
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 73, Number 2, Pages 450–459 (2024)
DOI:10.31801/cfsuasmas.1337217
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received:August 3, 2023; Accepted: November 21, 2023

A KIND OF ROTATIONAL SURFACES WITH A LIGHT-LIKE

AXIS IN CONFORMALLY FLAT PSEUDO-SPACES OF

DIMENSIONAL THREE

Fırat YERLİKAYA
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Abstract. In this work, we define the rotational surface with a light-like axis

in conformally flat pseudo-spaces
(
E1
3

)
λ
, where λ is a radial-type conformal

factor. We relate the principal curvatures of a non-degenerate surface that

belongs to conformally equivalent spaces
(
E1
3

)
λ

and R3
1, based on the radial

conformal factor. Thus, we establish a relationship between the radial con-
formal factor and the profile curve of the rotational flat surface in

(
E1
3

)
λ
, but

also for that of the rotational surface with zero extrinsic curvature.

1. Introduction

The theory of surfaces is one of the significant subfields of study that belong to
the field of differential geometry. This theory has a wide variety of applications.
For instance, it is used in computer graphics to create 3D models of objects, in
physics to describe the behavior of fluids and solids, and in engineering to design
structures with optimal shapes [1, 2].
In contrast to the creation of a helicoidal surface, which has been differently charac-
terized in a recent publication [3], the formation of a rotational surface is achieved
only through the rotation of a curve around an axis. The investigation of rota-
tional surfaces has been the subject of considerable scholarly research. To access
studies done in recent years, refer to references [4–6]. The study of special surfaces,
such as rotational and helicoidal surfaces, is conducted in the setting of conformally
flat spaces. Conformally flat spaces possess distinctive characteristics through the
utilization of their conformal factors. The determination of the proper conformal
factor is important for undertaking surveys of the aforementioned surfaces in con-
formally flat spaces. A function f is said to be invariant under a transformation T
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of the space into itself if the condition f (Tx) = f (x) is satisfied for all x. If the
conformal factor λ is a function that meets this criterion, it is reasonable to consider
such surfaces in conformally flat spaces. An estimation for this type of function
can be derived from the Cartesian equation of geometric shapes such as the sphere
and the cylinder. In contrast to the cylinder type, which exhibits invariance under
both rotational and translational symmetries, the spherical type is only invariant
under rotational symmetry. For more on research done in the framework of the
spherical type t := x2

1 + x2
2 + x2

3, see [7, 8]. For another type, see [9–15]. In the
aforementioned studies, the authors consider the various conformal factors, such
as

√
t, 1√

t
, and e−t. It is worth noting that the first two factors contribute to the

formation of the generic metric, whereas the third factor serves as a metric that is
a solution to Einstein’s equation.

Yerlikaya [14] introduces the conformally flat pseudo-space of dimensional three,
and presents a non-degenerate surface’s curvatures for an arbitrary conformal fac-
tor. But, this work is based on the utilization of the radial conformal factor as the
framework. From this perspective, rotational surfaces in conformally flat pseudo-
spaces are analyzed.

2. Basic Notations

Denote the Minkowski space by R3
1, defined by the Minkowski metric g (x, y) =

−x1y1 + x2y2 + x3y3 with respect to a cononical basis {e1, e2, e3} of R3
1, where

x = (x1, x2, x3), y = (y1, y2, y3). Observe that for a pseudo-orthonormal basis
{ξ1, ξ2, ξ3} of R3

1, the metric becomes g (x, y) = x1y3+x2y2+x3y1. In a such basis,
the following equalities hold

g (ξ1, ξ1) = g (ξ1, ξ2) = g (ξ2, ξ3) = g (ξ3, ξ3) = 0, (1)

g (ξ1, ξ3) = g (ξ2, ξ2) = 1. (2)

For some tools regarding the transition matrix given bye1e2
e3

 =

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0

ξ1ξ2
ξ3

 , (3)

see [16]. The rotational motion about the null coordinate axis Oξ3 is represented
by x1

x2

x3

→ A−1RA

x1

x2

x3

 ,

i.e. x1

x2

x3

→

− 1√
2

1√
2

0

0 0 1
1√
2

1√
2

0

1 + θ2

2 − θ2

2 θ
θ2

2 1− θ2

2 θ
θ −θ 1

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0

x1

x2

x3

 ,
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or the more useful form x1

x2

x3

→

 1 0 0
t 1 0

− t2

2 −t 1

x1

x2

x3

 , (4)

where t = −
√
2θ.

Equipped the Minkowski space R3
1 with a conformally flat pseudo-metric given

by the angle-bracket notation

⟨w1, w2⟩gλ =
1

λ2 (p)
⟨w1, w2⟩L , ∀w1, w2 ∈ TpR3

1, ∀p ∈ R3
1,

the resulting space is said to be the complete pseudo-Riemannian manifold if the
conformal factor λ is bounded. From now on, unless otherwise stated, this pseudo-
manifold shall be mentioned as the conformally flat pseudo-space, represented by(
E1
3

)
λ
. Here, note that the pseudo-metric ⟨, ⟩L is the Minkowski metric whose co-

efficients are those of Eqs. (1) and (2).

3. Surfaces in a conformally flat pseudo-space with radial
conformal metrics

(
E1
3

)
λ(r)

In [14], the author calculates the principal curvatures of a non-degenerate param-
eterized surface for an arbitrary conformal factor in the conformally flat pseudo-
space. Now, we’ll modify the process so that it works with the radial conformal
factor

λ = λ (r) , r = 2x1x3 + x2
2, (5)

which implies the spherical type with respect to the pseudo-orthonormal basis of
R3

1. Consider a non-degenerate parametrized surface M = X (U) in the Minkowski
space as

X : U ⊂ R2 → R3
1

(s, t) → X (s, t) = (x1 (s, t) , x2 (s, t) , x3 (s, t)) .

Since this surface also belongs to a pseudo-space that is conformal to the Minkowski

space, we can write
∼
N (s, t) = (λN) (s, t) for (s, t) in some planar domain, where

N and
∼
N denote the normal vector fields in Minkowski space and conformally flat

pseudo-space, respectively. Let ∇ be the Levi-Civita connection of
(
E1
3

)
λ(r)

. Thus,

we get

∇X,s

∼
N = ∇X,s

(λN) = Xs (λ)N + λ∇X,s
N, (6)
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whereX,s denotes the partial derivative ofX with respect to the parameter s. Using

the properties of the connection ∇ and considering N as the linear combination of
the pseudo-basis, we write

∇X,s
N = N,s +

3∑
i,j,k=1

Xi
,sN

jΓk
ijξk, (7)

where Γk
ij denote the Christoffel symbols of the conformal pseudo metric. Note that

Eq. (7) holds for the parameter t, as well.

Taking Eq. (5) into account, we have ∂λ
∂xi

= ∂λ
∂r

∂r
∂xi

. From now on, we use the

notation ∂λ
∂r =

.

λ. Thus, we can write

Γk
ij = −ḡjk

ϵj
ϵk

.

λ (r)

λ

∂r

∂xi
− ḡik

ϵi
ϵk

.

λ (r)

λ

∂r

∂xj
+ ḡij

ϵi
ϵk

.

λ (r)

λ

∂r

∂xk
, (8)

where ϵi = ḡii. From Eq. (8) together with Eq. (5), we get

Γ2
11 = Γ3

11 = Γ3
12 = Γ1

13 = Γ3
13 = Γ1

23 = Γ1
33 = Γ2

33 = 0,

Γ1
11 = 2Γ2

12 = −2Γ3
22 = −4x3

.

λ (r)

λ
(9)

Γ1
12 = −Γ2

13 = Γ2
22 = Γ3

23 = −2x2

.

λ (r)

λ

−2Γ1
22 = 2Γ2

23 = Γ3
33 = −4x1

.

λ (r)

λ

Theorem 1. Let X : U → R3
1 be a non-degenerate surface parametrized as X (s, t) =

(x1 (s, t) , x2 (s, t) , x3 (s, t)) in the Minkowski space R3
1. Consider X (U) as a non-

degenerate surface in a conformally flat pseudo-space
(
E1
3

)
λ(r)

. Then, the eigenval-

ues
∼
kl of X in

(
E1
3

)
λ(r)

are calculated as

∼
kl = λkl − 2

.

λ ⟨(x1, x2, x3) , N⟩ , 1 ≤ l ≤ 2, (10)

where N denotes the normal Gauss mapping of X in R3
1 and kl are the eigenvalues

of N .

Proof. Let’s proceeed with the proof for the parameter s. Putting (9) into Eq. (7),
we have

∇X,sN = N,s −
2
.

λ

λ
⟨X,N⟩X,s −

2
.

λ

λ
⟨X,s, X⟩N.

Substituting this into Eq. (6), we obtain

∇X,s

∼
N = λN,s − 2

.

λ ⟨X,N⟩X,s. (11)
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Taking N,s = k1X,s and ∇X,s

∼
N =

∼
k1X,s into account and using Eq. (11), we

obtain
∼
k1 = λk1 − 2

.

λ ⟨X,N⟩ , (12)

which concludes the proof. □

3.1. Rotational Surfaces with a light-like axis in
(
E1
3

)
λ(r)

. We now consider

the Gauss and extrinsic curvatures of a non-degenerate rotational surface in con-
formally flat pseudo-spaces

(
E1
3

)
λ(r)

, as it relates to the radial conformal factor.

As mentioned in the introduction, helicoidal surfaces are described as the general
category to which rotational surfaces belong. For this reason, the ability to define
helicoidal surfaces in conformally flat pseudo-spaces, as made possible in [14], also
allows for the definition of a new type of rotational surface in these spaces.

Let γ (s) = (s, 0, f(s)), s > 0 be a curve x1x3-plane defined on I ⊂ R, which
is called the profile curve. Applying this curve to the rotation in Eq. (4), in the
following way:  1 0 0

t 1 0

− t2

2 −t 1

 s
0

f(s)

 ,

we get a non-degenerate surface given by the parametric form

X : I × R →
(
E1
3

)
λ(r)

(s, t) → X (s, t) =

(
s, st, f(s)− st2

2

)
, (13)

which implies that it is a rotational surface in
(
E1
3

)
λ(r)

, where f(s) is a function

defined on an open interval I of R.

Lemma 1. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, the Gaussian curvature of X is computed as

K =
−ϵλ2

s
√
2f ′

∂

∂s

(
λ− 2

.

λs (f + sf ′))

λ
√
2f ′

)
, (14)

where
.

λ = dλ
dr and ϵ = ±1.

Proof. To find the Gaussian curvature of X in the conformally flat pseudo-space(
E1
3

)
λ(r)

, we need to calculate the coefficients of the first fundamental form of X

with respect to the conformal metric. Then, it is easily seen that

∼
E =

2f ′

λ2 ,
∼
F = 0 and

∼
G =

s2

λ2 . (15)
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Due to
∼
F = 0, we have from [17] the knowledge that there is a formula for calculating

the Gaussian curvature in the Euclidean version. Based on this knowledge, we
modify, in the Minkowskian version, the formula of Gaussian curvature such that

K =
−ϵ

2

√
∼
E

∼
G

(
∂

∂t

 ∼
Et√
∼
E

∼
G

+
∂

∂s

 ∼
Gs√
∼
E

∼
G

). (16)

Hence, together with
∼
Et = 0 and

∼
Gs =

2sλ2−4λ
.

λ(f+sf ′)s2

λ4 , using Eq. (16), we get
Eq. (14). This concludes the proof.

□

Theorem 2. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, X (s, t) is flat in
(
E1
3

)
λ(r)

if and only if λ = λ (2sf) = e−
∫ c1

√
2f′−1
s ds, c1 ̸= 0.

Proof. It is clear from Eq. (14) that the necessary condition for X to be flat in(
E1
3

)
λ(r)

have to satisfy the following equation

sλ− 2s2
.

λ (f + sf ′)

λ
√
2s2f ′

= c1. (17)

Hence, if c1 = 0, we get a contradiction about the completeness of the metric. If

c1 ̸= 0, then Eq. (17) becomes
.

λ
λ = c1

√
2f ′−1

2s(f+sf ′) . By integrating both sides, we obtain

the desired outcome. □

Lemma 2. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, the extrinsic curvature of X is computed as
∼
KE =

−ϵ

4sf ′2

(
λf ′′ − 4

.

λf ′ (f − sf ′)
)(

λ+ 2s
.

λ (f − sf ′)
)
, (18)

where ϵ = ±1.

Proof. If we proceed through the steps of proving Lemma (1) for the Minkowskian
metric, then the coefficients of the first fundamental form are as follows:

E = 2f ′, F = 0 and G = s2, (19)

and the coefficients of the second fundamental form are calculated as

e = −sf ′′

α
, f = 0 and g =

s2

α
, (20)

where α =
√
2s2f ′. On the other hand, taking into account the partial derivatives

of X, we find
∼
ki = λki − 4

.

λ
sff ′ (1− sf ′)

α
. (21)
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Ultimately, using together Eqs. (19) and (20) with Eq. (21), we get
∼
KE =

∼
k1

∼
k2 =

−ϵ

4sf ′2

(
λf ′′ − 4

.

λf ′ (f − sf ′)
)(

λ+ 2s
.

λ (f − sf ′)
)
. (22)

□

Theorem 3. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, X (s, t) has zero extrinsic curvature in
(
E1
3

)
λ(r)

if and only if either one of

the next two equations

λ = λ (2sf) =
c1
√
f ′

f − sf ′ or λ = λ (2sf) = e
−

∫ f+sf′

s(f−sf′)
ds

(23)

are satisfied, where c1 is a positive real number.

Proof. In order for X to have zero extrinsic curvature in
(
E1
3

)
λ(r)

, the following

equations must be met:

λf ′′ − 4
.

λf ′ (f − sf ′) = 0 or λ+ 2s
.

λ (f − sf ′) = 0.

Of these, the first one becomes
.

λ
λ = f ′′

4f ′(f−sf ′) . Using the integration, we get

λ = c1
√
f ′

f−sf ′ . As similar to this, we find the other one. The proof concludes here. □

Remark 1. In the first equality of Eq. (23), for λ (r) = 1√
r
, rotational surfaces

X with zero extrinsic curvature are rational kinds. More clearly, from Eq. (18),

when λ (r) = 1√
r
,

∼
KE = 0 if and only if sff ′′ + ff ′ − sf ′2 = 0, whose general

solution is f(s) = nsm, where m is a constant and n is a positive real number.
Rotational surfaces with zero extrinsic curvature can be determined to be polynomial
in character with isothermal parameters by a special solution of the differential

equation mentioned above. In the second one, for λ (r) = e−r,
∼
KE = 0 if and only

if it satisfies the equation 2s2f ′−2sf+1 = 0, which ensures that the general solution
is f(s) = ms + 1

4s , where m is a real number. By using a special solution of the
differential equation, we just talked about above, we can figure out that rotational
surfaces with zero extrinsic curvature are of constant Gaussian curvature. Both
conformal factors are useful, but in different ways for different models, as was
mentioned in the introduction.

Example 1. Let’s use Theorem 3 to describe a rotational surface with zero extrinsic
curvature in

(
E1
3

)
1√
r

. From Remark 1, for λ (r) = 1√
r
, we have the knowledge whose

profile curve will be f(s) = nsm. Substituting this profil curve into Eq. (13), we get
the parametrization of a rotational surface with zero curvature surface as follows:

X (s, t) =

(
s, st, nsm − st2

2

)
.

We now plot it putting for m = 3 and n = 2. See Fig. (1).
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Figure 1. The graphic belongs to a rotational surface of rational
kind with zero extrinsic curvature in

(
E1
3

)
1√
r

.

We also sketch it out with respect to the constants m = 3 and n = 1
6 that serves

as the isothermal parametrization condition. See Fig. (2).

Figure 2. The graphic belongs to a rotational surface of rational
type with zero extrinsic curvature having the isothermal parameter
in
(
E1
3

)
1√
r

.

Example 2. As similar to Example (1), the profile curve of a rotational surface
with zero curvature in

(
E1
3

)
e−r is f (s) = ms+ 1

4s . Applying this to Eq. (13) yields

X (s, t) =

(
s, st,ms+

1

4s
− st2

2

)
.

For m = 1, see Fig. (3).
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Figure 3. The graphic belongs to a rotational surface of with zero
extrinsic curvature in

(
E1
3

)
e−r .
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