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Abstract

The purpose of the present article is to provide geometric sufficient conditions for discrete
points to be a sampling sequence for a generalized Hilbert Bargmann-Fock space in several
complex variables.
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1. Introduction

Sampling properties in Bergman and Fock type spaces have been studied in the 90s by
Seip and co-authors [12,14-18]. Generalization of these results to general Fock spaces in
one complex variable were provided by Berndtsson and Ortega-Cerda [1]. Later, Lind-
hom furnishes necessary conditions for sampling a sequence by a function in a weighted
Bargmann-Fock spaces in several complex variables, the weight being given by exp(—¢)
where ¢ is a suitable plurisubharmonic function [11]. Recently, there are quite important
recent results by Grochenig et al [4,6] improving Lindholm’s results.

The aim of the present article is to provide sufficient conditions for sampling a sequence
by a holomorphic function and square-integrable with respect to the suitable measure
exp(—¢(z))dm(z) such that dm(z) are the Lebesgue complex measure and a C2-plurisub-
harmonic function in C", respectively, i.e., the associated Levi-form is positive semi-
definite.

Let us recall some classical definitions and known results on density conditions for sampling
sequences.

Definition 1.1. The generalized Bargmann-Fock space in C™ is defined as
FE(C) = {£ € HC I fEyen = [, 17()Fexp () dm(z) < oo},

such that dm(z) represents the Lebesgue measure on C", H(C") stands for the set of
holomorphic functions on C", ¢ is a real-valued C?-plurisubharmonic function on C".
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Remark 1.2. We recall that if ¢ is a C2-plurisubharmonic function, then i00¢(z) is a
closed positive current of bidegree (1,1), e.g., [10, Proposition 3.3.5]. Concerning properties
of plurisubharmonic functions and positive currents in several complex variables, we can
have a look to the non-exhaustive surveys [9, 10].

By adopting the following notations that A < B means that A is less, up to a multiplicative
constant, to B, and A ~ B when A < B and A 2 B, we have the following definition on
the sampling sequence.

Definition 1.3. We say that a C"-valued sequence A = (a;);en is a Fg(@")—sampling if
for any f € Fz((C”), we have

112y S @Iz, S N fEzem)s

such that f(a) = (f(ar)ken- and [[f(@)llz = > |f(ar)* exp(=p(ar)).

apEA

< means less up to a multiplicative constant.

Berndtsson and Ortega-Cerda state that a sequence A is Fé((C)—sampling whenever A

is uniformly separated sequence and dense with respect to ¢ (a subharmonic function),

#(D(z,r) NA)
r2

cian operator and D(z,r) represents the complex disk of center z € C with radius r, and

#(D(z,7) N A) is the counting function [1, Theorem 1, part (b)].

ie., > At(z) + ¢ for some some r > 0 and § > 0, where A is the Lapla-

Then, Ortega-Cerda and Seip [13, Theorem 1] state that a sequence A is F (C)-sampling
for p € [1,00) if and only if

#AND(z,71))

liminf | inf | —4———2~ > —-
T—00 zeC / Aw (W) s
D(z,r)

Next, Lindholm in [11, Theorem 1] considered ¢ a two-homogeneous plurisubharmonic
function on C" and C? outside the origin and states that if a sequence I' is a sampling
sequence for FE(C") with p € [0, 0], then it contains a uniformly separated sampling
subset I satisfying

!
Dy (I") = liminf | inf #I HB_(Z’T)) > ,},,

Lindholm pretends that inequality (1.1) should be strict. We recall that D (I") is called

the lower density associated to the sequence I with respect to the C?-plurisubharmonic
function ¢ on C™.

(1.1)

Recently, Grochenig, Haimi, Ortega Cerdd and Romero show that inequality is (1.1) strict.
Precisely, they consider the following type lower weighted Beurling density of A.

7;(A) =liminf | inf # (ANB(z,7))
r—oo | zeCn /( : ch(w, w) eXp(—QgD(w))dm(w)
B(z,r

such that K,(-,-) stands for reproducing kernel of Fg((C") [6, Theorem 1.1]. Next, they
state that if ¢ is a two-homogeneous plurisubharmonic function [4] and i9dyp is equivalent

)
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to i00|z|?, e.g., p(2) = Z)\l|zl|2 such that Ay, # Mg, and k1 # ko € {1,...,n}, then they

=1
observe that it is possible to compare D (A) with 2 (A). Precisely, they state
_ r

Then, they state that if A is a sampling set for Fg(@”), then 7, (A) > 1 [6, Theorem 1.2
(a)).

The aim of the present article is to provide sufficient density conditions for having a
Fz (C™)-sampling sequence such that ¢ is a C2-plurisubharmonic function on C" when A
is relatively separated with respect to the ball of center z € C™ and radius one, i.e., the
number
rel(A) :=sup{# (ANB(z,1)), € C"}
is finite. Furthermore, we suppose the following kind of density condition
v(z) *Xp(2) > Ap(z) +n for z € C", (1.3)

for some positive real number r and n > 0 such that

=3 —

———————Xpoe (2 — a;),
e exp(e2n—2) B(0, )( J)

1
where A = (ax)ken is a sequence in C", € is a positive number, and X, (2) = —-Xg(0, (2),
7/. b

and Xp(g,(-) represents the indicator function on B(0, ), the complex open ball of radius
r and of center zero.

Therefore, we show our following sampling theorem providing sufficient conditions for
sampling a sequence by a C2-plurisubharmonic function ¢(z).

Theorem 1.4. Let ¢ be a real-valued C%plum’subharmonic function on C™ and satisfy
both (1.8) and i00p(2) be equivalent to i00|z|?. Then A = (aj)ren a relatively separated
sequence is a Fz(((:”)—sampling.

The structure of the article
The second section focuses on a meaningful lemma on a local holomorphic function with
optimal assessment in C". The third section is devoted to the proof of Theorem 1.4.

2. On a meaningful lemma

Berndtsson and Ortega-Cerda show a result on a local holomorphic function with good
estimates on D(a, p), the disk of center a € C and of radius p. To be precise, they consider
1, a subharmonic function in D(a, p) such that its Laplacian is bounded, then they state
that there is €, a positive constant and f, a holomorphic function on D(a, p) such that
f(a) =0 and

|(z) —(a) — Rf(2)] < € for all z € D(a, p). (2.1)

Concerning the proof of (2.1), they employ the classical Riesz Decomposition Theorem
(RDT) in one-dimensional complex coordinate space, e.g., see [7, Theorem 3.9 p.104] (or
[5, Chap.I, p.47], [8, Theorem 3.5.11]), which states that a subharmonic function is the
sum of the Newtonian potential (for a Borel measure) plus a harmonic function v and
used the fact that u is the real part of a holomorphic function. Thus to prove a version
of a local holomorphic function in several complex variables with optimal assessments on
B(ag,d), we cannot use the RDT in complex n-space with n > 1 due to the fact that in
general a harmonic function u is not a pluriharmonic function, so there is no reason for
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u to be equal at the real part of some holomorphic function. Therefore, to dodge this
impasse, we use the following lemma.

Lemma 2.1. [6, Lemma 2.4] Let 0 = Z Okdz; N\ dz), be a positive, d-closed (1,1)-
1<j,k<n

current satisfying 0 < Midd|z|>. Then there exists u : C* — C solving the equation

i00u = 0, and such that

[u(2)] < CM(1 + |2[)* log(1 + |2]), (2.2)
where the constant C' depends only on the dimension n.

Where M is a positive constant and the proof is based on using Poincaré’s lemma and on
[2, Theorem 9]. Now, let us state our local holomorphic optimal assessment in C".

Lemma 2.2. Let A :iak)keN be a sequence in C", ¢ be a real C?-plurisubharmonic
function on C", and i00p(z) ~ 00|z|?>. Then there is a holomorphic function Gy on
B(ag, p) for p > 0 such that Gi(ax) = 0 and a positive constant Cy such that:

sup  [p(2) — p(ag) — 2RGk(2)] < C1. (2.3)
z€B(ak,p)

Proof. The fact that ¢ is a C?-plurisubharmonic function on C" thus by Remark 1.2,
we have that i09¢(z) is a closed positive current of bidegree (1,1) and by assumption
i00yp is equivalent to i99|z|2. Whence, by applying Lemma 2.1 there is a function ¢
on C" satisfying both i00p1(2) = i00p(z) and the extra size assumption inequality (2.2).
Therefore, the function u = ¢ — y is pluriharmonic and it is the real part of a holomorphic
function H, ie., ¢ — RH = ¢1. Let us choose the holomorphic function 2Gg(z) =
H(z) — H(ax) and by using the fact that the function (1 + |z|?)?log(1 + |2|) is a bounded
continuous function for z € B(ag, p), we have the existence of a positive constant C; such
that:

lp(2) — plar) — 2RGL(2)| = [p1(2) —p1(ax)| < C1.

3. The proof of Theorem 1.4

Proof of Theorem 1.4. Our approach is based on the techniques used for proving [1,
Theorem 1, part (b)]. Therefore, let us consider g(z) = (v(2) — v(2) * X,(2)) * E(z) such
that F(z) = |z|2>72" is the fundamental solution of the Laplacian operator on C" for n > 2,
thus we have

Ag(z) =v(z) —v(z) * Xp(2). (3.1)
Let us consider ¥ (z) = g(z) + ¢(z), then by employing the fundamental solution of the
Laplacian operator in C", the expression of g, and the fact that A is relatively separated,
there is a positive constant C; relying on € such that

[1h(2) — 272" — p(2)] < C., for z € B(aj, ) and a; € A. (3.2)
Let h € Ff,((C”), and U(z) = |h(2)]? exp(—(2)), since that log(|h(z)|?) is subharmonic,
i.e., its Laplacian is positive, then in one side we have
Alog(U(2)) = A(log(|h(2)[?)) — A(2) = —Ag(2).

Then, by using a direct calculus, we have

2
~8u(e) < AlogU(e) = 40 -

U (z)
0z
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Whence AU(z) > —U(z)Av(z), thus
- U(2)AY(z)dm(z) > — - AU (z)dm(z). (3.3)

Form the expression of U, we have that U is integrable on C™, thus by employing a smooth
function with compact support in C" and the dominated convergence theorem, the right-

hand side of (3.3) is positive, thus we have / U(z)A¢(z)dm(z) > 0. Now, by employing
Cnr
(3.1) the fact that ¥ (z) = g(z) + ¢(2), and inequality (1.3), we have Ay (z) < v(z) —n.

Whence, from (3.3), we have

0< [ Uz)Ay(z)dm(z) < / |h(2) [ exp(=4(2)) (v(2) — n)dm(2). (3.4)
cn cr
Or
1 [ IR exp(—v@)dn() < [ bGP esp(-sE@wEdnE).  (65)
Then, by using the fact that v(z) = Z GXMSMXB(O’E)(Z — a;) and (3.2), inequality

a;EA
(3.5) becomes

77/@ [h(2)[? exp(=1(2))dm(z) £ D / [h(2)[? exp(—p(2))dm(z). (3.6)

a el |z—aj|<e

Whence, by using inequality (2.3) of Lemma 2.2, we have

/z—a4<5 |h(z)‘2 eXp(_SO(Z))dm(z)
- /Z—a'<a |h(2) exp(—Gj(2))| exp(—¢p(2) + 2RG;(z))dm(z)

S ., L P esp(-pla)im(), (37)

where gj(z) = h(z) exp(—G,(z)) is a holomorphic function, then it is complex differen-
tiable. Consequently, we have

/|z—a-|<a 195 (2)? exp(—p(a;))dm(z) < 2¢%|h(a))| exp(—p(ay))

+2e% exp(—p(a;) sup |Dg;(2)]*, (3.8)

|z—aj|<e

9g;(2) n
= 82?182(212 . 82’%” Whel"e lzzlal = 1 and (al)lglgn c Nn

Below, we apply Cauchy integral formula, e.g., [3, Chapter I, 4.1 Theorem], for showing

that exp(—¢(a;) sup |Dg;(z)|* is less, up to a multiplicative constant, to
z—aj;|<e

such that Dg;(z)

/| - 19;(7)|? exp(—¢(a;))dr. Thus, let P(a;,e) be the polydisc of polyradius e =
Z—a]’ g

n—times
(2,...,€) € (0,00)™ and of center a; = (a§1),a§2),...,a§n)) € C". Precisely, P(aj,€) =
{z = (2)1<k<n € C" : |2, — ag-k)| < e} such that P(a;, &) and Ty, ¢ are the closure and the

boundary of P(a;, €), respectively.



1310 M. El Aidi

The fact that g; is a holomorphic function then there is £ € P(a;,€) such that
sup | Dg;(2)]* = |Dg;(€)|?, and we have
2€P(aj,€)
exp(—¢(a;)) S 1Dg; () S exp(—¢(a;)) | Dg;(€)]?
z—aj|<e

1
S Gy, e (ela))ar

S [ L o0Peppe)dn 39

Now, by utilizing (3.7)-(3.9) and summing up over all pair disjoint balls (B(aj,¢));>1,
inequality (3.6) becomes

1 [ B exp(—p(2))dm(2) < exp(e?) 3 |h(ay) exp(~(a;))
" ajeA
+exp(e) [ he) P exp(—p(z))dm().
(3.10)
Whence by taking close to zero and 1 > 2, we have
[ @ P esp(—pndm(z) £ X |y exp(—p(a) = @I . (G:11)
ajeA '

Now, by employing the assumption that i09¢(z) =~ i90(|z|?), we apply [11, Lemma 7]
(with p = 2) that for each a;, we have

Ih(ay)? exp(—p(a)) S [ oy [P D)), (3.12)
Then, the fact that A is relatively separated, and thanks to (3.12), we have
@I, S rett) [ RGP exp(—p(z)dm(:)
S [ IR exp(=p(:))dm(2). (313)

Whence, by combining Inequalities (3.11) and (3.13), we have

L )R exp(p())dm() S 1A@IE |, S [ 1) exp(—p(z))dm(2).

The proof of Theorem 1.4 is complete.
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