

RESEARCH ARTICLE

On a sampling problem for a Bargmann-Fock space

Mohammed El Aïdi

Departamento de Matemáticas. Facultad de Ciencias. Universidad Nacional de Colombia, Sede Bogotá. Avenida carrera 30 número 45-03. Bogotá, D.C. Colombia.

Abstract

The purpose of the present article is to provide geometric sufficient conditions for discrete points to be a sampling sequence for a generalized Hilbert Bargmann-Fock space in several complex variables.

Mathematics Subject Classification (2020). 30H05, 30H20, 31C10, 32A15, 94A20

Keywords. Beurling density, generalized Bargmann-Fock spaces, plurisubharmonic functions, relatively separated sequence, sampling sequences

1. Introduction

Sampling properties in Bergman and Fock type spaces have been studied in the 90s by Seip and co-authors [12, 14–18]. Generalization of these results to general Fock spaces in one complex variable were provided by Berndtsson and Ortega-Cerdà [1]. Later, Lindhom furnishes necessary conditions for sampling a sequence by a function in a weighted Bargmann-Fock spaces in several complex variables, the weight being given by $\exp(-\varphi)$ where φ is a suitable plurisubharmonic function [11]. Recently, there are quite important recent results by Gröchenig *et al* [4, 6] improving Lindholm's results.

The aim of the present article is to provide sufficient conditions for sampling a sequence by a holomorphic function and square-integrable with respect to the suitable measure $\exp(-\varphi(z))dm(z)$ such that dm(z) are the Lebesgue complex measure and a C^2 -plurisubharmonic function in \mathbb{C}^n , respectively, i.e., the associated Levi-form is positive semidefinite.

Let us recall some classical definitions and known results on density conditions for sampling sequences.

Definition 1.1. The generalized Bargmann-Fock space in \mathbb{C}^n is defined as

$$F_{\varphi}^2(\mathbb{C}^n) := \Big\{ f \in \mathcal{H}(\mathbb{C}^n) : ||f||_{F_{\varphi}^2(\mathbb{C}^n)}^2 = \int_{\mathbb{C}^n} |f(z)|^2 \exp\left(-\varphi(z)\right) dm(z) < \infty \Big\},$$

such that dm(z) represents the Lebesgue measure on \mathbb{C}^n , $\mathcal{H}(\mathbb{C}^n)$ stands for the set of holomorphic functions on \mathbb{C}^n , φ is a real-valued C^2 -plurisubharmonic function on \mathbb{C}^n .

Email address: melaidi@unal.edu.co

Received: 08.08.2023; Accepted: 13.10.2023

Remark 1.2. We recall that if φ is a C^2 -plurisubharmonic function, then $i\partial\bar{\partial}\varphi(z)$ is a closed positive current of bidegree (1,1), e.g., [10, Proposition 3.3.5]. Concerning properties of plurisubharmonic functions and positive currents in several complex variables, we can have a look to the non-exhaustive surveys [9, 10].

By adopting the following notations that $A \leq B$ means that A is less, up to a multiplicative constant, to B, and $A \approx B$ when $A \leq B$ and $A \gtrsim B$, we have the following definition on the sampling sequence.

Definition 1.3. We say that a \mathbb{C}^n -valued sequence $\mathcal{A} = (a_j)_{j \in \mathbb{N}}$ is a $F^2_{\varphi}(\mathbb{C}^n)$ -sampling if for any $f \in F^2_{\varphi}(\mathbb{C}^n)$, we have

$$||f||_{F_{\varphi}^{2}(\mathbb{C}^{n})}^{2} \lesssim ||f(a)||_{l_{\varphi,\mathcal{A}}}^{2} \lesssim ||f||_{F_{\varphi}^{2}(\mathbb{C}^{n})}^{2},$$

such that $f(a) = (f(a_{k}))_{k \in \mathbb{N}}$ and $||f(a)||_{l_{\varphi,\mathcal{A}}}^{2} = \sum_{a_{k} \in \mathcal{A}} |f(a_{k})|^{2} \exp(-\varphi(a_{k})).$

 \leq means less up to a multiplicative constant.

Berndtsson and Ortega-Cerdà state that a sequence \mathcal{A} is $F_{\psi}^2(\mathbb{C})$ -sampling whenever \mathcal{A} is uniformly separated sequence and dense with respect to ψ (a subharmonic function), i.e., $\frac{\#(\mathbb{D}(z,r)\cap\mathcal{A})}{r^2} > \Delta\psi(z) + \delta$ for some some r > 0 and $\delta > 0$, where Δ is the Laplacian operator and $\mathbb{D}(z,r)$ represents the complex disk of center $z \in \mathbb{C}$ with radius r, and $\#(\mathbb{D}(z,r)\cap\mathcal{A})$ is the counting function [1, Theorem 1, part (b)].

Then, Ortega-Cerdà and Seip [13, Theorem 1] state that a sequence \mathcal{A} is $F_{\psi}^{p}(\mathbb{C})$ -sampling for $p \in [1, \infty)$ if and only if

$$\liminf_{r \to \infty} \left(\inf_{z \in \mathbb{C}} \left(\frac{\#(\mathcal{A} \cap \mathbb{D}(z,r))}{\int_{\mathbb{D}(z,r)} \Delta \psi(\omega)} \right) \right) > \frac{2}{\pi} \cdot$$

Next, Lindholm in [11, Theorem 1] considered φ a two-homogeneous plurisubharmonic function on \mathbb{C}^n and C^2 outside the origin and states that if a sequence Γ is a sampling sequence for $F^p_{\varphi}(\mathbb{C}^n)$ with $p \in [0, \infty]$, then it contains a uniformly separated sampling subset Γ' satisfying

$$D_{\varphi}^{-}(\Gamma') := \liminf_{r \to \infty} \left(\inf_{z \in \mathbb{C}^{n}} \left(\frac{\#(\Gamma' \cap \mathbb{B}(z, r))}{\int_{\mathbb{B}(z, r)} (i\partial \bar{\partial}\varphi(\omega))^{n}} \right) \right) \ge \frac{1}{\pi^{n} n!},$$
(1.1)

Lindholm pretends that inequality (1.1) should be strict. We recall that $D_{\varphi}^{-}(\Gamma')$ is called the lower density associated to the sequence Γ' with respect to the C^2 -plurisubharmonic function φ on \mathbb{C}^n .

Recently, Gröchenig, Haimi, Ortega Cerdá and Romero show that inequality is (1.1) strict. Precisely, they consider the following type lower weighted Beurling density of \mathcal{A} .

$$\mathscr{D}_{\varphi}^{-}(\mathcal{A}) = \liminf_{r \to \infty} \left(\inf_{z \in \mathbb{C}^{n}} \left(\frac{\# \left(\mathcal{A} \cap \mathbb{B}(z, r)\right)}{\int_{\mathbb{B}(z, r)} K_{\varphi}(\omega, \omega) \exp(-2\varphi(\omega)) dm(\omega)} \right) \right),$$
(1.2)

such that $K_{\varphi}(\cdot, \cdot)$ stands for reproducing kernel of $F_{\varphi}^2(\mathbb{C}^n)$ [6, Theorem 1.1]. Next, they state that if φ is a two-homogeneous plurisubharmonic function [4] and $i\partial\overline{\partial}\varphi$ is equivalent

to $i\partial\overline{\partial}|z|^2$, e.g., $\varphi(z) = \sum_{l=1}^n \lambda_l |z_l|^2$ such that $\lambda_{k_1} \neq \lambda_{k_2}$ and $k_1 \neq k_2 \in \{1, \ldots, n\}$, then they observe that it is possible to compare $D_{\varphi}^-(\mathcal{A})$ with $\mathscr{D}_{\varphi}^-(\mathcal{A})$. Precisely, they state

$$D_{\varphi}^{-}(\mathcal{A}) = \frac{1}{\pi^{n} n!} \mathscr{D}_{\varphi}^{-}(\mathcal{A}).$$

Then, they state that if \mathcal{A} is a sampling set for $F^2_{\varphi}(\mathbb{C}^n)$, then $\mathscr{D}^-_{\varphi}(\mathcal{A}) > 1$ [6, Theorem 1.2 (a)].

The aim of the present article is to provide sufficient density conditions for having a $F^2_{\varphi}(\mathbb{C}^n)$ -sampling sequence such that φ is a C^2 -plurisubharmonic function on \mathbb{C}^n when \mathcal{A} is relatively separated with respect to the ball of center $z \in \mathbb{C}^n$ and radius one, i.e., the number

$$rel(\mathcal{A}) := \sup \{ \# (\mathcal{A} \cap \mathbb{B}(z, 1)), z \in \mathbb{C}^n \}$$

is finite. Furthermore, we suppose the following kind of density condition

$$\nu(z) * \mathfrak{X}_r(z) \ge \Delta \varphi(z) + \eta \text{ for } z \in \mathbb{C}^n,$$
(1.3)

for some positive real number r and $\eta > 0$ such that

$$\nu(z) = \sum_{a_j \in \mathcal{A}} \frac{1}{\exp(\varepsilon^{2n-2})} \mathfrak{X}_{\mathbb{B}(0,\varepsilon)}(z-a_j),$$

where $\mathcal{A} = (a_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{C}^n , ε is a positive number, and $\mathfrak{X}_r(z) = \frac{1}{r^{2n}} \mathfrak{X}_{\mathbb{B}(0,r)}(z)$, and $\mathfrak{X}_{\mathbb{B}(0,r)}(\cdot)$ represents the indicator function on $\mathbb{B}(0,r)$, the complex open ball of radius r and of center zero.

Therefore, we show our following sampling theorem providing sufficient conditions for sampling a sequence by a C^2 -plurisubharmonic function $\varphi(z)$.

Theorem 1.4. Let φ be a real-valued C^2 -plurisubharmonic function on \mathbb{C}^n and satisfy both (1.3) and $i\partial\bar{\partial}\varphi(z)$ be equivalent to $i\partial\bar{\partial}|z|^2$. Then $\mathcal{A} = (a_k)_{k\in\mathbb{N}}$ a relatively separated sequence is a $F^2_{\varphi}(\mathbb{C}^n)$ -sampling.

The structure of the article

The second section focuses on a meaningful lemma on a local holomorphic function with optimal assessment in \mathbb{C}^n . The third section is devoted to the proof of Theorem 1.4.

2. On a meaningful lemma

Berndtsson and Ortega-Cerdá show a result on a local holomorphic function with good estimates on $\mathbb{D}(a, \rho)$, the disk of center $a \in \mathbb{C}$ and of radius ρ . To be precise, they consider ψ , a subharmonic function in $\mathbb{D}(a, \rho)$ such that its Laplacian is bounded, then they state that there is \mathfrak{C} , a positive constant and f, a holomorphic function on $\mathbb{D}(a, \rho)$ such that f(a) = 0 and

$$|\psi(z) - \psi(a) - \Re f(z)| \le \mathfrak{C} \text{ for all } z \in \mathbb{D}(a, \rho).$$
 (2.1)

Concerning the proof of (2.1), they employ the classical Riesz Decomposition Theorem (RDT) in one-dimensional complex coordinate space, e.g., see [7, Theorem 3.9 p.104] (or [5, Chap.I, p.47], [8, Theorem 3.5.11]), which states that a subharmonic function is the sum of the Newtonian potential (for a Borel measure) plus a harmonic function u and used the fact that u is the real part of a holomorphic function. Thus to prove a version of a local holomorphic function in several complex variables with optimal assessments on $\mathbb{B}(a_k, \delta)$, we cannot use the RDT in complex *n*-space with n > 1 due to the fact that in general a harmonic function u is not a pluriharmonic function, so there is no reason for

u to be equal at the real part of some holomorphic function. Therefore, to dodge this impasse, we use the following lemma.

Lemma 2.1. [6, Lemma 2.4] Let $\theta = \sum_{1 \leq j,k \leq n} \theta_{jk} dz_j \wedge d\overline{z}_k$ be a positive, d-closed (1,1)-

current satisfying $\theta \leq Mi\partial\overline{\partial}|z|^2$. Then there exists $u : \mathbb{C}^n \to \mathbb{C}$ solving the equation $i\partial\overline{\partial}u = \theta$, and such that

$$|u(z)| \le CM(1+|z|)^2 \log(1+|z|), \tag{2.2}$$

where the constant C depends only on the dimension n.

Where M is a positive constant and the proof is based on using Poincaré's lemma and on [2, Theorem 9]. Now, let us state our local holomorphic optimal assessment in \mathbb{C}^n .

Lemma 2.2. Let $\mathcal{A} = (a_k)_{k \in \mathbb{N}}$ be a sequence in \mathbb{C}^n , φ be a real C^2 -plurisubharmonic function on \mathbb{C}^n , and $i\partial \overline{\partial} \varphi(z) \approx \partial \overline{\partial} |z|^2$. Then there is a holomorphic function G_k on $\mathbb{B}(a_k, \rho)$ for $\rho > 0$ such that $G_k(a_k) = 0$ and a positive constant C_1 such that:

$$\sup_{z \in \mathbb{B}(a_k,\rho)} |\varphi(z) - \varphi(a_k) - 2\Re G_k(z)| \le C_1.$$
(2.3)

Proof. The fact that φ is a C^2 -plurisubharmonic function on \mathbb{C}^n thus by Remark 1.2, we have that $i\partial\overline{\partial}\varphi(z)$ is a closed positive current of bidegree (1,1) and by assumption $i\partial\overline{\partial}\varphi$ is equivalent to $i\partial\overline{\partial}|z|^2$. Whence, by applying Lemma 2.1 there is a function φ_1 on \mathbb{C}^n satisfying both $i\partial\overline{\partial}\varphi_1(z) = i\partial\overline{\partial}\varphi(z)$ and the extra size assumption inequality (2.2). Therefore, the function $u = \varphi - \varphi_1$ is pluriharmonic and it is the real part of a holomorphic function \mathcal{H} , i.e., $\varphi - \Re \mathcal{H} = \varphi_1$. Let us choose the holomorphic function $2G_k(z) := \mathcal{H}(z) - \mathcal{H}(a_k)$ and by using the fact that the function $(1 + |z|^2)^2 \log(1 + |z|)$ is a bounded continuous function for $z \in \mathbb{B}(a_k, \rho)$, we have the existence of a positive constant C_1 such that:

$$|\varphi(z) - \varphi(a_k) - 2\Re G_k(z)| = |\varphi_1(z) - \varphi_1(a_k)| \le C_1.$$

3. The proof of Theorem 1.4

Proof of Theorem 1.4. Our approach is based on the techniques used for proving [1, Theorem 1, part (b)]. Therefore, let us consider $\mathfrak{g}(z) = (\nu(z) - \nu(z) * \mathfrak{X}_r(z)) * E(z)$ such that $E(z) \approx |z|^{2-2n}$ is the fundamental solution of the Laplacian operator on \mathbb{C}^n for $n \geq 2$, thus we have

$$\Delta \mathfrak{g}(z) = \nu(z) - \nu(z) * \mathfrak{X}_r(z).$$
(3.1)

Let us consider $\psi(z) = \mathfrak{g}(z) + \varphi(z)$, then by employing the fundamental solution of the Laplacian operator in \mathbb{C}^n , the expression of \mathfrak{g} , and the fact that \mathcal{A} is relatively separated, there is a positive constant C_{ε} relying on ε such that

$$|\psi(z) - \varepsilon^{2-2n} - \varphi(z)| \le C_{\varepsilon}, \text{ for } z \in \mathbb{B}(a_j, \varepsilon) \text{ and } a_j \in \mathcal{A}.$$
 (3.2)

Let $h \in F^2_{\varphi}(\mathbb{C}^n)$, and $U(z) = |h(z)|^2 \exp(-\psi(z))$, since that $\log(|h(z)|^2)$ is subharmonic, i.e., its Laplacian is positive, then in one side we have

$$\Delta \log(U(z)) = \Delta(\log(|h(z)|^2)) - \Delta \psi(z) \ge -\Delta \psi(z).$$

Then, by using a direct calculus, we have

$$\begin{split} -\Delta\psi(z) &\leq \Delta \log(U(z)) = \frac{\Delta U(z)}{U(z)} - \frac{1}{U^2(z)} \left| \frac{\partial U(z)}{\partial z} \right|^2 \\ &\leq \frac{\Delta U(z)}{U(z)}. \end{split}$$

Whence $\Delta U(z) \ge -U(z)\Delta \psi(z)$, thus

$$\int_{\mathbb{C}^n} U(z) \Delta \psi(z) dm(z) \ge -\int_{\mathbb{C}^n} \Delta U(z) dm(z).$$
(3.3)

Form the expression of U, we have that U is integrable on \mathbb{C}^n , thus by employing a smooth function with compact support in \mathbb{C}^n and the dominated convergence theorem, the righthand side of (3.3) is positive, thus we have $\int_{\mathbb{C}^n} U(z)\Delta\psi(z)dm(z) \geq 0$. Now, by employing (3.1) the fact that $\psi(z) = \mathfrak{g}(z) + \varphi(z)$, and inequality (1.3), we have $\Delta\psi(z) \leq \nu(z) - \eta$.

Whence, from (3.3), we have

$$0 \le \int_{\mathbb{C}^n} U(z) \Delta \psi(z) dm(z) \le \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z))(\nu(z) - \eta) dm(z).$$
(3.4)

Or

$$\eta \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z)) dm(z) \le \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z))\nu(z) dm(z).$$
(3.5)

Then, by using the fact that $\nu(z) = \sum_{a_j \in \mathcal{A}} \frac{1}{\exp(\varepsilon^{2n-2})} \mathfrak{X}_{\mathbb{B}(0,\varepsilon)}(z-a_j)$ and (3.2), inequality (3.5) becomes

$$\eta \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z)) dm(z) \lesssim \sum_{a_j \in \mathcal{A}} \int_{|z-a_j| < \varepsilon} |h(z)|^2 \exp(-\varphi(z)) dm(z).$$
(3.6)

Whence, by using inequality (2.3) of Lemma 2.2, we have

$$\int_{|z-a_j|<\varepsilon} |h(z)|^2 \exp(-\varphi(z)) dm(z)$$

$$= \int_{|z-a_j|<\varepsilon} |h(z) \exp(-G_j(z))|^2 \exp(-\varphi(z) + 2\Re G_j(z)) dm(z)$$

$$\lesssim \int_{|z-a_j|<\varepsilon} |g_j(z)|^2 \exp(-\varphi(a_j)) dm(z), \qquad (3.7)$$

where $g_i(z) = h(z) \exp(-G_i(z))$ is a holomorphic function, then it is complex differentiable. Consequently, we have

$$\int_{|z-a_j|<\varepsilon} |g_j(z)|^2 \exp(-\varphi(a_j)) dm(z) \leq 2\varepsilon^2 |h(a_j)|^2 \exp(-\varphi(a_j)) + 2\varepsilon^4 \exp(-\varphi(a_j) \sup_{|z-a_j|<\varepsilon} |Dg_j(z)|^2, \quad (3.8)$$

such that $Dg_j(z) = \frac{\partial g_j(z)}{\partial z_1^{\alpha_1} \partial z_2^{\alpha_2} \dots \partial z_n^{\alpha_n}}$ where $\sum_{l=1}^n \alpha_l = 1$ and $(\alpha_l)_{1 \le l \le n} \in \mathbb{N}^n$. Below, we apply Cauchy integral formula, e.g., [3, Chapter I, 4.1 Theorem], for showing that $\exp(-\varphi(a_j) \sup_{|z-a_j| < \varepsilon} |Dg_j(z)|^2$ is less, up to a multiplicative constant, to

 $\int_{|z-a_j|<\varepsilon} |g_j(\tau)|^2 \exp(-\varphi(a_j)) d\tau.$ Thus, let $\mathbb{P}(a_j,\varepsilon)$ be the polydisc of polyradius $\varepsilon =$

 $(\overline{\varepsilon,\ldots,\varepsilon}) \in (0,\infty)^n$ and of center $a_j = (a_j^{(1)}, a_j^{(2)}, \ldots, a_j^{(n)}) \in \mathbb{C}^n$. Precisely, $\mathbb{P}(a_j, \varepsilon) =$ $\{z = (z_k)_{1 \le k \le n} \in \mathbb{C}^n : |z_k - a_j^{(k)}| < \varepsilon\}$ such that $\overline{\mathbb{P}}(a_j, \varepsilon)$ and $T_{a_j,\varepsilon}$ are the closure and the boundary of $\mathbb{P}(a_j, \varepsilon)$, respectively.

1309

The fact that g_j is a holomorphic function then there is $\xi \in \overline{\mathbb{P}}(a_j, \varepsilon)$ such that $\sup_{\sigma \in \overline{\mathbb{P}}(z_j)} |Dg_j(z)|^2 = |Dg_j(\xi)|^2$, and we have

$$z \in \mathbb{P}(a_j, \varepsilon)$$

$$\exp(-\varphi(a_j)) \sup_{|z-a_j|<\varepsilon} |Dg_j(z)|^2 \lesssim \exp(-\varphi(a_j)) |Dg_j(\xi)|^2$$

$$\lesssim \frac{1}{(2\pi)^n} \int_{T_{a_j,\varepsilon}} |g_j(\tau)|^2 \exp(-\varphi(a_j)) d\tau$$

$$\lesssim \int_{|z-a_j|<\varepsilon} |g_j(\tau)|^2 \exp(-\varphi(a_j)) d\tau.$$
(3.9)

Now, by utilizing (3.7)-(3.9) and summing up over all pair disjoint balls $(\mathbb{B}(a_j,\varepsilon))_{j\geq 1}$, inequality (3.6) becomes

$$\eta \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z) \lesssim \exp(\varepsilon^2) \sum_{a_j \in \mathcal{A}} |h(a_j)|^2 \exp(-\varphi(a_j)) + \exp(\varepsilon^4) \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z).$$
(3.10)

Whence by taking close to zero and $\eta > 2$, we have

$$\int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z) \lesssim \sum_{a_j \in \mathcal{A}} |h(a_j)|^2 \exp(-\varphi(a_j)) = ||h(a)||^2_{l^2_{\varphi, \mathcal{A}}}.$$
 (3.11)

Now, by employing the assumption that $i\partial\bar{\partial}\varphi(z) \approx i\partial\bar{\partial}(|z|^2)$, we apply [11, Lemma 7] (with p = 2) that for each a_j , we have

$$|h(a_j)|^2 \exp(-\varphi(a_j)) \lesssim \int_{\mathbb{B}(a_j,1)} |h(z)|^2 \exp(-\varphi(z)) dm(z).$$
(3.12)

Then, the fact that \mathcal{A} is relatively separated, and thanks to (3.12), we have

$$\begin{aligned} ||h(a)||_{l^{2}_{\varphi,\mathcal{A}}}^{2} &\lesssim rel(\mathcal{A}) \int_{\mathcal{A}+\mathbb{B}(0,1)} |h(z)|^{2} \exp(-\varphi(z)) dm(z) \\ &\lesssim \int_{\mathbb{C}^{n}} |h(z)|^{2} \exp(-\varphi(z)) dm(z). \end{aligned}$$
(3.13)

Whence, by combining Inequalities (3.11) and (3.13), we have

$$\int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z) \lesssim ||h(a)||_{l^2_{\varphi,\mathcal{A}}}^2 \lesssim \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z).$$

The proof of Theorem 1.4 is complete.

References

- B. Berndtsson and J. Ortega-Cerdà, On interpolating and sampling in Hilbert spaces of analytic functions, J. reine angew Math. 464, 109-128, 1995.
- B. Berndtsson and M. Andersson, *Henkin-Ramirez formulas with weight factors*, Ann. Inst. Fourier. **32** (3), 91-110, 1982.
- [3] K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds, Springer New York, NY, 2002.
- [4] H. Führ, K. Gröchenig, A. Haimi, A. Klotz and J.L. Romero, Density of sampling and interpolation in reproducing kernel Hilbert spaces, J. Lond. Math. Soc. 96 (3), 663-686, 2017.
- [5] J. Garnett, Bounded analytic functions, Springer-Verlag New York, 2007.

- [6] K. Gröchenig, A. Haimi, J. Ortega-Cerdà and J.L. Romero, Strict density inequalities for sampling and interpolation in weighted spaces of holomorphic functions, J. Funct. Anal. 277 (12), 34 pp, 2019.
- [7] W. K. Hayman, P. B. Kennedy, Subharmonic Functions, Academic Press, London 1976.
- [8] L.L. Helms, *Potential Theory*, Springer Dordrecht Heidelberg London New York, 2009.
- [9] C.O. Kiselman, *Plurisubharmonic functions and potential theory in several complex variables*, Development of mathematics 1950-2000, 655-714, Birkhäuser, Basel, 2000.
- [10] M. Klimek, *Pluripotential theory*, London Mathematical Society Monographs, Clarendon Press, 266 p, 1991.
- [11] N. Lindholm, Sampling in weighted L^p spaces of entire functions in \mathbb{C}^n and estimates of the Bergman kernel, J. Funct. Anal. 182 (2), 390-426, 2001.
- [12] Yu. Lyubarskii and K. Seip, Sampling and interpolation of entire functions and exponential systems in convex domains, Ark. Mat. 32 (1), 157-193, 1994.
- [13] J. Ortega-Cerdà and K. Seip, Beurling-type density theorems for weighted L_p spaces of entire functions, J. Anal. Math. **75** (1), 247-266, 1998.
- [14] K. Seip, Interpolation and sampling in spaces of analytic functions, 33, University Lecture Series. American Mathematical Society, Providence, RI, 2004.
- [15] K. Seip. Density theorem for sampling and interpolating in the Bargmann-Fock spaces III, Math. Scand. 73, 112-126, 1993.
- [16] K. Seip and R. Wallstén, Density theorems for sampling and interpolation in the Bargmann-Fock space II, J. reine angew. Math. 429, 107-113, 1992.
- [17] K. Seip, Density theorem for sampling and interpolating in the Bargmann-Fock spaces I, J. reine angrew Math. 429, 91-106, 1992.
- [18] K. Seip, Reproducing formulas and double orthogonality in Bargmann and Bergman spaces, SIAM J. Math. Anal. 22 (3), 856-876, 1991.