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ABSTRACT  
Supervisory Control and Data Acquisition (SCADA) systems monitor and control critical 
infrastructure processes. SCADA systems do not have adequate detection and defense 
mechanisms against developing cyber attacks and contain many security vulnerabilities. Using 
SCADA systems in critical infrastructures of national and international importance means new 
targets for malicious attackers. In addition, using SCADA systems with new technologies brings 
new perspectives to the security world. When technologies such as SDN are integrated with 
SCADA systems, it brings advantages to the system regarding manageability and 
programmability. However, security problems also occur against attacks such as DDoS. For these 
reasons, it is imperative to ensure the cyber security of SCADA systems. In this study, the case of 
Software Defined Network (SDN)-based SCADA systems exposed to DDoS attacks are discussed. 
Logistic Regression, K-Nearest Neighbors, Random Forest, and Support Vector Machine (SVM) 
classification algorithms have been used for attack detection. A ready-made dataset has been 
studied, and accordingly, the model that makes the most accurate determination has been 
proposed in our study. The results show that the proposed SVM classifier model (97.2% accuracy 
rate) effectively detects DDoS attacks against SDN-based SCADA systems.   

SDN Tabanlı SCADA Sistemlerinde Makine 
Öğrenmesi Tabanlı DDoS Saldırı Tespiti 
ÖZ 
Kritik altyapılardaki süreçleri izlemek ve denetlemek için Denetleyici Kontrol ve Veri Toplama 
(SCADA) sistemleri kullanılmaktadır. SCADA sistemleri gelişen siber saldırılar karşısında yeterli 
tespit ve savunma mekanizmalarına sahip değildir ve birçok güvenlik açıklığı barındırmaktadır. 
Ulusal ve uluslararası öneme sahip kritik altyapılarda SCADA sistemlerinin kullanılması kötü 
niyetli saldırganlar için yeni hedefler anlamına gelmektedir. Ayrıca SCADA sistemlerinin yeni 
teknolojilerle birlikte kullanılması güvenlik dünyasına yeni bakış açıları kazandırmaktadır. 
Software Defined Network (SDN) gibi teknolojiler SCADA sistemleriyle bütünleştirildiğinde, 
sisteme yönetilebilirlik ve programlanabilirlik konularında avantajlar kazandırmaktadır. Bunun 
yanı sıra DDoS gibi saldırılara karşı güvenlik sorunları da barındırmaktadır. Bu sebeplerden 
dolayı SCADA sistemlerinin siber güvenliğinin sağlanması zorunlu hale gelmiştir. Bu çalışmada 
SDN tabanlı SCADA sistemlerinin DDoS saldırılarına maruz kalması durumu ele alınmıştır. 
Saldırı tespitinin yapılması için Logistic Regression, K-Nearest Neighbors, Random Forest ve 
Support Vector Machine (SVM) sınıflandırma algoritmaları kullanılmıştır. Hazır bir veriseti 
üzerinde çalışılmış ve buna göre en doğru tespiti gerçekleştiren model çalışmamızda önerilmiştir.  
Sonuçlar önerilen SVM sınıflandırıcı modelinin (%97.2 oranında doğruluk), SDN tabanlı SCADA 
sistemlerine yönelik DDoS saldırılarını etkili bir şekilde tespit ettiğini göstermiştir. 
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1. Introduction  
 
The Supervisory Control and Data Acquisition (SCADA) systems collect real-time data from terminal units, 
such as input-output units and sensors, and store them in a central unit. The SCADA system evaluates the 
collected data according to the criteria, creates warning messages, and informs the system’s operator. Control 
points and data flow are monitored with the interface of the SCADA system. SCADA systems serve in critical 
production, distribution, and utilization infrastructures like water, gas, electricity, and oil. Operations 
performed in strategic infrastructures are monitored and controlled using SCADA systems throughout the 
process. The data collected from the terminal units of the SCADA system are used to make predictions about 
the system's operation. In addition, the control mechanism of the SCADA system provides a fast response to 
the faults in the terminal units [1].  
 
The SCADA system, a computer-based structure that allows management machines to spread over a wide 
area from a single center, ensures easy data control and high efficiency in enterprises or industrial facilities. 
SCADA provides system administrators with detailed reports on the system’s operation [2]. Uninterrupted 
operations in critical infrastructures depend on the robust functioning of SCADA systems. Any disruption in 
SCADA systems will adversely affect other connected systems, beneficiaries, and institutions. Cyber attacks 
that develop day by day also target critical infrastructures. For example, cyber attacks targeting the electricity 
distribution infrastructure can cause cities to face power outages all day and remain dark.  
 
Another known example is the Stuxnet attack. By remotely interfering with the operation of the centrifuges 
at the nuclear power plant, the attackers secretly disrupted the system and managed to damage the facility 
physically [3]. Experience shows that these problems can occur at any moment and cause severe financial 
losses. Therefore, taking every step necessary to ensure cyber security in SCADA systems against cyber attacks 
is vital.  
 
Production and distribution infrastructures administered with SCADA systems have failed to keep up with 
the developing technology. Since SCADA systems' primary aim is to manage critical infrastructures 
efficiently, cyber security in the SCADA systems is of secondary importance. Therefore, SCADA systems are 
vulnerable to cyber-attacks that are steadily becoming more sophisticated. In addition to the difficulties in 
adding new elements to this inflexible system, replacing old ones with new ones, and providing security, their 
closed-system designs make these systems more vulnerable to attacks due to the widespread use of the 
internet. Using the remote control feature is another insecure practice in the system. Integrating new 
technologies such as Smart Grid, Internet of Things, 5G, cloud computing, blockchain, and Software Defined 
Network (SDN) with SCADA systems brings security problems along with many advantages [4], [5].  
 
SDN technology, which offers a dynamic, flexible, and programmable architecture, can eliminate or minimize 
these problems experienced in the traditional structure of SCADA systems. SDN-based SCADA system 
obtained by combining SDN technology and SCADA system offers solutions to the complications 
encountered in regular networks. For example, developing information and communication technologies 
generated new requirements in accessibility, dynamic management, high bandwidth, and high connectivity. 
SDN-based SCADA system provides solutions to these manageability, complexity, and quality of service 
requirements [6]. 
 
Besides advantages, SDN technology has disadvantages, such as cyber-attacks specific to SDN architecture. 
The most threatening type of attack on SDN-based systems is Distributed Denial-of-Service (DDoS) attacks 
[7]. DDoS attacks that can occur in SDN-based SCADA systems with security vulnerabilities can cause 
devastating results. Slowdown, downtime, or dysfunction of vital infrastructure processes cause national or 
international problems. When a critical infrastructure using the SCADA system undergoes DDoS attacks that 
might affect all or some of the infrastructure, this situation might lead to dangerous consequences in cities, 
such as untreated drinking water, electricity cuts, or signal failures on high-speed trains. For this reason, it is 
imperative to maintain business continuity uninterrupted by providing cyber security in SCADA systems.  
 
The current study proposed a model to control and detect DDoS attacks on SDN-based SCADA systems. In 
the study, four different machine learning algorithms were used to test the reliability of the proposed model. 
The evaluation was made according to the success metrics such as precision, recall, f1-score, and accuracy. 
According to the analysis results of the algorithms, Confusion Matrix and ROC Curve were obtained and 
interpreted. The evaluation results revealed that the model with the highest performance detected DDoS 
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attacks. Furthermore, the comparisons made with similar literature studies confirmed the success of the 
proposed model. It has been shown that using complex, hybrid, or advanced algorithms is unnecessary, and 
successful results are obtained with machine learning methods. 
 
The second part of the study explicitly presented similar studies in the literature and their differences from 
the proposed model. The third chapter explained the concepts of SCADA, SDN, and DDoS. At the same time, 
the fourth chapter covered the materials and methods used in the study and outlined the experimental results. 
The fifth section is the Conclusion part. 
 
2. Literature Review  
 
In this section, studies from the literature concerning the detection of DDoS attacks targeting SCADA 
systems, communication protocols, and SDN-based SCADA systems have been summarized.  
 
Alhaidari et al. developed a frame against DDoS attacks in the SCADA system using the KDDCup'99 dataset. 
They employed J48, Naive Bayes (NB), and Random Forest (RF) algorithms to determine the attack pattern 
and got the best classification success rate with the RF algorithm [8].   
 
Skripcak and Tanuska designed and simulated a prototype for a real-time and online information generation 
component that can operate in SCADA systems. They utilized a Passive-Aggressive Classifier algorithm with 
an Online Machine Learning algorithm on the process alarm forecasting scenario, which is considered a 
binary classification problem [9].   
 
Beaver et al. utilized machine learning methods to detect command and data injection attacks in critical gas 
pipeline infrastructures. They used a benign and malicious command traffic dataset to identify attacks and 
made analyses using NB, RF, OneR, J48, Nearest-Neighbor (NNge), and Support Vector Machine (SVM) 
learning algorithms [10].  
 
Hink et al. used machine learning techniques to detect cyberattacks against the power system and activate the 
operator. Their study employed NB, RF, OneR, NNge, SVM, JRipper, and Adaboost algorithms and their 
suggested technique, "Adaboost+JRipper" [11].   
 
Benisha and Ratna proposed a new method for detecting and classifying malicious data in a water storage 
system using a SCADA system. They utilized the Enhanced Cuckoo Search Optimization algorithm in 
optimum classification feature selection and the Genetic Machine Learning based Neural Network algorithm 
in classification [12].   
 
Perez et al. tried to detect network attacks against SCADA systems using machine learning techniques. They 
used a real dataset from gas pipeline systems and employed SVM and RF methods to implement various 
Intrusion Detection System classifiers [13].  
 
In their study, Söğüt and Erdem used a dataset from gas pipeline control systems focused on attack detection. 
This dataset contained data on Command Injection, Reconnaissance, and DoS against the Modbus protocol. 
They utilized Decision Stump, Hoeffding Tree, Random Tree (RT), and REP Tree algorithms in the study [1].   
 
Wan et al. proposed the Event-Based Hidden Markov Model (HMM) as an anomaly detection approach for 
communication protocols in SDN-based control systems. They generated data through the simulation 
environment and operated the Profinet protocol in the study. Furthermore, they evaluated the proposed 
approach by comparing the performances of Event-Based HMM, BP Neural Network, and NB methods [14].  
 
In their study, da Silva et al. detected cyber attacks on the electrical network components that used the 
OpenFlow protocol. They proposed an approach based on One-Class Classification algorithms and SDN. For 
this purpose, they used the One-Class SVM and Support Vector Data Description algorithms [15].  
 
Radoglou-Grammatikis et al. presented an Intrusion Detection and Prevention System with SDN technology 
for SCADA systems using Distributed Network Protocol 3 (DNP3). The study processing actual data from a 
transformer station used Minimum Covariance Determinant, Local Outlier Factor, Principal Component 
Analysis, Isolation Forest, and DIDEROT Auto-encoder methods for the proposed system [16].  
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Choubineh et al., who detected cyber attacks against a gas pipeline, used Hoeffding Tree, NB, RT, Bayes Net, 
and OneR machine learning algorithms in their study. They utilized different methods to increase the 
proposed algorithm's performance and efficiency and compared the results [17].  
 
Wang et al. performed attack detection for the SCADA system using datasets of gas pipeline and power 
transmission systems using the Modbus protocol. In their study, where they simulated attack scenarios such 
as Short-circuit fault, line maintenance, command injection, relay setting change, data injection, and DOS, 
they tested NNge, RF, NB, Adaboost, SVM, Decision Tree, oneR, J48, JRip, and AdaboostJRip, as well as their 
proposed model, "Stacked Deep Learning" for attack detection [18].  
 
Basnet et al. proposed a new deep learning-based ransomware detection framework in a SCADA-controlled 
electric vehicle charging station. Therefore, they created ransomware-driven DDoS attacks and ransomware-
driven false data injection attacks in the simulation environment. They used Deep neural networks, 1D 
Convolution Neural Network (CNN), and Long Short-Term Memory (LSTM) algorithms for attack detection 
[19].   
 
Rajesh et al. created a real-time SCADA network traffic dataset to detect attacks against Industrial Process 
Control Systems. They utilized Chi-square, ANOVA, and LASSO with SVMS-MOTE metrics to organize the 
feature values. Then, they applied RF, SVM, K-Nearest Neighbors (KNN), and NB machine learning 
algorithms for attack detection [20].  
 
Polat et al. detected DDoS attacks on SDN-based SCADA systems. They obtained the dataset by establishing 
the experimental environment with Modbus TCP communication. Hybrid LSTM, Gated Recurrent Units, 
and SVM methods were used to detect attacks [7].  
 
Some studies in the literature use their own or ready-made datasets. These studies; used machine learning, 
deep learning, or hybrid approaches to detect attacks against SCADA systems. The reviewed studies 
frequently discussed NB, RF, SVM, and LSTM algorithms. 
 
In addition to previous research, SDN-based SCADA systems were discussed in this study, and machine 
learning methods were used to detect attacks against these systems. A DDoS attack detection system model is 
proposed. The proposed model highlighted the use of different machine learning methods to eliminate the 
deficiencies of previous studies and contribute to the field. Besides, a dataset adopting a real-time SDN 
infrastructure–tested in similar literature studies–was used to perform attack detection. The current study 
proposed a valuable model for attack detection using LR, KNN, RF, and SVM methods. 
 
3. SCADA, SDN, and Security Relationship   
 
This section includes information about SCADA and SDN technologies, the services offered by these 
technologies, and cyber security vulnerabilities. 
 
3.1. SCADA systems 
 
SCADA is a system that transmits the information received from the terminal units in the work environment 
to the central unit, sends commands from the center to the peripheral elements, manages communication, 
and monitors all operations. While SCADA systems serve in many areas, such as airlines, railways, space 
systems, power plants, and critical infrastructures of different scopes, Human Machine Interface (HMI) 
monitors and manages these systems. SCADA systems consist of Master Terminal Units (MTU), Remote 
Terminal Units (RTU), and end devices. Figure 1 shows SCADA system components. 
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Figure 1. SCADA system components 

 
As seen in Figure 1, end devices, such as sensors or actuators in the fields, send data to the RTU. RTU transmits 
the data received to MTU. After performing the controls and actions, MTU transfers the decision and the 
necessary command to the RTU. RTU conveys the relevant commands to terminals, and specified operations 
thus become complete. Besides these, SCADA systems have a database for event information records and an 
HMI for the user. These features make it easy to conduct retrospective case studies, data analysis, and process 
tracking [1]. 
 
SCADA systems are designed independently from the external network. Therefore, it works in a closed circuit, 
has no cyber security mechanisms planned, and has security vulnerabilities [21]. The increased number of 
sensors used in devices or terminal units in the SCADA system and higher data transmission between the 
elements raise the system's complexity. Using the Internet in SCADA has enabled the installation of many 
new technologies. System users can use default or weak-featured passwords, share passwords with others, and 
prefer remote access to the system. Security solutions such as attack detection and prevention systems or 
antivirus software cannot ultimately provide security for SCADA systems. Therefore, security vulnerabilities 
in SCADA systems allow attackers to infiltrate and damage the system. These security vulnerabilities can 
manipulate SCADA system components with different attack types, such as DOS, DDoS, data modifying, and 
packet injection [18]. Abnormalities or malfunctions of system components can stop the SCADA and even 
damage the functioning of other associated systems.  
 
Insecure communication protocols also compromise system security by causing vulnerabilities. Modbus 
TCP/IP protocol provides no encrypted transmission, authentication check, or authorization; it has many 
security vulnerabilities. However, it is the most preferred communication protocol because it is an open-
source and easy-to-use application [22]. Due to security holes, the Modbus TCP/IP protocol is vulnerable to 
attacks such as DoS, DDoS, and MITM [23]. DDoS attacks might manipulate the lack of authorization 
vulnerability of the Modbus TCP/IP protocol and cause the Master device to send messages to the RTUs. This 
process can consume the resources of the RTU and render them unusable, as in the Alabama Browns Ferry 
Nuclear Power Plant that was closed down because of DDoS attacks [22]. 
 
3.2. Software-Defined Network (SDN) 
 
With the inability to meet the new needs in the IT world with the traditional network approach, new 
technologies such as SDN have emerged. SDN technology has brought a different perspective to network 
management by providing opportunities for innovations, such as adding new units to the network, increasing 
the variety of devices, and using diverse technologies simultaneously. SDN can produce easy and fast solutions 
to problems and facilitates network management. 
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Figure 2. SDN architecture 

 
As seen in Figure 2, there are three planes in the SDN architecture: control, data, and application. The data 
plane, programmed and managed by the control plane, consists of various communication devices such as 
routers. Devices on this plane cannot perform high-level network operations. The application plane assists 
the control plane in security, routing, and network configuration. Applications are programmed with the 
software located in this plane. In the control plane between the two planes, there are SDN controllers, which 
are the brains of the network. The controllers communicate with the devices in the data plane using the 
Southbound interface and the services and applications running on the application plane using the 
Northbound interface. The control plane manages communication devices [24].   
 
3.3. Distributed Denial-of-Service (DDoS) attacks 
 
DDoS attacks aim to prevent the systems from responding to their users. Network resources in the attacked 
systems struggle to resist the invasion that massively damages the network infrastructure and renders the 
services temporarily or permanently inoperable. These attacks occur in two modes: First, numerous requests 
are forwarded to the target system via infected zombie computers. Second, network security vulnerabilities 
are detected by infiltrating the target system, and the system is rendered inoperable. DDoS attacks can cause 
financial, reputation, time losses, and information thefts because of system malfunctions. 
 
SCADA systems are the most exposed when it comes to DDoS attacks. These attacks cause heavy traffic by 
sending too many requests to the MTU or terminals in the SCADA system. Thus, the target machine cannot 
respond even to actual requests [25]. A SCADA system that cannot react to user requests can also affect 
connected systems–machines or terminals–and terminate data exchange.  
 
4. Material and Method   
 
This section includes information about the dataset, methods, and experimental results. In addition, the 
comparison of the results obtained with the literature is also included in this section. 
 
4.1. Dataset 
 
The current study utilized the dataset produced by Polat et al. in their DDoS attack detection experiments 
conducted in an SDN-based SCADA network environment [7]. The experimental studies covered four 
scenarios: TCP flood attack, UDP flood attack, ICMP flood attack, and normal (no attack) scenario. Table 1 
shows the network packet (samples) numbers of these scenarios. The dataset had 89 attributes, benign 
(normal) network traffic data (1188 rows), and DDoS attacks (TCP, UDP, and ICMP flooding) traffic data (a 
total of 3012 rows). Since the number of samples of these four classes in the dataset is close to each other, the 
dataset is balanced. 



602 

 Gazi Mühendislik Bilimleri Dergisi: 9(3), 2023  

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2022 Gazi Akademik Yayıncılık  

Söğüt, Tekerek & Erdem 

 
Table 1. The number of packages in the scenarios  

Attacks Number of Packages  
TCP flooding 

3012 
 

UDP flooding  
ICMP flooding  
Normal Request 1188  
Total 4200  

 
4.2. Methods 
 
To detect attacks, the study utilized Logistic Regression, K-Nearest Neighbors, Random Forest, and Support 
Vector Machine–machine learning classification algorithms. 
 
4.2.1. Logistic Regression (LR) 
 
LR is a linear classifier algorithm that finds a hyperplane in the feature space. It separates the obtained 
observation results according to their classes and converts the output of a linear function using a logistic 
sigmoid function. Thus, "probability values" that can match a particular class are calculated [26]. 
 
It is a successful method of classifying categorical dependent variables using independent variables. LR is used 
in many areas with nonlinear classification problems, especially in market research, finance, and engineering. 
The dependent variable is usually coded as "1" and "0" in binary logistic regression models. If the observed 
result is successful or has a positive meaning, it is coded as “1”. In the opposite case, it is coded as "0". Unlike 
traditional regression models, the error term is hidden in logistic models. In the traditional regression model, 
there is no e, as in y=b+ax+e, but an error value ei plays a role in the background [27].  
 
4.2.2. K-Nearest Neighbors (KNN) 
 
The KNN algorithm, a preference for classification and prediction problems, represents an easy-to-use 
supervised machine learning algorithm. The algorithm determines the k nearest neighbors to an unknown 
taken for classification. By looking at the classes these neighbors belong to, the unknown to be classified is 
assigned to one or more classes at the closest distance. While determining the data class, it finds the nearest 
neighbors and calculates the distances [28]. This research found the k value for classification to be 10.  
 
In order to apply the nearest neighbor algorithm method, it is necessary to determine the distance 
measurement method. For this, one of the "Euclidean Distance" or "Cosine Similarity" measures is usually 
used [29].   
 
𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑛)𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑛)        (1) 
 
𝑌 = (𝑌1, 𝑌2,… , 𝑌𝑛)𝑌 = (𝑌1, 𝑌2,… , 𝑌𝑛)        (2) 
 
The examples in the classes are shown with Eq.1 and the data to be classified is shown with Eq.2. 
 
𝐷(𝑋, 𝑌) = ,∑ (𝑥𝑖 − 𝑦𝑖)!"

#$%           (3) 
 
Accordingly, the Euclidean Distance between the two vectors is calculated by Eq.3. 
 
4.2.3. Random Forest (RF) 
 
RF can be defined as a collection of tree-structured classifiers. Using the best split among all variables, RF 
splits the best among a randomly selected subset of predictors at a node instead of dividing all. It creates a 
new training dataset by modifying the original and then grows a tree using random feature selections. Users 
can create as many trees as they want. The RF algorithm has been used extensively in different applications 
[30].  
 
Instead of one classifier, it generates multiple classifiers and then classifies the new data with the votes taken 
from their predictions. To start this algorithm, two parameters must be defined by the user. These parameters 
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are the number of variables (m) used at each node and the number of trees to be developed (N) to determine 
the best split. The number of m variables, taken equal to the square root of the total number of M variables, 
generally gives the closest result to the optimum result. RF generates trees using the Classification and 
Regression Tree (CART) algorithm. At each node, branches are created according to the criteria of the CART 
algorithm (e.g., GINI index) [31]. The GINI index measures class homogeneity and can be expressed by Eq.4 
below. 
 
∑∑ 2&((#,*)|*|

3-.# 2&((#,*)|*|
3           (4) 

 
In Eq.4, T is the training dataset, Ci is the class of a randomly selected pixel, and f(Ci,T)/|T| shows the 
probability that the selected sample belongs to class Ci. As the GINI index increases, class heterogeneity 
increases, while class homogeneity increases in the opposite case. When all N trees are produced, the class of 
candidate pixel is determined based on the prediction results obtained from N trees [32].  
 
4.2.4. Support Vector Machine (SVM) 
 
SVM is a supervised machine learning model that uses regression and classification analysis. It identifies and 
analyzes patterns. It separates data into two or more dimensions using a line, plane, or hyperplane. For this, 
it determines the appropriate decision function [33]. The dataset of the two classes can be represented by Eq.5. 
 
(x1, y1), (x2, y2), … , (	xi, yi)	i = 1, 2, … ,M         (5) 
 
In Eq.5, x is the input vector with properties belonging to classes of size N. Y indicates the class labels 
corresponding to them, equal to +1 or -1 [34]. 
 
4.3. Experimental results 
 
The current study performed experiments using the dataset to detect DDoS attacks in SDN-based SCADA 
systems. In the experiments study, four different algorithms were employed. These algorithms are LR, KNN, 
RF, and SVM. Detailed information about the algorithms is given in the material and methods section. The 
comparative results obtained from the experiments are presented in this section below.  
 
There are four different classes in the dataset. These three contain different types of DDoS attacks, and the 
fourth class is normal. For experiments, the dataset is divided for train and testing, 80% of the dataset is 
arranged for training and 20% for testing. Accordingly, 2410 rows from the attack classes and 950 from the 
normal class were used for the train. The remaining 602 rows of data from the attacks and 238 rows from the 
normal class were used for testing. In order to create a highly accurate attack detection system, it is necessary 
to prepare and train a suitable model [35]. 
 
Table 2 presents the experiment results for attack detections performed by the LR classifier algorithm. 
 

Table 2. LR classification results 

 Precision Recall F1-Score Support  
Normal 0.888 0.974 0.929 155  
ICMP Flooding 1.000 0.901 0.948 212  
TCP Flooding 0.976 1.000 0.988 239  
UDP Flooding 1.000 1.000 1.000 238  
Accuracy   0.970 844  
Macro Avg 0.966      0.969      0.966        844  
Weighted Avg 0.973      0.970      0.970      844  

 
Table 2 shows the analysis results of the LR classifier algorithm by the precision, recall, f1-score, support, and 
accuracy evaluation metrics. According to the performance results of the model on the f1-score metric, this 
model obtained the following correct prediction rates: Class-1 (Normal): 0.929, Class-2 (ICMP): 0.948, Class-
3 (TCP): 0.988, and Class-4 (UDP): 1.00. The accuracy value of the model was 0.970. While the model's 
prediction in Class-1 was weak, it was superb in Class-4.  
 
The study utilized a confusion matrix to understand the results of the classification model created, compare 
the actual values and estimation results, and evaluate the errors (Figure 3). In addition, the results for the 
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Receiver Operating Characteristic (ROC) Curve value are presented in Figure 4. The ROC Curve furnishes a 
means for the comprehensive evaluation of a model across the entire spectrum of score thresholds yielded by 
a classifier [36].  
 

 
Figure 3. LR confusion matrix results 

 

 
Figure 4. LR ROC Curve 

 
According to the confusion matrix results, the LR classifier algorithm classified Class-1 with 151 true and four 
false predictions, Class-2 with 191 true and 21 false, Class-3 with 239 true and zero false, and Class-4 with 238 
true and zero false. According to the results for ROC Curve, 99.85% for the 1st Class, 99.98% for the 2nd 
Class, 99.97% for the 3rd Class, and 100% for the 4th Class were obtained. 
 
Table 3 presents the analysis results of the attack detections performed by the KNN classifier algorithm. 
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Table 3. KNN classification results 

 Precision Recall F1-Score Support  
Normal 0.985      0.839      0.906        155  
ICMP Flooding 0.898      1.000      0.946        212  
TCP Flooding 0.987      0.983      0 985        239  
UDP Flooding 1.000       1.000       1.000       238  
Accuracy   0.966        844  
Macro Avg 0.968      0.955      0.959        844  
Weighted Avg 0.968      0.966      0.965        844  

 
The KNN classifier algorithm's performance predictions based on the f1-score were as follows: Class-1 
(Normal): 0.906, Class-2 (ICMP): 0.946, Class-3 (TCP): 0.985, and Class-4 (UDP): 1.00. The accuracy value 
of the model was 0.966. 

 

 
Figure 5. KNN confusion matrix results 

 

 
Figure 6. KNN ROC Curve 

 
According to the confusion matrix results (Figure 5), the KNN classifier model classified Class-1 with 130 
true and 25 false predictions, Class-2 with 212 true and zero false, Class-3 with 235 true and four false, and 
Class-4 with 238 true and zero false. According to the results obtained for ROC Curve (Figure 6), 92.07 % 
results were obtained for the 1st Class, 98.30% for the 2nd Class, 99.73% for the 3rd Class, and 100% for the 
4th Class. 
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Table 4 presents the analysis results of the attack detections performed by the RF classifier algorithm. 
 

Table 4. RF classification results 

 Precision Recall F1-Score Support  
Normal 1.000       0.535      0.697        155  
ICMP Flooding 0. 691      1.000       0.817        212  
TCP Flooding 0.944      0.854      0.897        239  
UDP Flooding 1.000       1.000       1.000       238  
Accuracy          0.873        844  
Macro Avg 0.909      0.847      0.853        844  
Weighted Avg 0.907      0.873      0.869        844  

 
Table 4 shows the analysis results of the RF classifier model. According to the performance results of the 
model on the f1-score metric, this model obtained the following correct prediction rates: Class-1 (Normal): 
0.697, Class-2 (ICMP): 0.817, Class-3 (TCP): 0.897, and Class 4 (UDP): 1.00. The accuracy value of the model 
was 0.873. 
 

 
Figure 7. RF confusion matrix results 

 

 
Figure 8. RF ROC Curve 

 
According to the confusion matrix results (Figure 7), the RF classifier model classified Class-1 with 83 true 



607 

 Gazi Mühendislik Bilimleri Dergisi: 9(3), 2023  

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2022 Gazi Akademik Yayıncılık  

Söğüt, Tekerek & Erdem 

and 72 false predictions, Class-2 with 212 true and zero false, Class-3 with 204 true and 35 false, and Class-4 
with 238 true and zero false. According to the results obtained for the ROC Curve (Figure 8), 97.35% for the 
1st Class, 98.31% for the 2nd Class, 98.14% for the 3rd Class, and 100% for the 4th Class were obtained. 
 
Table 5 presents the analysis results of the attack detections performed by the SVM classifier algorithm. 
 

Table 5. SVM classification results 

 Precision Recall F1-Score Support  
Normal 0.884      0.981      0.930        155  
ICMP Flooding 1.000       0.896      0.945        212  
TCP Flooding 0.980      1.000       0.990      239  
UDP Flooding 1.000      1.000       1.000       238  
Accuracy   0.972        844  
Macro Avg 0.968      0.969      0.968        844  
Weighted Avg 0.974      0.971      0.971        844  

 
According to the performance results of the SVM algorithm on the f1-score metric, this model obtained the 
following correct prediction rates: Class-1 (Normal): 0.930, Class-2 (ICMP): 0.945, Class-3 (TCP): 0.990, and 
Class-4 (UDP): 1.00. The accuracy value of the model was 0.972. In general, the model predicted all classes 
successfully. 
 

 
Figure 9. SVM confusion matrix results 

 

 
Figure 10. SVM ROC Curve 
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As seen in Figure 9, the SVM classifier model classified Class-1 with 152 true and 3 false predictions, Class-2 
with 190 true and 22 false, Class-3 with 239 true and zero false, and Class-4 with 238 true and zero false. 
According to the results for the ROC Curve given in Figure 10, 99.87% for the 1st Class, 99.85% for the 2nd 
Class, 99.96% for the 3rd Class, and 100% for the 4th Class were obtained.  
 
Four different classification models were evaluated, and the results were analyzed. Table 6 shows all the 
analysis results comparatively. 
 

Table 6. Comparison of classification algorithms 

 LR KNN RF SVM  
Accuracy 0.970        0.966        0.873        0.972         
Precision 0.973      0.968      0.907      0.974       
Recall 0.970      0.966      0.873      0.971       

 
As seen in Table 6, the models are compared according to accuracy, precision, and recall metrics. Accuracy is 
a widely used metric to measure the success of a classification model. The comparison of the classification 
models showed that the RF model had a worse performance than other models. The LR and KNN 
classification models were close in performance. The results revealed that the SVM classification model 
showed the best performance. 
 
The results obtained with the proposed model were compared with previous studies in the literature. Table 7 
shows the comparison results. The comparisons conducted according to the sensitivity and accuracy values 
showed that the proposed model gave relatively better results. 
 

Table 7. Comparison with other studies in the literature 

Study Dataset Algorithms Best 
Performance 

Accuracy 
(%) 

Precision 
(%) 

 

[1] T. H. Morris et al. Decision Stump, Hoeffding Tree, RT,  REP Tree RT 84.00 -  
[7] Their dataset LSTM, Gated Recurrent Units, SVM Hibrit 97.62 -  
[12] Gamesa Wind 

Turbines 
RF, ECSO-GML ECSO-GML 97.60 98.10  

[14] Their dataset Event-Based HMM, BP Neural Network, NB Event-Based 
HMM 

91.08 -  

[16] N. Rodofile et al. Minimum Covariance Determinant, Local Outlier 
Factor, Principal Component Analysis, Isolation 
Forest, DIDEROT Autoencoder 

DIDEROT 
Autoencoder 

95.10 -  

[18] Mississippi State 
University’s SCADA 
Lab 

NNge, RF, NB, Adaboost, SVM, Decision Tree, 
oneR, J48, JRip, AdaboostJRip, Stacked Deep 
Learning method 

Stacked Deep 
Learning 

97.38 98.59  

Proposed 
Study 

The dataset of 
reference [7] 

LR, KNN, RF, SVM SVM 97.2 97.4  

 
5. Conclusions 
 
The safe continuation of activities in businesses, industrial facilities, or institutions, especially critical 
infrastructures, depends on the correct functioning of SCADA systems. For this purpose, the cyber security 
of the system in the structures using the SCADA system has been the primary research topic. Security issues 
have gained a different perspective by integrating a new technology such as SDN into the SCADA system. 
This study focuses on detecting three different DDoS attacks on SDN-based SCADA systems.  
 
In addition, the normal class is also included in the dataset so that the system can detect non-attack situations. 
The dataset used in the study was prepared and made available by [7]. This dataset combines SCADA and 
SDN technologies, is obtained in a virtual environment, and produces network flow data of DDoS attacks 
against this system. Due to these features, it differs from the datasets in the literature. The results of the models 
created with four different machine learning methods on the dataset were examined in detail.  
 
Our study reached the highest accuracy value of 97.2% with the model created with the SVM algorithm. 
According to other studies examined in the literature, it has been concluded that a complex model is optional 
to create an attack detection model that can be integrated into SCADA and SDN systems. When the studies 
are examined based on the accuracy value, our study produced a model with an average of 7.14% higher 
performance than those with lower success. Again, considering the accuracy values, there is only an average 
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of 0.33% loss of success compared to the complex structured studies that achieved higher success than ours. 
In particular, a less complex structure was presented compared to the study, in which the same dataset was 
used, and a slight difference of 0.42% was obtained in success. 
 
Considering the distributions of attack types, the model we obtained in our study detects TCP and UDP 
attacks with 100% success. Of the attacks, only ICMP was detected as Normal at a rate of 9.43%, and TCP was 
detected at a rate of 0.94%. This shows that ICMP and Normal data flow are similar. In the estimation of 
normal network data, misclassification as TCP was performed with a low rate of 1.94%. 
 
In systems where SCADA and SDN technologies are used together, using simple models that can be adapted 
efficiently and will not tire the system to provide cyber security may be advantageous. For this purpose, 
models have been produced for the security of the SDN-based SCADA system with fast machine learning 
algorithms frequently used in the literature. Fast machine learning algorithms are preferred instead of 
complex models such as deep learning and hybrid approaches, and the differences are discussed. 
 
In the future, we plan to embed the model we developed into SDN-based SCADA systems. It is aimed to 
diversify the types of attacks that can be made on these systems and to run different algorithms for attack 
detection. We aim to contribute more to this field by working on the cyber security of SCADA and SDN-
based SCADA systems. 
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