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B-LIFT CURVES AND INVOLUTE CURVES IN LORENTZIAN
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Abstract. The involute of a curve is often called the perpendicular trajecto-
ries of the tangent vectors of a unit speed curve. Furthermore, the B-Lift curve

is the curve acquired by combining the endpoints of the binormal vectors of

a unit speed curve. In this study, we investigate the correspondences between
the Frenet vectors of a curve’s B-lift curve and its involute. We also give an

illustration of a helix that resembles space in Lorentzian 3-space and show how
to visualize these curves by deriving the B-Lift curve and its involute.

1. Introduction

The Lorentz-Minkowski space was expressed in a special metric by the German
mathematician Hermann Minkowski in 1907. Unlike the Euclidean space, this space
has a temporal dimension. Studies in the Lorentzian space have many physical
applications. For example, Lorentzian space is used to formalize Einstein’s relativity
theory. The character of a vector in Lorentzian space is also defined as spacelike,
timelike or lightlike (null).

C. Huygens carried out the curvature of the plane curves at any point in Eu-
clidean space. Sir Isaac Newton defined the curve depending on a parameter and
expressed the curvature of the curve. The differential geometry of curves in Eu-
clidean or Lorentzian spaces has been the subject of numerous investigations. [1–9].
Especially at the mutual point of the two curves, new ideas were put forward by
establishing connections between Frenet operators. Involute curves and natural lift
curves are some of them.
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The involute of a curve is generally referred to as the orthogonal trajectories of
the tangent vectors of a unit speed curve. In 1668, the idea of involute curves was
first discovered by C. Huygens in optical studies. Afterward, Millman and Parker
(1977) [10] and Hacısalihoğlu (1983) [11] clarified the known theorems and results.
A basic study on the involute-evolute curves was examined by Çalışkan and Bilici
in 2002 [12].They looked into the relationship between the main curve’s Frenet
operators and its involute curve. They also introduced some important results
in 2009 [13], such as curvature and torsion for involute curves, Frenet vectors of
non-null curves in Lorentzian space.

By definition, a natural lift curve is created by joining the ends of a unit speed
curve’s tangent vectors. [14]. The natural lift curve has been investigated by many
mathematicians [15–19]. In [18], the authors identified the correlations between the
Frenet vectors of the natural lift curve and the main curve. They also gave the
characterizations between the natural lift and involute of a curve [19].

In this article, we present the relationships between the B-Lift curve and the
involute curve’s Frenet vectors in Minkowski 3-space. In this context, the results
show that the Frenet vectors of the B-Lift curve and the involute curves are the
same; only their signs are different. Additionally, we illustrate our curves and
provide an example based on these findings.

2. Preliminaries

The real vector space R3 that is supplied with a Lorentzian inner product is
known as the Lorentzian 3-space R3

1 and is defined as

⟨x, y⟩L = −x1y1 + x2y2 + x3y3

where x = (x1, x2, x3) and y = (y1, y2, y3) are in R3 [20].
Let x = (x1, x2, x3) be a vector in R3

1. Then, x is considered timelike if ⟨x,
x⟩ < 0, lightlike if ⟨x, x⟩ = 0 and x ̸= 0, spacelike if ⟨x, x⟩ > 0 or x=0 [20].

If γ
′
(s) is timelike, lightlike, or spacelike at any s ∈ I, then a curve γ : I ⊂ R

→ R3
1 is either timelike, lightlike, or spacelike, respectively. Using the Lorentzian

inner product, the norm of the vector x = (x1, x2, x3) is defined as [20]

∥x∥L=
√
|⟨x, x⟩|.

If ∥x∥L=1, the vector x is called a unit vector. The definition of the Lorentzian
vector product of the vectors x and y for the vectors x and y in R3

1 is [21]

x× y =

∣∣∣∣∣∣
e1 −e2 −e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
Assume that γ is a unit speed curve. Given by tangent, primary normal, and

binormal vectors, respectively, the set {T (s), N(s), B(s)} is known as the Frenet
frame. For any unit speed curve γ, the Darboux vector represented by W , and we
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call W (s) = τ(s)T (s)+κ(s)B(s). Let θ be the angle formed by the binormal vector
B and the Darboux vector W , then we have

κ = ∥W∥cos θ, τ = ∥W∥sin θ.
We now look at Frenet-Serret formulas based on the curve’s Lorentzian character-
istics [22]:

i) Suppose that γ is a unit speed spacelike curve and B is a spacelike vector.
As a result, N is a timelike vector, while T and B are spacelike vectors. In that
condition, we have:

N ×B = −T, T ×N = −B, B × T = −N.

The Frenet-Serret formulas follow as

T
′

= κN,

N
′

= κT + τB,

B
′

= τN.

ii) Assume that γ is unit speed spacelike curve and B is a timelike vector. Then,
T and N are spacelike vectors, B is a timelike vector. In that case, we can write

N ×B = −T, T ×N = B, B × T = −N.

Here are the Frenet-Serret formulas

T
′

= κN,

N
′

= −κT + τB,

B
′

= τN.

iii) Assume that γ is a unit speed timelike curve. Then, N and B are spacelike
vectors and T is a timelike vector. In that case, we have

N ×B = T, T ×N = −B B × T = −N.

Here are the Frenet-Serret formulas

T
′

= κN,

N
′

= κT + τB,

B
′

= −τN.

Lemma 1 ( [23]). Assume that x and y are linearly independent spacelike vectors
that span a spacelike vector subspace in R3

1. In that case, we get the following
inequality:

|⟨x, y⟩|≤ ∥x∥L·∥y∥L.
Hence we can write

⟨x, y⟩ = ∥x∥L·∥y∥Lcosφ,
where the angle amongst x and y is φ.
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Lemma 2 ( [23]). Assume that x and y are linearly independent spacelike vectors
that span a timelike vector subspace in R3

1. Thus we get

|⟨x, y⟩|> ∥x∥L·∥y∥L.
Therefore we can write

|⟨x, y⟩|= ∥x∥L·∥y∥Lcoshφ,
where the angle amongst x and y is φ

Lemma 3 ( [23]). Assume that x is a spacelike vector and y is a timelike vector in
R3

1. In that condition, we can write

|⟨x, y⟩|= ∥x∥L·∥y∥Lsinhφ,
where the angle amongst x and y is φ

Lemma 4 ( [23]). Suppose that x and y are timelike vectors in R3
1. In that case,

we can write

⟨x, y⟩ = −∥x∥L·∥y∥Lcoshφ,
where the angle amongst x and y is φ

Definition 1 ( [19]). Let γ= (γ(s); T (s), N(s), B(s)) and γ∗= (γ∗(s∗); T ∗(s∗),
N∗(s∗), B∗(s∗)) are regular curves in R3

1. γ
∗(s∗) is called the involute of γ(s) (γ(s)

is called the evolute of γ∗(s∗)) if ⟨T (s), T ∗(s∗)⟩ = 0. In that case, (γ, γ∗) is called
involute-evolute curve couple.

Proposition 1 ( [19]). Assume that γ is a timelike curve. Then, γ∗ is a spacelike
curve and B∗ is a timelike or spacelike vector. We are aware of the following
equations connecting the Frenet frames {T , N , B} and {T ∗, N∗, B∗} of curves γ
and γ∗:
i) Assume that γ is a spacelike curve and B is a spacelike vector.
a) If W Darboux vector is timelike, then we can write T ∗

N∗

B∗

 =

 0 1 0
sinhφ 0 coshφ

− coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is spacelike, then we can write T ∗

N∗

B∗

 =

 0 1 0
coshφ 0 sinhφ
− sinhφ 0 − coshφ

  T
N
B

.

ii) Let γ be a spacelike curve and B be a timelike vector.
a) If W Darboux vector is timelike, then we can write T ∗

N∗

B∗

 =

 0 1 0
− sinhφ 0 − coshφ
− coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is spacelike, then we can write
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N∗

B∗

 =

 0 1 0
− coshφ 0 − sinhφ
− sinhφ 0 − coshφ

  T
N
B

.

Proposition 2 ( [19]). Let γ be a spacelike curve and B be spacelike or timelike
vector. Then γ∗ is a spacelike curve. We know the following equations:
i) Let γ be a spacelike curve and B be spacelike vector. T ∗

N∗

B∗

 =

 0 1 0
cosφ 0 sinφ
sinφ 0 − cosφ

  T
N
B

.

ii) Let γ be a spacelike curve and B be timelike vector.
a) If W Darboux vector is timelike, then we have T ∗

N∗

B∗

 =

 0 1 0
coshφ 0 − sinhφ
sinhφ 0 − coshφ

  T
N
B

.

b) If W Darboux vector is spacelike, then we have T ∗

N∗

B∗

 =

 0 1 0
sinhφ 0 − coshφ
coshφ 0 − sinhφ

  T
N
B

.

Proposition 3 ( [19]). Assume that γ is a spacelike curve and B is a spacelike
vector. Then γ∗ is a spacelike curve and the following equations are available:
i) Let γ∗ be a spacelike curve and B∗ be a spacelike vector. T ∗

N∗

B∗

 =

 0 1 0
sinφ 0 − cosφ

− cosφ 0 − sinφ

  T
N
B

.

ii) Let γ∗ be a spacelike curve and B∗ be a timelike vector. T ∗

N∗

B∗

 =

 0 1 0
sinφ 0 − cosφ
cosφ 0 sinφ

  T
N
B

.

Proposition 4 ( [19]). Assume that γ is a spacelike curve and B is a timelike
vector. In that case, γ∗ is a spacelike curve and the following equations exist:
i) Suppose that γ∗ is a spacelike curve and B∗ is a spacelike vector.
a) If W Darboux vector is spacelike, then we have T ∗

N∗

B∗

 =

 0 1 0
− sinhφ 0 coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, then we have T ∗

N∗

B∗

 =

 0 1 0
− coshφ 0 sinhφ
sinhφ 0 − coshφ

  T
N
B

.
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ii) Suppose that γ∗ is a spacelike curve and B∗ is a timelike vector.
a) If W Darboux vector is spacelike, then we have T ∗

N∗

B∗

 =

 0 1 0
sinhφ 0 − coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, then we have T ∗

N∗

B∗

 =

 0 1 0
coshφ 0 − sinhφ
sinhφ 0 − coshφ

  T
N
B

.

Definition 2 ( [24]). If γ : I → P is a unit speed curve, then γB : I → TP is
known as the B-Lift curve and guarantees the following equation:

γB(s) = (γ(s), B(s)) = B(s)|γ(s), (1)

where P ⊂ R3
1 is a surface.

3. Involute Curves and B-Lift Curves in Minkowski 3-Space

Proposition 5. Assume that γ is a timelike curve. Then, γB is a spacelike curve
and B is spacelike or timelike.

i) Suppose that γB is a spacelike curve and BB is timelike vector. The following
equations are available:

a) If W Darboux vector is spacelike, we can write TB

NB

BB

 =

 0 −1 0
− coshφ 0 − sinhφ
sinhφ 0 − coshφ

  T
N
B

.

b) If W Darboux vector is timelike, we can write TB

NB

BB

 =

 0 −1 0
− sinhφ 0 − coshφ
coshφ 0 sinhφ

  T
N
B

.

ii) Assume that γB is a spacelike curve and BB is spacelike vector. We are aware
of the following equations connecting the Frenet frames {TB, NB, BB} and {T , N ,
B} of curves γB and γ:

a) If W Darboux vector is spacelike, we know that TB

NB

BB

 =

 0 −1 0
coshφ 0 sinhφ
− sinhφ 0 − coshφ

  T
N
B

.

b) If W Darboux vector is timelike, we know that TB

NB

BB

 =

 0 −1 0
sinhφ 0 coshφ
coshφ 0 sinhφ

  T
N
B

.
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Proposition 6. Suppose that γ is a spacelike curve and B is a spacelike vector.
Then, γB is a timelike curve. We know the following equations: TB

NB

BB

 =

 0 −1 0
cosφ 0 sinφ
sinφ 0 − cosφ

  T
N
B

.

Proposition 7. Suppose that γ is a spacelike curve and B is timelike vector. Then,
γB is a spacelike curve and BB is timelike or spacelike vector.

i) Let γB be a spacelike curve and BB be a timelike vector.The following equations
are available:

a) If W Darboux vector is spacelike, we have TB

NB

BB

 =

 0 −1 0
− sinhφ 0 coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, we have TB

NB

BB

 =

 0 −1 0
− coshφ 0 sinhφ
sinhφ 0 − coshφ

  T
N
B

.

ii) Let γB be a spacelike curve and BB be spacelike vector. We have the following
equations:

a) If W Darboux vector is spacelike, we have TB

NB

BB

 =

 0 −1 0
sinhφ 0 − coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, we have TB

NB

BB

 =

 0 −1 0
coshφ 0 sinhφ
sinhφ 0 − coshφ

  T
N
B

.

Corollary 1. Assume that γ is a timelike curve. Then γ∗ is a spacelike curve and
B∗ is spacelike vector.
i) If W Darboux vector is spacelike, then we get

T ∗ = −TB ,

N∗ = NB ,

B∗ = BB .

ii) If W Darboux vector is timelike, then we get

T ∗ = −TB ,

N∗ = BB ,

B∗ = NB .

where {TB, NB, BB} is the Frenet frame of the curve γB.
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Corollary 2. Assume that γ is a timelike curve. Therefore γ∗ is a spacelike curve
and B∗ is timelike vector.
i) If W Darboux vector is spacelike, then we get

T ∗ = −TB ,

N∗ = −BB ,

B∗ = NB .

ii) If W Darboux vector is timelike, then we get

T ∗ = −TB ,

N∗ = NB ,

B∗ = −BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 3. Assume that γ is a spacelike curve and B is a spacelike vector. Then
γ∗ is a timelike curve.
i) If W Darboux vector is spacelike, then we have

T ∗ = −TB ,

N∗ = −BB ,

B∗ = NB .

ii) If W Darboux vector is timelike, then we have

T ∗ = −TB ,

N∗ = NB ,

B∗ = −BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 4. Assume that γ is a spacelike curve and B is timelike vector. Then
γ∗ is a timelike curve.

T ∗ = −TB ,

N∗ = NB ,

B∗ = −BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 5. Assume that γ is a spacelike curve and B is spacelike vector.
i) If γ∗ is spacelike curve and B∗ is spacelike vector, hence we get

T ∗ = TB ,

N∗ = NB ,

B∗ = BB .
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ii) If γ∗ is spacelike curve and B∗ is timelike vector, hence we get

T ∗ = TB ,

N∗ = −NB ,

B∗ = BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 6. Assume that γ is a spacelike curve and B is timelike vector.
i) If γ and γ∗ are spacelike curves with timelike binormal, then we get

T ∗ = TB ,

N∗ = −NB ,

B∗ = −BB .

ii) If γ∗ is spacelike curve and B∗ is spacelike vector, then we get

T ∗ = TB ,

N∗ = NB ,

B∗ = BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 7. Let γ∗ and γB be involute curve and B-Lift curve of a unit speed
curve γ, respectively. Then, the sets {T ∗, TB}, {N∗, NB} and {B∗, BB} are linearly
dependent.

Example 1. Suppose that the spacelike circular helix curve is given by

γ(s) = (
s√
3
, 2 cos(

s√
3
), 2 sin(

s√
3
)).

Figure 1. The spacelike helix curve γ(s)
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For the spacelike helix curve γ, Frenet frames can be calculated by

T (s) = (
1√
3
,− 2√

3
sin(

s√
3
),

2√
3
cos(

s√
3
)),

N(s) = (0,− cos(
s√
3
),− sin(

s√
3
)),

B(s) = (
2√
3
,− 1√

3
sin(

s√
3
),

1√
3
cos(

s√
3
)).

Then the B-lift curve is following as

γB(s) = (
2√
3
,
1√
3
sin(

s√
3
),

1√
3
cos(

s√
3
)).

-0.5

0

0.5

1

1.5

2

-2

-1

0

1

2

-2

-1

0

1

2

Figure 2. B-Lift curve of the curve γ(s)

For λ=−
√
3, the involute of the curve γ(s) is given by

γ∗(s) = γ(s) + λ.T (s)

= (
s√
3
, 2 cos(

s√
3
), 2 sin(

s√
3
)) + (−

√
3).(

1√
3
,− 2√

3
sin(

s√
3
),

2√
3
cos(

s√
3
))

= (
s√
3
− 1, 2(cos(

s√
3
) + sin(

s√
3
)), 2(sin(

s√
3
)− cos(

s√
3
)))
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Figure 3. Involute curve of the curve γ(s)

4. Conclusions

In this study, the relations of a spacelike or timelike unit speed curve given in
Minkowski-3 space with the B-Lift curve were examined. Furthermore, the equa-
tions relating the Frenet operators of the involute curve and the B-Lift curve were
discovered. As a consequence, we may summarize the findings of this study as
follows:

1. When the Frenet apparatus of the B-Lift curve of a unit speed curve are
compared with the Frenet apparatus of the involute curve of a unit speed curve, it
is shown that the Frenet vectors are similar; only their signs differ.

2. By giving an example, we obtained the B-Lift curve and the Frenet operators
of the involute curve of a given curve and checked the results we found with the
help of an example.
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