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ABSTRACT. We study D-homothetic deformations of almost contact manifolds with B-metric. Some basic classes
are known to be invariant under these deformations. We examine the invariance of remaining basic classes. Also
we investigate D-homothetic deformations of normal and K-contact structures. We give examples of deformations
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1. INTRODUCTION

Almost contact manifolds with B-metric were first classified in [3]. There are eleven basic classes of such manifolds
depending on the symmetry properties of the fundamental tensor defined by using the covariant derivative of the metric.
Many authors have made remarkable contributions to the study of these manifolds, see for instance [3,4,6,9-11] and
references therein.

Our aim in this study is to investigate -homothetic deformation of basic classes of almost contact manifolds with B-
metric given in [1]. In [2], it was shown that the classes g, ¥, ¥4, ¥ are invariant under D-homothetic deformations.
We study the invariance of the remaining classes. In addition we investigate 9-homothetic deformations of normal
and K-contact structures. We give examples of deformations of almost contact manifolds with B-metric structures in
three dimensions. We deform the B-metric structure on a 3-dimensional Lie algebra which is of class #g and obtain a
structure in g & F1¢. Also, we write the new covariant derivative of the deformed structure for a 3 dimensional almost
contact B-metric manifold.

2. PRELIMINARIES

An ordered triple (¢, &, 17), where ¢ is an endomorphism, ¢ is a vector field, n is a 1-form is called an almost contact
structure on a smooth manifold M?"*! if
ne =1, 2.1
¢ =-1+n®¢ (2.2)
If there also exists a compatible metric g with the property that

glpu, v) = —g(u, v) + n(u)n(v), 2.3)
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where u,v are smooth vector fields on M, then (M, ¢,&,1,g) is called an almost contact manifold with B-metric.
Identities (2.1), (2.2), (2.3) imply
nog=0, ¢&=0, nu) =gu,&), glpu,v)=gu,ev).

We denote smooth vector fields and also tangent vectors by letters u, v, w.
The signature of the metric g is (n + 1, n).
There are 2!! classes of almost contact manifolds with B-metric. Let F be the tensor

F(u,v,w) = g((Vup)(v), w),

for all u,v,w € T,M where T,M is the tangent space at p and V denotes the covariant derivative of g. By (2.1), (2.2),
(2.3), the tensor F satisfies the followings:

F(u,v,w) = F(u,w,v) 2.4
F(u, v, ow) = F(u,v,w) = n()F(u,&w) — n(w)F(u, v, &) (2.5)
F(u,¢,¢) =0. 2.6)

The following 1-forms are Lee forms associated with F:
0(u) = g"Flei.ej.u), 0'(u) = g"F(ei.geju), wu) = FE & u),

where u € T,M, {e;, £} is any basis for T, M and (g') is the matrix which is the inverse of g; it
Let ¥ be the set of all (0, 3) tensors over T\, M having properties (2.4), (2.5). ¥ is the direct sum of eleven subspaces
Fi, i =1,...,11 with defining conditions listed below [3, 6].

1
Fi: Fu,v,w) = E{g(u, eV)B(ew) + glpu, )P w) + gu, ew)B(gv)
+ glgu, pw)8(*v)}

Fr: F&,v,w)=Fu,&w) =0, 2.7
F(u,v,ow) + F(v,w, ou) + F(w,u,¢v) =0,
6=0

F3: F&,v,w)=Fu,éw)=0, Flu,v,w) + F(v,w,u) + F(w,u,v) =0 (2.8)
, (3]
Fa: Flu,v,w) = —E{g(‘pu, evIn(w) + gleu, ew)n(v)}
9*
Fs: F(u,v,w) = - Zf){g(u, ev)n(w) + g(u, epw)n(v)}

Fe: F(u,v,w) =—F(ou, pv,w) — F(ou,v,ow) = —F(v,w,u) + F(w,u,v)
— 2F (ou, pv,w), 2.9)
0&) =0,6"(¢) =0 (2.10)
or equivalently,
F(u,v,w) = F(u,v,&Enw) + F(u,w,Env),
Fu,v,&) = Fv,u,&) = —F(pu, v, &), §=60"=0
F7: Fu,v,w) = —=F(ou, v, w) — F(pu,v,pw) = —F(v,w,u) — F(w,u,v) (2.11)

or equivalently,

F(u,v,w) = F(u,v, )n(w) + F(u, w,&)nv), (2.12)
F(l/t, v, f) = —F(V, u, ‘f) = _F(QDM’ @v, f)
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Fs o F(u,v,w) = F(ou, pv,w) + F(pu, v, pw)
=-F,w,u) + F(w,u,v) + 2F(ou, pv,w)

or equivalently,

F(u,v,w) = F(u,v,&nw) + F(u,w, &)nv), (2.13)
Fu,v,8) = F(v,u,§) = Fou, pv,£)
Fo: F(u,v,w) = F(ou, pv,w) + F(ou,v,ow) = —F(v,w,u) — F(w,u,v) (2.14)

or equivalently,

F(u,v,w) = F(u,v,&E)n(w) + F(u,w,&nv), (2.15)
F(u,v,&) = -F(v,u,&) = Fou,¢v,§)

Fio: Flu,v,w) = n@)F (&, ¢v, w) (2.16)

Fi: Fu,v,w) = nw){n(v)ww) + n(w)w(v)}. (2.17)

Note that, (2.6) holds for all ;.

Projections F' onto each subspace F; are obtained in [6]. We will write the projections in the context when needed.

An almost contact manifold with B-metric is said to be in the class F; @ ¥, etc if the tensor F is in the class F; @ F;
over T,M forall p € M.

An almost contact manifold with B-metric whose characteristic vector field ¢ is Killing, that is, & has the property
that g(V.£,y) + g(V,&, x) = 0 for any vector fields x, y, is called a K-contact B-metric manifold. The class of K-contact
B-metric manifolds is 1 @ 7> ® 73 @ 77 ® Fs ® F10 for manifolds of any dimension [5].

Normal structures with B-metric are those in 7 ® 7, ® ¥4 ® 75 ® ¥ and for normal structures we have dn = 0 [7,8].

If (M,p,&,1,g) is an almost contact manifold with B-metric and ¢ is a positive constant, then the deformation
introduced in [1]

- 1 B B
ii=1tn, fz;f, p=¢, g=—tg+tt+1)nen (2.18)

is called a D-homothetic deformation and also gives an almost contact B-metric structure on M. The tensor F of the
deformed structure is

Flu,vow) = —tF v, w) + 1 - D dntov.wintu) - dntv. ewpn(u)
—dn(u, ev)n(w) — dn(u, pw)n(v)}, (2.19)
where
dn(u,v) = g(V.£.v) — g(Vuéou) = F(u, @v, &) — F(v, g, £) (2.20)

3. DEerorMATIONS OF Basic CLASSES

(M, ¢,€,1,8) denotes an almost contact B-metric manifold and (M, @, €, 7, §) is the new almost contact B-metric
manifold obtained by deforming the metric by (2.18). In [2] it was shown that the classes %y, 71, ¥4, F5 are invariant
under D-homothetic deformations. Note that since F = —¢F for these classes, 8 = 6 and §* = 6* hold for Lee forms
of the first and deformed structures, compare with Theorem 2.1 and equation (2.7) in [2] which also implies the same
results. In this section, we show that all other basic classes but g remain same after 9-homothetic deformations. We
use defining relation of basic classes and properties of almost contact B-metric structures.

Theorem 3.1. Let (M, ¢,&,1, ) be in the class F; for i # 0,1,4,5, 8. Then, the deformed manifold is also in the same
class F;.

Proof. The class 7;: Let (M, ¢, &, 1, g) be in the class F,. Then, the defining relation (2.7) is satisfied. We show that

(M, 3, &, 7, 8) also has the property (2.7). Note that, 7 is normal and dn = 0 [7,8]. From the equation (2.19), it is clear
that F(u, v, w) = —tF(u, v, w). Thus,

F@E v,w) = —tF(%f, v,w)=0 and F(u,&w)=0 3.1)
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and
Fu,v, ow) + Fv,w, ou) + Fw,u, ov) = —t{F(u,v,ow) + F(v,w, ou) + F(w,u,¢v)} =0

by (2.18) and (2.19). Now, we evaluate 6. Let B = {é,e1,...,en, f1,..., fn} be a g-orthonormal ordered basis such that
8,8 = glei,e)) = —g(fi, f;) = 1. Then, |

- - | 1
B=Ae,....e0) =& —fi,.... —fn,—e€1,...,—
H{é“ 1 wmb = 1{€ \/Zfl \/;f i N
8ij = 8. Since

e,} is a g-orthonormal ordered basis such that g;; = gl =

0u) = g'F(ei,ej,u) = F(£,& u) + F(er, e1,u) + ... + F(ep, €y, )

- F(h, fi,w) = F(f2, fosu) = ... = F(fu, for 1)
:O’

and F(¢,&,u) = 0 from (2.7), we have

~ o 1
O(u) = g"F(&;,éj,u) = —;F(f,f, u)+ F(ey,er,u) +...+ F(ey, ey, ut)

_F(flafl’u)_F(fZ’fZ’u)_ _F(fmfn’u)
= 6(u) = 0. (3.2)

By (3.1), (3.2) and (3.2), (M, ¢,§, i, &) is also in 7.
The class 73: Since ¢ is Killing in #3 [5], (2.20) yields

dn(u,v) = 2F(u, pv, &)
=2F(u, &, pv), 3.3)

and dn(u,v) = 2F(u, &, ¢v) = 0 by (2.8). Then, (2.19) gives F' = —tF and thus,

F(E,v,w) = F(u,gf,w) =0,
F@u,v,w) + F(v,w,u) + E(w,u,v) = 0.

The class F¢: Note that ¥ is normal and dnp = 0 [7]. From (2.19),
Fu,v,w) + I:"(gbu, v, w) + F(g?m, v, ow) = —tF(u,v,w) — tF(pu, v, w) — tF(pu,v,ow = 0

and
F@u,v,w) + F(v,w,u) — F(w,u,v) + 2F(¢u, ov,w) = 0.

Similar to the proof of (3.2), it can be obtained that

and thus,
. 1 o~ 1
o) = 79(5) =0, ()= ;9*(5) =0.

As a result the deformed structure satisfies defining relations (2.9) and (2.10).
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The class F7: ¢ is Killing and thus, dn(u,v) = 2F(u, ¢v, &) by (2.20). Then, by using (2.11), (2.12), (2.19) and
(2.20), we get
Hr+1)
2
— dn(u, ev)n(w) — dn(u, ew)n(y)}
t(t+1)
2

F(u, v, w) + F(@u, v, w) + F(@u, v, pw) = —tF(u,v,w) +

{dn(ev, win(u) — dn(v, w)n(u)

{=dn(eu, ¢*v)n(w)}

- tF(90u$ @v, W) +

t(t+1)

— tF(gu, v, ow) + {=dn(eu, @*win()}

CH(t+1)
2

= dn(u, v)n(w) — dn(u, ew)n(v)

— dn(pu, ¢*v)n(w) — dn(eu, *wn(v)}

= 11 + D{nw)F (gv, ow, &) = n)F (v, @’ w, &)

= nW)F (u, v, &) = g F (u, o*w, &)

= nW)F (pu, p(*v), &) = n(V)F (u, p(*w), €))

= 1(t + D{=n)F (v, w, &) + n)F (v, w, &) + n(w)F (u, v, )

+nWFu,w,&) — nwW)F(u,v,&) — n(W)F(u,w,§)

=0.

{dn(ev, w)n(u) — dn(v, ew)n(u)

Similarly,
F(u, v, W) + F(v,w, u) + F(w, u,v) =0.
The class Fy: By (2.20) and (2.15), we have
dn(v,w) = F(v, g*w, &) — F(gw, ¢v, )
= F(V» -w+ U(W)‘f’ f) + F(QDV, ow, é:)
=-Fy,w, &+ F(v,w,&)
=0.
Then,
F@u,v,w) + F(v,w,u) + F(w,u,v) = —t{F(u,v,w) + Fv,w,u) + Fw,u,v)} =0
and
F(u,v,w) = F(@u, v, w) — F(@u, v, gw) = —t{F (u, v, w) — F(pu, v, w) — F(gu, v, pw)} = 0,

that is the deformed structure satisfies (2.14).
The class 1¢: From (2.16)

dn(u,v) = F(u,ov,&) — F(v, ou, §)
= nW)F (&, ¢*v, &) = nWF (€, ¢u, ¢) = 0.
Thus F(u, v, w) = —tF(u, v, w) and

AW F &, gv, gw) = mu){~1F (;f, v, ew)} = —mu)F (&, gv, ow)
= —tF(u,v,w) = F(u,v,w).
The class 71;: From the equation (2.17), we get
F(u, v, &) = n(w){n(@)w(&) + n(&)w(ev)} = nw)F (&, &, ¢v)

and
dn(u,v) = F(u,pv,&) — F(v,pu, &) = nu)F (€, €, ov) — n(WF(E, &, pu) 3.4
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and thus,
dn(ev,w) = n(ev)F(€, & ow) = nw)F(£,£,0%v) = n(w)F (€, £, v),
dn(v,ew) = -nWF(E, & w),
dn(u, ov) = -n(W)F(,&,v),
dn(u, ew) = —nWF (&, &, w).
Then,
Hr+1)

F(u,v,w) = =tF(u,v,w) + {dn(ev, wyn(u) — dn(v, ew)n(u)

— dn(u, ev)n(w) — dn(u, pw)n(v)}

= —tF(u,v,w) + 1(t + D{n)n(w)F (&, &, v) + nwn(v)F(E, & w)}

= tzF(u, v, W).
Since (2.17) holds, we have

F(u,v,w) = nnw)F (&, &, v) + nwn(v)FE, & w).
On the other hand, since F is in 7, the equation (3.4) implies
dn(&, ew) = —F(£,&,w)

and thus,

N 1
F&.&m =11, €w) + " anoe, wn® - dne, pwm(©)

— dn(€, e&n(w) — dn(é, ew)n(é)}

= —tF(& & w) + 1t + D{=dn(&, ow)}
= —tF(&,&w) + 1t + DF(E, & w)

= PF(&, & w).

As aresult,

H{HWOW) + HwWDW)} = mu{m)FE & w) + mw)F(E, €, v)}
1.1 |
= tn(u){tn(V)F(;f, ;f, w) + tn(W)F(;f, ;f, v)}

= P {n(v)w(w) + niw)w(v))
= PFu,v,w)
= F(u,v,w).

The only class which is not invariant under a 9-homothetic deformation is Fs.
Theorem 3.2. Assume that (M, ¢,&,1, g) belongs to Fg. Then, (M, @, 5, 7, &) is not in Fy.
Proof. Since ¢ is Killing [5], the equation (3.3) holds. So,

dn(ev, &) = 2F (v, &, &) = 0, dn(ev,w) = 2F (pv, ow, &) = 2F (v, w, &) and dn(v, ow) = =2F (v, w, ). Then,
Ht+1)

5 tdn(ev, win(u) = dn(v, ew)n(u)

= dn(u, pv)n(w) — dn(u, pw)n(v)}

1
~ n =t v, + D, Omi - dna, o0

(t+1)
2

F(u, v, W) — F(u, v, g)f](w) - F(u, w, g)f](v) = —tF(u,v,w) +

= nW{=tF(u,w, &) +

1
= "Dt wmtu) - dntv, pwima)

=21(t + DF(v, w, &),

{dn(ew, En(u) — dn(u, pw)}}




S. Aktay, Turk. J. Math. Comput. Sci., 16(1)(2024), 261-271 267

which is nonzero, since if F(v,w,€&) = 0, we have F = 0 by (2.13). Thus, F does not satisfy the defining relation
(2.13). O

4. DEFORMATIONS OF NORMAL STRUCTURES

Assume that (M, ¢, &, 7, g) is almost contact with B-metric. Then, the structure is normal if and only if

F(u,v,6) = F(v,u,¢), “4.1)

D AF W, w) = Flu, @v, £)(w)} = 0, “.2)

cyc

where chc denotes the cyclic sum over u, v, w, see [12].
Theorem 4.1. Let (M, ¢,&,1, 8) be normal. Then, the deformed manifold is also normal.
Proof. Since dn = 0 for normal structures,
- - 1 - -
Fu,v,&) = —tF(u,v, ?f) =-Fu,v,¢) =-F(v,u,¢) = F(v,u,&)
and
F(u, v, pw) — F(u, v, S)f](w) = —tF(u,v, ow) + tF(u, v, )n(w),
which implies

D AF v, w) = Fu, v, Ew)} = =1 Y {F(u, v, ow) = Fu, v, ()} = 0.

cyc cyc

Thus, the deformed structure satisfies (4.1) and (4.2). |

In [1], the following equation is obtained for the covariant derivative of g:

1t+1)
2

gV, w) = —1g(V,v,w) + {2ulnMIn(w) (4.3)
+n@)dn(v, w) + n(w)dn(u, w) = n(w)dn(u, v)}.
We write the new covariant derivative for normal structures explicitly. Since dn = 0, from the equation (4.3), we have
~18(V,v,w) + 1t + Dn(Vunn(w) = —1g(Vyv, w) + 1( + Dgluln(v)I€, w).

Also by (4.3), we get

~ 1.~ 1. =
’](VuV) = ;TN](VMV) = t_zg(vuva é:)

(t+1)
t

1
= g(V, &) + uln)].

Therefore,
t+1)
8V VE. (44)
Note that, to obtain (4.4), we only use the property that dn = 0, so for any deformation of an almost contact B-metric
structure with dn = 0, the new covariant derivative is the same as (4.4).
Although normal structures remain invariant under 9-homothetic deformations, they can be very different with
regard to curvature properties.
For a normal structure (or more generally when dn = 0), we calculate the curvature tensor R:

ﬁuv =Vyv+

Ru,vyw = %ﬁvw - ?ﬁuw - ?[W]w
t+1)
; 8(R(u, v)§, w)é

t+1) t+1)

P g(vvg, W)Vué: - t

= R(u,v)w +

+

(Vg V..
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5. DEFORMATIONS OF K-CONTACT STRUCTURES

For an almost contact B-metric structure (¢, £,1, g), & is said to be torse-forming if one has V,& = —fy?u and the
manifold is in F; & F, & F3 ® F5 & Fo ® F10, see [4]. Then,

which implies

1
D g fouvie

1
=Vyv-—f Qg(cpu, ev)é,

Vo=V, +

ﬁug: = _]7(902“ = _f¢2u7

where f = é Thus, for a torse-forming vector field &, 5‘ also is. In addition, we have

t+1)

R(u,v)w = R(u, v)w + ;

t+1)
1

8(R(u, v)E, w)&

+ {g(v, pw)(—feu) — glou, pw)(—f*v)}.

Let the vector field ¢ be Killing for an almost contact B-metric manifold (M, ¢, &, 7, g). In this case, we write the
covariant derivative by Kozsul’s formula:

implies that

28(Vyv, w) = =218(Vyv, w) + 12 + 1) {2u[n(v)In(w)
+n(udn(v, w) + n(v)dn(u, w) — n(w)dn(u, v)}
= -2tg(V,v,w)
+1(1+ 1) {2nw)g(Vué, v) + 2n(w)g(€, Vuv)
+2nw)g(V,é,w) + 2n(v)g(V.é, w) — 2n(w)g(V.é, v)}

8V, w) = g (—tV,v + 1t + 1) {g(V,E,v)E
+g(Vuv, )¢ + n(w)V,& + n(v)V,.é
—g(Vué, v)Eh,w).

On the other hand, from the definition of g, we have

and since

from equation (5.1), we get

Arranging (5.2), we have

EVuv, w) = —1g(V,w, w) + 1t + DV, 0)n(w)

- |
N(Vuv) = Z8(Vuv, &),
N(Vu) = g(Vuv, &)

8V, w) = g(—1V, v + 1t + Dg(V,0, OE, w).

Since g is non-degenerate, comparing (5.1) and (5.3) implies

Then, we state:

t+1)
t

vuV =V,v- {n)V,& + n(v)V,&}.

5.1)

(5.2)

(5.3)

5.4

Theorem 5.1. If £ is Killing with respect to the metric g, then € is also Killing with respect to the deformed metric .

Proof.

follows from (5.1).

g(vug’ V) = _g(ﬁv‘g:’ M)
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Thus, the class of K-contact B-metric strucutures is invariant under 9D-homothetic deformations.
Now we write the curvature tensor of the new structure after a ©-homothetic deformation when ¢ is Killing by (5.4).

- 1
R = R — 8 (107,18~ )V,

1 2
‘ tz ) (V)€ = 00NV,

1 1
S )TI(W)R(M, v)§é - @{U(V)Vﬂwf — WV, V,&}

+

+(t+1)
t

{8(Vi&, wIVu& = g(Vué, wIV,& = 2g(Vié, v)V 8}

6. ExAMPLES
We investigate the classes of deformed structures with B-metric.

Example 6.1. Consider the Lie algebra [ of a 3-dimensional real connected Lie group L. Let {eg, e, €2} be a basis for
[. The triple (¢, £, 17) given by

e =0, ge1 = e, per =—e, £=¢
n(eg) =1, nler) =nle2) =0

is an almost contact structure on I. Together with the compatible semi-Riemannian metric g satisfying

g(eo, e9) = gler, e1) = —glez, e2) = 1,

g(eo, e1) = gleg, e2) = gler, e2) =0,

(L, p,&,1, g) 1s an almost contact B-metric manifold in ¥y if and only if brackets of the Lie algebra [ are
leo,e1] = aes, [eo, 2] = ey, [er, e2] = —2aep.
Nonzero covariant derivatives are
Ve €2 ==V e = —aey, V,e0=—-aey, V,en=—-ae,

see [5].

Consider a D-homothetic deformation (L, , S, 7,8) of (L, ¢, &, m, g). We determine the class of the deformed struc-
ture by evaluating projections F.

Since ¢ is Killing, by Theorem 5.1, £ is also Killing, that is, the deformed structure is also K-contact. The classes
of K-contact manifolds in 3 dimensions is 7} @ %3 & F1o, [3, 6], so it is enough to write F!, F® and F'°.

Since the structure is in g, F' = 0 for i # 8. We have

F'u,v,w) =0
and

1
F2(u,v,w) = ~7 {F(gazu, v, @*w) + F(@*v, o*w, *u) — F(ov, ¢*w, ou)

+F(@7u, "W, @%V) + F(¢*w, v, 9%u) = Flpw, 9™, ou)
— Fl(u, v, W)
=0.
Since the deformed structure is in 7, & Fg ® 10, F> = 0 and this gives
0 vw0) = = [F @@, 8) + @, 8w, 80 ~ Fiv, 8w, au)
+F (@, §w, @) + F@w, &, &) — F(@w, §*v, gu)
— Fz(u, v, W)

= —th(u, Vv, W)
=0.
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F can be evaluated in terms of F® for any dimension as follows:
78 T S T S S P N I
Fou.vw) = {F@u.@v.8) + F@v.5u.) + F@u.gv.8) + F@v. pu. &)} i(w)
Voo o s s n m s s
+ N F@ugw.8) + F@w. gu.&) + F(@u,pw. &) + F@w. gu. &)} ()

1
= ~tF3(u,v.w) + 21+ D {dn@Pu, gvin(w) + dn(g*v, un(w) + dif@* . win(v) + dn(gw. guyi(v))
6.1)

Since dn(u,v) = 2F (u, v, &) and | € Ty, we get dn(pu, ov) = 2F(@*u, ¢*v, &) = 2F (u, v, £).
Thus, equation (6.1) together with the defining relation of Fg implies

F8u,v,w) = —tF3(u, v, w) + 1(t + D{F (u, v, En(w) + F(u, w, En(v)}
= —tF3u,v,w) + 1(t + DF(u, v, w)
Since | € Fg, F = F® and we have E3(u,v,w) = —tF8u,v,w) + 1(t + DF3(u,v,w) = *F3(u,v,w) # 0. Next, we
calculate F'°. Since I € Fg,
FOu,v,w) = i FE @*v, §*w)
= 1 FE ¢*v, ¢*w)

1
= n(w) {—tF(E, 6w+ i, winte) — dnv wmtu) ~ dntu, gvnon) ~ dta, <pW)n(V)}}

_(t+ 1)

2
Foru = ep, v = e1, w = 1, we see that F10®u, v, w) = F'%eg, e1, e1) = 2t(t+ Dn(eo)n(eg)Fer, e1, e9) = —2at(t+1) # 0.
To sumup, /€ Fg & Fg.

N@){4n)F (v, w, £) + 29w F (1, v, €) + 20(0)F (u, w, £)}.

If a manifold belongs to a class which is a direct sum of basic classes, we can check whether it is invariant under a
D-homothetic deformation by calculating projections £'. For example by direct calculation,

. 1m0 h oy = m oy
Fouv,w) = 2 {F@u. 8.8 - F@v.8u.8) + F@u.gv.8) - F@v. gu. &)} i(w)
1o s o o oy = ey
+ P @ gw.8) - F@w. g &) + F(@u. pw. &) ~ Fow. gu. D)} i(v)
= —tF9(u, Vv, W).
Thus, F* =0 < F°=0.
That is, the deformed structure contains a summand from the subclass Fy if and only if the first structure also contains

a summand from this class. This is not true for each subclass.
Consider for example the projection F”.

- 1~ o - - . - . ~
Fluv,w) = H{F@u.8v.8) - F@v.8u.8) - F@u.gv.8) + F@v, gu. &)} i(w)

1~ - . - . - - ~
+ P @ gw.8) ~ F@w. g'u.8) ~ F(@u.pw.&) + F(@w. gu. )} i(v)
t(t+1)
4

= —tF(u, v, w) + {nOw)tdn(e®u, v) + dn(pu, ¢*v))

+ 1) dn(@’u, ow) + dn(eu, 9*w))

and the terms
nwldn(@™u, ev) + dn(eu, ¢*v)} + n)idn(g*u, ew) + dn(eu, *w)}

may give summands from other subclasses.
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Example 6.2. Assume that (M, ¢, &,7, g) is a three-dimensional almost contact B-metric manifold. Consider a basis
{eo = &,e1 = e,ey = @(e)} of T, M satisfying
gleg, e0) = gler,er) = —gler,e2) = 1, glej,ej) =0,i # .

Denote the components of F with respect to the given basis by F;jx = F(e;, e;, e;). This example and the projections F'
of the tensor F' are given in [6]. We deform this structure and by direct calculations, we get

- tr+1)

F(u,v,w) = —=tF(u,v,w) + T{dn(w, win(u) — dn(v, pw)n(u) — dn(u, ev)n(w) — dn(u, </>W)n(V)}
tr+1)

2

+ ugvow2 Fooo + 1viwoFaoo + uavawoFiio

= —tF(u,v,w) + {uoviwoFo1o + ugvawoFoxo + tgvow1 Foro

+ ugviwoFor0 + ugvawoFoxo + uiviwoFiio
+ upvowoFaoo + uyvow Fagg + upvow2 F1o
+ugvow1 Foro + ugvowz Fooo + uivowi Frio + uavowa Fazo}

wt+1)
=

= —tF(u,v,w) + F4(u, v, W) + F8(u, v, W) + 2F“(u, v, w)} s

where u = X ue;, v = X, vie; and w = 3 w;e; are vectors in T, M. This result is in accordance with our results. For
example, if M € Fs, then F' = 0 for i # 2. Since F* = F8 = F!1 =0, F = —tF = F? and M remains in the same class.
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