Turk. J. Math. Comput. Sci. 16(1)(2024) 162–168 © MatDer DOI : 10.47000/tjmcs.1338657

Coefficient Bounds for the General Subclasses of Close-to-Convex Functions of Complex Order

SERAP BULUT

Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, Türkiye.

Received: 06-08-2023 • Accepted: 28-03-2024

ABSTRACT. In this study, we introduce two new subclasses of close-to-convex functions of complex order, which are introduced here by means of a certain non-homogenous Cauchy-Euler-type differential equation of order m, and determine the coefficient bounds for functions belonging to these new classes.

2020 AMS Classification: 30C45, 30C50

Keywords: Analytic function, close-to-convex function, non-homogenous Cauchy-Euler differential equation.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let $\mathbb{R} = (-\infty, \infty)$ be the set of real numbers, $\mathbb{C} := \mathbb{C}^* \cup \{0\}$ be the set of complex numbers,

 $\mathbb{N} := \{1, 2, 3, \ldots\} = \mathbb{N}_0 \setminus \{0\}$

be the set of positive integers and

$$\mathbb{N}^* := \mathbb{N} \setminus \{1\} = \{2, 3, 4, \ldots\}.$$

Let ${\mathcal R}$ denote the class of functions of the form

$$f(z) = z + \sum_{i=2}^{\infty} a_i z^i$$
 (1.1)

which are analytic in the open unit disc

$$\mathbb{U} = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1 \}.$$

Faisal and Darus [5] defined the following differential operator:

$$D^{0}f(z) = f(z),$$

$$D^{1}_{\lambda}(\alpha,\beta,\mu)f(z) = \left(\frac{\alpha-\mu+\beta-\lambda}{\alpha+\beta}\right)f(z) + \left(\frac{\mu+\lambda}{\alpha+\beta}\right)zf'(z),$$

$$D^{2}_{\lambda}(\alpha,\beta,\mu)f(z) = D\left(D^{1}_{\lambda}(\alpha,\beta,\mu)f(z)\right)$$

$$\vdots$$

$$D^{n}_{\lambda}(\alpha,\beta,\mu)f(z) = D\left(D^{n-1}_{\lambda}(\alpha,\beta,\mu)f(z)\right).$$
(1.2)

Email address: serap.bulut@kocaeli.edu.tr (S. Bulut)

If f is given by (1.1), then it is easily seen from (1.2) that

$$D^{n}_{\lambda}(\alpha,\beta,\mu) f(z) = z + \sum_{i=2}^{\infty} \left(\frac{\alpha + (\mu + \lambda)(i-1) + \beta}{\alpha + \beta} \right)^{n} a_{i} z^{i}$$
$$(f \in \mathcal{A}; \alpha, \beta, \mu, \lambda \ge 0; \alpha + \beta \ne 0; n \in \mathbb{N}_{0}).$$

In the light of the work of Xu et al. [16], Bulut [3] introduced the subclasses

$$\mathcal{M}_{g}(n,\alpha,\beta,\mu,\lambda,\zeta,\xi)$$
 and $\mathcal{M}_{g}(n,\alpha,\beta,\mu,\lambda,\zeta,\xi;m,\tau)$

of analytic functions of complex order $\xi \in \mathbb{C}^*$, and obtained the coefficient bounds for the Taylor-Maclaurin coefficients for functions in each of the above subclasses, which is given by Definition 1.1 and Definition 1.2.

Definition 1.1 ([3]). Let $\varphi : \mathbb{U} \to \mathbb{C}$ be a convex function such that

$$\varphi(0) = 1$$
 and $\Re \{\varphi(z)\} > 0$ $(z \in \mathbb{U})$.

We denote by $\mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$ the class of functions $f \in \mathcal{A}$ satisfying

$$1 + \frac{1}{\xi} \left(\frac{z \left[\zeta D_{\lambda}^{n+1} \left(\alpha, \beta, \mu \right) f \left(z \right) + \left(1 - \zeta \right) D_{\lambda}^{n} \left(\alpha, \beta, \mu \right) f \left(z \right) \right]'}{\zeta D_{\lambda}^{n+1} \left(\alpha, \beta, \mu \right) f \left(z \right) + \left(1 - \zeta \right) D_{\lambda}^{n} \left(\alpha, \beta, \mu \right) f \left(z \right)} - 1 \right) \in \varphi \left(\mathbb{U} \right),$$

where $z \in \mathbb{U}$; $0 \le \zeta \le 1$; $\xi \in \mathbb{C}^*$.

Definition 1.2 ([3]). A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi; m, \tau)$ if it satisfies the following non-homogenous Cauchy-Euler differential equation:

$$z^{m} \frac{d^{m}w}{dz^{m}} + \binom{m}{1} (\tau + m - 1) z^{m-1} \frac{d^{m-1}w}{dz^{m-1}} + \dots + \binom{m}{m} w \prod_{j=0}^{m-1} (\tau + j) = q(z) \prod_{j=0}^{m-1} (\tau + j + 1)$$
$$\left(w = f(z) \in \mathcal{A}; \ q \in \mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi); \ m \in \mathbb{N}^{*}; \ \tau \in (-1, \infty) \right).$$

Making use of Definition 1.1 and Definition 1.2, Bulut [3] proved the following coefficient bounds for the Taylor-Maclaurin coefficients for functions in the subclasses

$$\mathcal{M}_{g}(n,\alpha,\beta,\mu,\lambda,\zeta,\xi)$$
 and $\mathcal{M}_{g}(n,\alpha,\beta,\mu,\lambda,\zeta,\xi;m,\tau)$

of analytic functions of complex order $\xi \in \mathbb{C}^*$.

Theorem 1.3 ([3]). Let the function $f \in \mathcal{A}$ be defined by (1.1). If

$$f \in \mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi),$$

then

$$|a_i| \leq \frac{(\alpha + \beta)^{n+1}}{(i-1)! \left[\alpha + \zeta \left(\mu + \lambda\right) \left(i-1\right) + \beta\right] \left[\alpha + \left(\mu + \lambda\right) \left(i-1\right) + \beta\right]^n} \quad (i \in \mathbb{N}^*)$$

Theorem 1.4 ([3]). *Let the function* $f \in \mathcal{A}$ *be defined by* (1.1)*. If*

$$f \in \mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi; m, \tau),$$

then

$$|a_{i}| \leq \frac{(\alpha + \beta)^{n+1} \prod_{j=0}^{i-2} [j + |\xi| |\varphi'(0)|] \prod_{j=0}^{m-1} (\tau + j + 1)}{(i-1)! [\alpha + \zeta (\mu + \lambda) (i-1) + \beta] [\alpha + (\mu + \lambda) (i-1) + \beta]^{n} \prod_{j=0}^{m-1} (\tau + j + i)} \quad (i \in \mathbb{N}^{*}).$$

Here, in our present sequel to some of the aforecited work of Bulut [3], we first introduce the following subclasses of analytic functions of complex order $\xi \in \mathbb{C}^*$.

Definition 1.5. Let $\varphi : \mathbb{U} \to \mathbb{C}$ be a convex function such that $\varphi(0) = 1$ and $\Re \{\varphi(z)\} > 0 (z \in \mathbb{U})$. We denote by $\mathcal{MQ}^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma)$ the class of functions $f \in \mathcal{A}$ satisfying

$$1 + \frac{1}{\xi} \left(\frac{z \left[\zeta D_{\lambda}^{n+1} \left(\alpha, \beta, \mu \right) f\left(z \right) + \left(1 - \zeta \right) D_{\lambda}^{n} \left(\alpha, \beta, \mu \right) f\left(z \right) \right]'}{\zeta D_{\lambda}^{n+1} \left(\alpha, \beta, \mu \right) g\left(z \right) + \left(1 - \zeta \right) D_{\lambda}^{n} \left(\alpha, \beta, \mu \right) g\left(z \right)} - 1 \right) \in \varphi\left(\mathbb{U} \right) \qquad (z \in \mathbb{U})$$

where $g \in \mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \delta, \gamma); \ 0 \leq \zeta, \delta \leq 1; \ \xi, \gamma \in \mathbb{C}^*.$

Definition 1.6. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{K}Q_{\varphi}^{n,\alpha,\beta,\mu,\lambda}(\zeta,\xi,\delta,\gamma;m,\tau)$ if it satisfies the following non-homogenous Cauchy-Euler differential equation of order m:

$$z^{m} \frac{d^{m}w}{dz^{m}} + \binom{m}{1} (\tau + m - 1) z^{m-1} \frac{d^{m-1}w}{dz^{m-1}} + \dots + \binom{m}{m} w \prod_{j=0}^{m-1} (\tau + j) = q(z) \prod_{j=0}^{m-1} (\tau + j + 1)$$
$$\left(w = f(z) \in \mathcal{A}; \ q \in \mathcal{M}Q_{\varphi}^{n,\alpha,\beta,\mu,\lambda}(\zeta,\xi,\delta,\gamma); \ m \in \mathbb{N}^{*}; \ \tau \in (-1,\infty) \right).$$

Remark 1.7. If we let n = 0 and $\mu + \lambda = \alpha + \beta \neq 0$ in Definition 1.5 and Definition 1.6, then we have the classes

$$\mathcal{M}Q^{0,\alpha,\beta,\mu,\lambda}_{\varphi}\left(\zeta,\xi,\delta,\gamma\right) = \mathcal{S}Q_{\varphi}\left(\zeta,\xi,\delta,\gamma\right)$$

and

$$\mathcal{K} Q^{0,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma;m,\tau) = \mathcal{K} Q_{\varphi}(\zeta,\xi,\delta,\gamma;m,\tau)$$

respectively, introduced and studied by Bulut [4].

Similar interesting results can be found into the work of Altıntaş *et al.* [1], Nasr and Aouf [7], Robertson [9], Srivastava *et al.* [11] and Ul-Haq *et al.* [13, 14], (see also [2, 6, 8, 12, 15]).

In this paper, by using the subordination principle between analytic functions, we obtain coefficient bounds for the Taylor-Maclaurin coefficients for functions in the substantially more general function classes

$$\mathcal{MQ}^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma)$$
 and $\mathcal{KQ}^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma;m,\tau)$

of analytic functions of complex order $\xi \in \mathbb{C}^*$, which we have introduced here.

2. MAIN RESULTS AND THEIR DEMONSTRATION

In our investigation, we shall make use of the principle of subordination between analytic functions, which is explained in Definition 2.1 below.

Definition 2.1. For two functions f and g, analytic in \mathbb{U} , we say that the function f is subordinate to g in \mathbb{U} , and write

$$f(z) \prec g(z) \qquad (z \in \mathbb{U}).$$

if there exists a Schwarz function ω , analytic in \mathbb{U} , with

$$\omega(0) = 0$$
 and $|\omega(z)| < 1$ $(z \in \mathbb{U})$

such that

$$f(z) = g(\omega(z)) \qquad (z \in \mathbb{U}).$$

Indeed, it is known that

$$f(z) \prec g(z)$$
 $(z \in \mathbb{U}) \Rightarrow f(0) = g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

Furthermore, if the function g is univalent in \mathbb{U} , then we have the following equivalence

 $f(z) \prec g(z)$ $(z \in \mathbb{U}) \Leftrightarrow f(0) = g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

In order to prove our main results (Theorems 2.3 and 2.4 below), we first recall the following lemma due to Rogosinski [10]. **Lemma 2.2.** Let the function g given by

$$g(z) = \sum_{k=1}^{\infty} b_k z^k \qquad (z \in \mathbb{U})$$

be convex in \mathbb{U} . Also let the function f given by

$$\mathfrak{f}(z) = \sum_{k=1}^{\infty} \mathfrak{a}_k z^k \qquad (z \in \mathbb{U})$$

be holomorphic in \mathbb{U} . If

$$\mathfrak{f}(z) \prec \mathfrak{g}(z) \qquad (z \in \mathbb{U})\,,$$

then

$$|\mathfrak{a}_k| \le |\mathfrak{b}_1| \qquad (k \in \mathbb{N}).$$

We now state and prove each of our main results given by Theorems 2.3 and 2.4 below.

Theorem 2.3. Let the function $f \in \mathcal{A}$ be defined by (1.1). If

$$f \in \mathcal{M}Q^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma),$$

then

$$\begin{aligned} |a_i| &\leq \frac{(\alpha+\beta)^{n+1}}{i! \left[\alpha+\delta\left(\mu+\lambda\right)\left(i-1\right)+\beta\right] \left[\alpha+\left(\mu+\lambda\right)\left(i-1\right)+\beta\right]^n} \\ &+ \frac{(\alpha+\beta)^{n+1}}{i \left[\alpha+\zeta\left(\mu+\lambda\right)\left(i-1\right)+\beta\right] \left[\alpha+\left(\mu+\lambda\right)\left(i-1\right)+\beta\right]^n} \\ &\times \left(1+\sum_{j=1}^{i-2} \frac{\left[\alpha+\zeta\left(\mu+\lambda\right)\left(i-j-1\right)+\beta\right] \prod_{k=0}^{i-j-2} \left[j+|\gamma| \left|\varphi'(0)\right|\right]}{(i-j-1)! \left[\alpha+\delta\left(\mu+\lambda\right)\left(i-j-1\right)+\beta\right]}\right) \quad (i\in\mathbb{N}^*), \\ &\qquad \left(g\in\mathcal{M}_{\varphi}\left(n,\alpha,\beta,\mu,\lambda,\delta,\gamma\right); \ 0\leq\zeta,\delta\leq1; \ \xi,\gamma\in\mathbb{C}^*\right). \end{aligned}$$

Proof. Let the function $f \in \mathcal{M}Q^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma)$ be of the form (1.1). Therefore, there exists a function

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \delta, \gamma)$$

so that

$$1 + \frac{1}{\xi} \left(\frac{z \left[\zeta D_{\lambda}^{n+1} \left(\alpha, \beta, \mu \right) f\left(z \right) + \left(1 - \zeta \right) D_{\lambda}^{n} \left(\alpha, \beta, \mu \right) f\left(z \right) \right]'}{\zeta D_{\lambda}^{n+1} \left(\alpha, \beta, \mu \right) g\left(z \right) + \left(1 - \zeta \right) D_{\lambda}^{n} \left(\alpha, \beta, \mu \right) g\left(z \right)} - 1 \right) \in \varphi\left(\mathbb{U} \right).$$

$$(2.1)$$

Note that, by Theorem 1.3, we have

$$|b_i| \le \frac{\prod_{j=0}^{i-2} [j + |\gamma| |\varphi'(0)|]}{(i-1)! \chi_i(\delta)} \qquad (i \in \mathbb{N}^*),$$
(2.2)

where

$$\chi_i(\delta) := \left[\alpha + \delta\left(\mu + \lambda\right)(i-1) + \beta\right] \frac{\left[\alpha + \left(\mu + \lambda\right)(i-1) + \beta\right]^n}{\left(\alpha + \beta\right)^{n+1}}$$

Let

$$F(z) = \zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z) + (1 - \zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z) = z + \sum_{i=2}^{\infty} A_{i} z^{i},$$
(2.3)

$$G(z) = \zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) g(z) + (1 - \zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) g(z) = z + \sum_{i=2}^{\infty} B_{i} z^{i},$$
(2.4)

where

$$A_i := \chi_i(\zeta) a_i$$
 and $B_i := \chi_i(\zeta) b_i$,

with

$$\chi_i(\zeta) := \left[\alpha + \zeta \left(\mu + \lambda\right) (i-1) + \beta\right] \frac{\left[\alpha + \left(\mu + \lambda\right) (i-1) + \beta\right]^n}{\left(\alpha + \beta\right)^{n+1}}.$$

Then, (2.1) is of the form

$$1 + \frac{1}{\xi} \left(\frac{zF'(z)}{G(z)} - 1 \right) \in \varphi(\mathbb{U})$$

Let us define the function p(z) by

$$p(z) = 1 + \frac{1}{\xi} \left(\frac{zF'(z)}{G(z)} - 1 \right) \qquad (z \in \mathbb{U}).$$
(2.5)

Therefore, we deduce that

$$p(0) = \varphi(0) = 1$$
 and $p(z) \in \varphi(\mathbb{U})$ $(z \in \mathbb{U}).$

So, we have

$$p(z) \prec \varphi(z) \qquad (z \in \mathbb{U}).$$

Hence, by Lemma 2.2, we obtain

$$\left|\frac{p^{(m)}(0)}{m!}\right| = |c_m| \le \left|\varphi'(0)\right| \qquad (m \in \mathbb{N}),$$
(2.6)

where

$$p(z) = 1 + c_1 z + c_2 z^2 + \cdots$$
 $(z \in \mathbb{U}).$

Also from (2.5), we find

$$zF'(z) - G(z) = \xi (p(z) - 1) G(z).$$
(2.7)

Since $A_1 = B_1 = 1$, in view of (2.7), we obtain

$$iA_i - B_i = \xi \{c_{i-1} + c_{i-2}B_2 + \dots + c_1B_{i-1}\} = \xi \left(c_{i-1} + \sum_{j=1}^{i-2} c_j B_{i-j}\right) \quad (i \in \mathbb{N}^*).$$
(2.8)

Now, we get from (2.2), (2.3), (2.4), (2.6) and (2.8),

$$|a_{i}| \leq \frac{\prod_{j=0}^{i-2} [j+|\gamma| |\varphi'(0)|]}{i!\chi_{i}(\delta)} + \frac{|\xi| |\varphi'(0)|}{i\chi_{i}(\zeta)} \left(1 + \sum_{j=1}^{i-2} \frac{\chi_{i-j}(\zeta) \prod_{k=0}^{i-j-2} [j+|\gamma| |\varphi'(0)|]}{(i-j-1)!\chi_{i-j}(\delta)}\right) \quad (i \in \mathbb{N}^{*}).$$

This evidently completes the proof of Theorem 2.3.

Theorem 2.4. Let the function $f \in \mathcal{A}$ be defined by (1.1). If

$$f \in \mathcal{K}Q^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma;m,\tau),$$

then

Proof. Let the function $f \in \mathcal{A}$ be given by (1.1). Also, let

$$q(z) = z + \sum_{i=2}^{\infty} q_i z^i \in \mathcal{MQ}_{\varphi}^{n,\alpha,\beta,\mu,\lambda}(\zeta,\xi,\delta,\gamma).$$

We then deduce from Definition 1.6 that

$$a_{i} = \frac{\prod_{j=0}^{m-1} (\tau + j + 1)}{\prod_{j=0}^{m-1} (\tau + j + i)} q_{i} \qquad (i \in \mathbb{N}^{*}, \tau \in (-1, \infty)).$$

Thus, by using Theorem 2.3 in conjunction with the above equality, we have assertion (2.9) of Theorem 2.4. This completes the proof of Theorem 2.4. \Box

Remark 2.5. If we let n = 0 and $\mu + \lambda = \alpha + \beta \neq 0$ in Theorem 2.3 and Theorem 2.4, then we get Theorem 1.3 and Theorem 1.4, respectively.

3. CONCLUSION

In this study, for functions of the form

$$f(z) = z + \sum_{i=2}^{\infty} a_i z^i \in \mathcal{A} \qquad (z \in \mathbb{U}),$$

we consider the subclass $\mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$ defined by means of the differential operator

$$D^{n}_{\lambda}(\alpha,\beta,\mu) f(z) = z + \sum_{i=2}^{\infty} \left(\frac{\alpha + (\mu + \lambda)(i-1) + \beta}{\alpha + \beta} \right)^{n} a_{i} z^{i}$$
$$(\alpha,\beta,\mu,\lambda \ge 0; \ \alpha + \beta \ne 0; \ n \in \mathbb{N}_{0}),$$

as follows:

$$\mathcal{M}_{\varphi}\left(n,\alpha,\beta,\mu,\lambda,\zeta,\xi\right) = \left\{ f \in \mathcal{A} : 1 + \frac{1}{\xi} \left(\frac{z \left[\zeta D_{\lambda}^{n+1}\left(\alpha,\beta,\mu\right) f\left(z\right) + \left(1-\zeta\right) D_{\lambda}^{n}\left(\alpha,\beta,\mu\right) f\left(z\right) \right]'}{\zeta D_{\lambda}^{n+1}\left(\alpha,\beta,\mu\right) f\left(z\right) + \left(1-\zeta\right) D_{\lambda}^{n}\left(\alpha,\beta,\mu\right) f\left(z\right)} - 1 \right) \in \varphi\left(\mathbb{U}\right) \right\},$$

where $\varphi : \mathbb{U} \to \mathbb{C}$ is a convex function such that

 $\varphi(0)=1 \qquad \text{and} \qquad \Re\left\{\varphi\left(z\right)\right\}>0 \quad \left(z\in\mathbb{U}\right).$

By means of this class, we introduce following subclasses:

$$\mathcal{M}Q_{\varphi}^{n,\alpha,\beta,\mu,\lambda}\left(\zeta,\xi,\delta,\gamma\right) = \left\{ f \in \mathcal{A} : 1 + \frac{1}{\xi} \left(\frac{z \left[\zeta D_{\lambda}^{n+1}\left(\alpha,\beta,\mu\right) f\left(z\right) + \left(1-\zeta\right) D_{\lambda}^{n}\left(\alpha,\beta,\mu\right) f\left(z\right) \right]'}{\zeta D_{\lambda}^{n+1}\left(\alpha,\beta,\mu\right) g\left(z\right) + \left(1-\zeta\right) D_{\lambda}^{n}\left(\alpha,\beta,\mu\right) g\left(z\right)} - 1 \right) \in \varphi\left(\mathbb{U}\right) \right\},$$

where $z \in \mathbb{U}$; $g \in \mathcal{M}_{\varphi}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$; $0 \leq \zeta, \delta \leq 1$; $\xi, \gamma \in \mathbb{C}^*$;

$$\mathcal{K}\mathcal{Q}_{\varphi}^{n,\alpha,\beta,\mu,\lambda}\left(\zeta,\xi,\delta,\gamma;m,\tau\right) = \left\{ f \in \mathcal{A} : z^{m} \frac{d^{m}f(z)}{dz^{m}} + \dots + \binom{m}{m} f(z) \prod_{j=0}^{m-1} \left(\tau+j\right) = q(z) \prod_{j=0}^{m-1} \left(\tau+j+1\right) \right\}$$

where $z \in \mathbb{U}$; $q \in \mathcal{M}Q^{n,\alpha,\beta,\mu,\lambda}_{\varphi}(\zeta,\xi,\delta,\gamma)$; $m \in \mathbb{N}^*$; $\tau \in (-1,\infty)$.

For functions f belong to the classes

$$\mathcal{M}Q^{n,\alpha,\beta,\mu,\lambda}_{\omega}(\zeta,\xi,\delta,\gamma)$$
 and $\mathcal{K}Q^{n,\alpha,\beta,\mu,\lambda}_{\omega}(\zeta,\xi,\delta,\gamma;m,\tau)$,

we investigate upper bounds for the general coefficient $|a_n|$, respectively.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this article.

AUTHORS CONTRIBUTION STATEMENT

The author has read and agreed the published version of the manuscript.

References

- Altıntaş, O., Irmak, H., Owa, S., Srivastava, H.M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20(2007), 1218–1222.
- [2] Altıntaş, O., Özkan, Ö., Srivastava, H.M., Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46(3)(2001), 207–218.
- [3] Bulut, S., Coefficient bounds for certain subclasses of analytic functions of complex order, Hacet. J. Math. Stat., 45(4)(2016), 1015–1022.
- [4] Bulut, S., Coefficient bounds for certain subclasses of close-to-convex functions of complex order, Filomat, **31**(20)(2017), 6401–6408.
- [5] Faisal, I., Darus, M., Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions, Hacet. J. Math. Stat., 43(3)(2014), 375–382.
- [6] Murugusundaramoorthy, G., Srivastava, H.M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2)(2004), 1–8.
- [7] Nasr, M.A., Aouf, M.K., Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A, 12(1)(1983), 153–159.
- [8] Orhan, H., Răducanu, D., Çağlar, M., Bayram, M., Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Appl. Anal., (2013).
- [9] Robertson, M.S., On the theory of univalent functions, Ann. Math. (2), 37(2)(1936), 374-408.
- [10] Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2), 48(1943), 48-82.
- [11] Srivastava, H.M., Altintaş, O., Kırcı Serenbay, S., Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24(2011), 1359–1363.
- [12] Srivastava, H.M., Xu, Q.-H., Wu, G.-P., *Coefficient estimates for certain subclasses of spiral-like functions of complex order*, Appl. Math. Lett., **23**(2010), 763–768.
- [13] Ul-Haq, W., Nazneen, A., Rehman, N., Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat, 28(6)(2014), 1139–1142.
- [14] Ul-Haq, W., Nazneen, A., Arif, M., Rehman, N., Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comput. Anal. Appl., 16(1)(2014), 133–138.
- [15] Xu, Q.-X., Cai, Q.-M., Srivastava, H.M., Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput., 225(2013), 43–49.
- [16] Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15(5)(2011), 2377–2386.