sober spaces are equivalent.

(2) In ConLim,
(i) By Theorems 4 and 6,

ConLim2cl =ConLim1cl = ConLim2Q

=T0ConLim ⊂ ConLim2scl

=ConLim1scl = ConLim0scl

=T 0ConLim = T ′
0ConLim

=T1ConLim = KT2ConLim = LT2ConLim

(ii) By Theorem 8,

T0ConLim = T0SobConLim

and
T 0SobConLim = T ′

0SobConLim = QSobConLim,

where QSobConLim is the full subcategory of ConLim consisting of all quasi-
sober constant limit spaces.

(iii) By Theorems 8, the categories T 0SobConLim, T ′
0SobConLim, and

QSobConLim have all limits and colimits.
(iv) By Theorem 8, a T0 sober constant limit space is T ′

0 sober, T0 sober, a
quasi-sober, and irreducible. The constant limit space (R, F (R)) is quasi-sober, T 0

sober, and T ′
0 sober, and irreducible but it is not T0 sober, where R is the set of

real numbers.
(v) By Theorem 9, a constant limit space (B,K) is compact iff it is strongly

compact.

(3) In Lim,
(i) By Theorem 2.10 of [9] and Theorem 2.4 of [6],

Lim2scl ⊂ LT2Lim = NT2Lim ⊂ KT2Lim

and
LT2Lim ⊂ Lim1cl = Lim1scl = T1Lim
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⊂ Lim0cl = Lim0scl = T 0Lim = T0Lim = T ′
0Lim

(4) In ConFCO (the category of constant filter convergence spaces and continu-
ous maps), by Theorems 4.3-4.5 of [20], Theorems 2.1, 2.2, 2.9, and 2.10 of [5],

LT2ConFCO ⊂ NT2ConFCO ⊂ KT2ConFCO ⊂ ConFCO2cl = ConFCO2scl

⊂ ConFCO1cl = ConFCO1scl = T0ConFCO = T1ConFCO

= T 0ConFCO ⊂ ConFCO0cl = ConFCO0scl ⊂ T ′
0ConFCO

(5) In FCO (the category of filter convergence spaces and continuous maps),
(i) By Theorems 2.9 and 2.11 of [9] and Theorem 4.10 of [11],

LT2FCO ⊂ NT2FCO ⊂ KT2FCO ⊂ FCO2scl ⊂ FCO2cl

= FCO1cl = FCO1scl = T1FCO ⊂ FCO0cl

= FCO0scl = T 0FCO ⊂ T0FCO ⊂ T ′
0FCO

(ii) By Theorem 6.3 of [10], (B,K) is strongly compact iff every ultrafilter in B
converges and every filter convergence space is compact.

(6) In CApp (the category of approach spaces and contraction maps), by The-
orems 4.8, 4.9, 4.12, and 4.13 of [26] and Theorems 7, 9, and 10 of [25],

CApp2scl ⊂ CApp1scl ⊂ CApp0scl

and

CApp2cl ⊂ CApp1cl ⊂ CApp0cl = T 0CApp ⊂ T0CApp ⊂ T ′
0CApp

(7) In psqMet (the category of extended pseudo-quasi-semi metric spaces and
non-expansive maps),

(i) By Theorem 6 of [15], Theorems 3.3-3.5 and 3.15 of [23], Theorem 3.10 of [16],

LT2pqsMet = KT2pqsMet = T1pqsMet = pqsMet1SQ = pqsMet1scl

=pqsMet2scl ⊂ pqsMet1cl = pqsMet2cl = pqsMet1Q = T 0pqsMet

⊂T0pqsMet ⊂ pqsMet0scl ⊂ pqsMet0cl ⊂ T ′
0pqsMet
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(ii) By Theorem 3.13 of [12], {x} is closed for all x ∈ X and the nonempty
proper irreducible closed subsets of X are exactly the one-point subsets iff an ex-
tended pseudo-quasi-semi metric space (X, d) is T0 sober,

(iii) By Theorem 3.13 of [12], (X, d) is a quasi-sober and an extended quasi-semi
metric space iff (X, d) is T0 sober.

(8) In RRel (the category of reflexive relation spaces and relation preserving func-
tions),

(i) By Theorem 3.7 of [12] and Theorem 3.7 of [13],

KT2RRel ⊂ RRel1cl = T0RRel = T 0RRel

RRel2cl = RRel2scl = RRel1SQ = RRel2SQ = RRel2Q = LT2RRel = T1RRel

(ii) By Theorems 3.8 and 3.9 of [12],

T ′
0SobRRel = QSobRRel,

where QSobRRel is the subcategory of RRel consisting of quasi-sober reflexive
spaces.

(iii) By Theorems 3.8 and 3.9 of [12],

T0SobRRel = T 0SobRRel

(iv) By Theorems 3.8 and 3.9 of [12], a reflexive space (B,R) is T0 sober iff the
nonempty proper irreducible closed subsets of B are exactly the one-point subsets
and {x} is closed for all x ∈ B iff (B,R) is T0 sober.

(v) By Theorems 3.2 and 5.2 of [13], (B,R) ∈ RRel1SQ iff it is NT2.

(vi) By Theorem 5.2, Part (1), and Theorem of 3.8 of [12], if (B,R) ∈ RRel1SQ,
then it is quasi-sober and T0 sober.

(vii) By Theorem 5.3 of [13], RRel1SQ ⊂ RRel1Q and also by Theorem 5.2
of [13], if (B,R) ∈ KT2, then (B,R) ∈ RRel1SQ iff (B,R) ∈ RRel1Q.

(viii) By Theorem 3.4 of [14], a reflexive space (A,R) is compact iff for every
x ∈ A there exist a, b ∈ A with xRa and bRx.

(9) In Rel (the category of relation spaces and relation preserving functions),
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(i) By Theorem 3.3 of [14],

Rel1cl = Rel2cl = Rel1Q = Rel2Q = Rel1SQ = Rel2SQ

(ii) By Theorem 4.5 of [14],

LT2Rel ⊂ NT2Rel ⊂ KT2Rel = T 2Rel = preT 2Rel

⊂ Rel1Q = T1Rel = T ′
0Rel = T 0Rel = Rel

(iii) By Theorem 3.3 of [14],

T 0SobRel = T ′
0SobRel = QSobRel,

where QSobRel is the full subcategory of Rel consisting of all quasi-sober re-
lation spaces.

(iv) By Theorem 3.3 of [14], every relation space is compact.

(10) In any topological category,

(i) By Theorem 2.7 of [6], T0 implies T ′
0 but the converse is not true, in general

and by Theorem 3.1 of [8], preT
′

2 implies preT 2. Furthermore, there is no relation-
ship between T0 and T0. Also, by Theorem 3.1 of [8], LT2 implies KT2 but the
converse is not true, in general. Moreover, by Remark 2.8 (7) of [6], notions of KT2

and NT2 are independent of each other.

By Theorem 3.5 of [11], in the realm of preT 2 objects, T0, T1, and T 2 objects
are equivalent.

(ii) By Theorems 3.5, 3.13 and Parts (2) and (3) of [12], every T0 sober object
is T ′

0 sober. Also, there is no implication between T0 sober and T0 sober.

(iii) By Remark 6.2 of [10] the notions of compactness and strongly compactness
are different from each other, in general.
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