

RESEARCH ARTICLE

On a sampling problem for a Bargmann-Fock space

Mohammed El Aïdi^D

Departamento de Matemáticas. Facultad de Ciencias. Universidad Nacional de Colombia, Sede Bogotá. Avenida carrera 30 número 45-03. Bogotá, D.C. Colombia.

Abstract

The purpose of the present article is to provide geometric sufficient conditions for discrete points to be a sampling sequence for a generalized Hilbert Bargmann-Fock space in several complex variables.

Mathematics Subject Classification (2020). 30H05, 30H20, 31C10, 32A15, 94A20

Keywords. Beurling density, generalized Bargmann-Fock spaces, plurisubharmonic fu[n](#page-0-0)ctions, relatively separated sequence, sampling sequences

1. Introduction

Sampling properties in Bergman and Fock type spaces have been studied in the 90s by Seip and co-authors [\[12,](#page-6-0) [14](#page-6-1)[–18\]](#page-6-2). Generalization of these results to general Fock spaces in one complex variable were provided by Berndtsson and Ortega-Cerdà [\[1\]](#page-5-0). Later, Lindhom furnishes necessary conditions for sampling a sequence by a function in a weighted Bargmann-Fock spaces in several complex variables, the weight being given by $\exp(-\varphi)$ where φ is a suitable plurisubharmonic function [\[11\]](#page-6-3). Recently, there are quite important recent results by Gröchenig *et al* [\[4,](#page-5-1) [6\]](#page-6-4) improving Lindholm's results.

The aim of the present article is to provide sufficient conditions for sampling a sequence by a holomorphic function and square-integrable with respect to the suitable measure $\exp(-\varphi(z))dm(z)$ such that $dm(z)$ are the Lebesgue complex measure and a C^2 -plurisubharmonic function in \mathbb{C}^n , respectively, i.e., the associated Levi-form is positive semidefinite.

Let us recall some classical definitions and known results on density conditions for sampling sequences.

Definition 1.1. The generalized Bargmann-Fock space in \mathbb{C}^n is defined as

$$
F_{\varphi}^{2}(\mathbb{C}^{n}):=\Big\{f\in \mathcal{H}(\mathbb{C}^{n}) :||f||_{F_{\varphi}^{2}(\mathbb{C}^{n})}^{2}=\int_{\mathbb{C}^{n}}|f(z)|^{2}\exp\left(-\varphi(z)\right)dm(z)<\infty\Big\},\,
$$

such that $dm(z)$ represents the Lebesgue measure on \mathbb{C}^n , $\mathcal{H}(\mathbb{C}^n)$ stands for the set of holomorphic functions on \mathbb{C}^n , φ is a real-valued C^2 -plurisubharmonic function on \mathbb{C}^n .

Email address: melaidi@unal.edu.co

Received: 08.08.2023; Accepted: 13.10.2023

Remark 1.2. We recall that if φ is a C^2 -plurisubharmonic function, then $i\partial\bar{\partial}\varphi(z)$ is a closed positive current of bidegree (1,1), e.g., [\[10,](#page-6-5) Proposition 3.3.5]. Concerning properties of plurisubharmonic functions and positive currents in several complex variables, we can have a look to the non-exhaustive surveys [\[9,](#page-6-6) [10\]](#page-6-5).

By adopting the following notations that $A \leq B$ means that *A* is less, up to a multiplicative constant, to *B*, and $A \approx B$ when $A \leq B$ and $A \geq B$, we have the following definition on the sampling sequence.

Definition 1.3. We say that a \mathbb{C}^n -valued sequence $\mathcal{A} = (a_j)_{j \in \mathbb{N}}$ is a $F^2_{\varphi}(\mathbb{C}^n)$ -sampling if for any $f \in F^2_{\varphi}(\mathbb{C}^n)$, we have

$$
||f||_{F^2_{\varphi}(\mathbb{C}^n)}^2 \lesssim ||f(a)||_{l^2_{\varphi,A}}^2 \lesssim ||f||_{F^2_{\varphi}(\mathbb{C}^n)}^2,
$$

such that $f(a) = (f(a_k))_{k \in \mathbb{N}}$ and $||f(a)||_{l^2_{\varphi,A}}^2 = \sum_{a_k \in A} |f(a_k)|^2 \exp(-\varphi(a_k)).$

 \lesssim means less up to a multiplicative constant.

Berndtsson and Ortega-Cerdà state that a sequence A is $F^2_{\psi}(\mathbb{C})$ -sampling whenever A is uniformly separated sequence and dense with respect to ψ (a subharmonic function), i.e., $\frac{\#(\mathbb{D}(z,r)\cap\mathcal{A})}{2}$ $\frac{r}{r^2}$ > $\Delta \psi(z) + \delta$ for some some $r > 0$ and $\delta > 0$, where Δ is the Laplacian operator and $\mathbb{D}(z, r)$ represents the complex disk of center $z \in \mathbb{C}$ with radius r, and $\#(\mathbb{D}(z,r)\cap \mathcal{A})$ is the counting function [\[1,](#page-5-0) Theorem 1, part (b)].

Then, Ortega-Cerdà and Seip [\[13,](#page-6-7) Theorem 1] state that a sequence A is F_{ab}^p *ψ* (C)-sampling for $p \in [1,\infty)$ if and only if

$$
\liminf_{r\to\infty}\left(\inf_{z\in\mathbb{C}}\left(\frac{\#(\mathcal{A}\cap\mathbb{D}(z,r))}{\displaystyle\int_{\mathbb{D}(z,r)}\Delta\psi(\omega)}\right)\right)> \frac{2}{\pi}.
$$

Next, Lindholm in [\[11,](#page-6-3) Theorem 1] considered φ a two-homogeneous plurisubharmonic function on \mathbb{C}^n and C^2 outside the origin and states that if a sequence Γ is a sampling sequence for $F^p_\varphi(\mathbb{C}^n)$ with $p \in [0,\infty]$, then it contains a uniformly separated sampling subset Γ' satisfying

$$
D_{\varphi}^{-}(\Gamma') := \liminf_{r \to \infty} \left(\inf_{z \in \mathbb{C}^n} \left(\frac{\#(\Gamma' \cap \mathbb{B}(z, r))}{\int_{\mathbb{B}(z, r)} (i \partial \bar{\partial} \varphi(\omega))^n} \right) \right) \ge \frac{1}{\pi^n n!},
$$
(1.1)

Lindholm pretends that inequality [\(1.1\)](#page-1-0) should be strict. We recall that $D_{\varphi}^{-}(\Gamma')$ is called the lower density associated to the sequence Γ' with respect to the C^2 -plurisubharmonic function φ on \mathbb{C}^n .

Recently, Gröchenig, Haimi, Ortega Cerdá and Romero show that inequality is [\(1.1\)](#page-1-0) strict. Precisely, they consider the following type lower weighted Beurling density of A.

$$
\mathscr{D}_{\varphi}^{-}(\mathcal{A}) = \liminf_{r \to \infty} \left(\inf_{z \in \mathbb{C}^{n}} \left(\frac{\#(\mathcal{A} \cap \mathbb{B}(z,r))}{\int_{\mathbb{B}(z,r)} K_{\varphi}(\omega,\omega) \exp(-2\varphi(\omega)) dm(\omega)} \right) \right), \quad (1.2)
$$

such that $K_{\varphi}(\cdot, \cdot)$ stands for reproducing kernel of $F_{\varphi}^2(\mathbb{C}^n)$ [\[6,](#page-6-4) Theorem 1.1]. Next, they state that if φ is a two-homogeneous plurisubharmonic function [\[4\]](#page-5-1) and $i\partial\overline{\partial}\varphi$ is equivalent to $i\partial \overline{\partial}|z|^2$, e.g., $\varphi(z) = \sum_{n=0}^{\infty}$ *l*=1 $\lambda_l |z_l|^2$ such that $\lambda_{k_1} \neq \lambda_{k_2}$ and $k_1 \neq k_2 \in \{1, \ldots, n\}$, then they observe that it is possible to compare $D_{\varphi}^{-}(\mathcal{A})$ with $\mathscr{D}_{\varphi}^{-}(\mathcal{A})$. Precisely, they state

$$
D_{\varphi}^{-}(\mathcal{A}) = \frac{1}{\pi^{n} n!} \mathscr{D}_{\varphi}^{-}(\mathcal{A}).
$$

Then, they state that if A is a sampling set for $F^2_\varphi(\mathbb{C}^n)$, then $\mathscr{D}^-_\varphi(\mathcal{A}) > 1$ [\[6,](#page-6-4) Theorem 1.2 (a)].

The aim of the present article is to provide sufficient density conditions for having a $F^2_\varphi(\mathbb{C}^n)$ -sampling sequence such that φ is a C^2 -plurisubharmonic function on \mathbb{C}^n when A is relatively separated with respect to the ball of center $z \in \mathbb{C}^n$ and radius one, i.e., the number

$$
rel(\mathcal{A}) := \sup \{ \# \left(\mathcal{A} \cap \mathbb{B}(z, 1) \right), \ z \in \mathbb{C}^n \}
$$

is finite. Furthermore, we suppose the following kind of density condition

$$
\nu(z) * \mathfrak{X}_r(z) \ge \Delta \varphi(z) + \eta \text{ for } z \in \mathbb{C}^n,
$$
\n(1.3)

for some positive real number r and $\eta > 0$ such that

$$
\nu(z) = \sum_{a_j \in \mathcal{A}} \frac{1}{\exp(\varepsilon^{2n-2})} \mathfrak{X}_{\mathbb{B}(0,\varepsilon)}(z - a_j),
$$

where $\mathcal{A} = (a_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{C}^n , ε is a positive number, and $\mathcal{X}_r(z) = \frac{1}{r^{2n}} \mathcal{X}_{\mathbb{B}(0,r)}(z)$, and $\mathfrak{X}_{\mathbb{B}(0,r)}(\cdot)$ represents the indicator function on $\mathbb{B}(0,r)$, the complex open ball of radius *r* and of center zero.

Therefore, we show our following sampling theorem providing sufficient conditions for sampling a sequence by a C^2 -plurisubharmonic function $\varphi(z)$.

Theorem 1.4. Let φ be a real-valued C^2 -plurisubharmonic function on \mathbb{C}^n and satisfy *both* (1.3) and $i\partial\bar{\partial}\varphi(z)$ *be equivalent to* $i\partial\bar{\partial}|z|^2$. Then $\mathcal{A} = (a_k)_{k \in \mathbb{N}}$ *a relatively separated* sequence is a $F^2_\varphi(\mathbb{C}^n)$ -sampling.

The structure of the article

The second section focuses on a meaningful lemma on a local holomorphic function with optimal assessment in \mathbb{C}^n . The third section is devoted to the proof of Theorem [1.4.](#page-2-1)

2. On a meaningful lemma

Berndtsson and Ortega-Cerdá show a result on a local holomorphic function with good estimates on $\mathbb{D}(a, \rho)$, the disk of center $a \in \mathbb{C}$ and of radius ρ . To be precise, they consider ψ , a subharmonic function in $\mathbb{D}(a,\rho)$ such that its Laplacian is bounded, then they state that there is \mathfrak{C} , a positive constant and f, a holomorphic function on $\mathbb{D}(a,\rho)$ such that $f(a) = 0$ and

$$
|\psi(z) - \psi(a) - \Re f(z)| \le \mathfrak{C} \text{ for all } z \in \mathbb{D}(a, \rho). \tag{2.1}
$$

Concerning the proof of [\(2.1\)](#page-2-2), they employ the classical Riesz Decomposition Theorem (RDT) in one-dimensional complex coordinate space, e.g., see [\[7,](#page-6-8) Theorem 3.9 p.104] (or [\[5,](#page-5-2) Chap.I, p.47], [\[8,](#page-6-9) Theorem 3.5.11]), which states that a subharmonic function is the sum of the Newtonian potential (for a Borel measure) plus a harmonic function *u* and used the fact that *u* is the real part of a holomorphic function. Thus to prove a version of a local holomorphic function in several complex variables with optimal assessments on $\mathbb{B}(a_k,\delta)$, we cannot use the RDT in complex *n*-space with $n > 1$ due to the fact that in general a harmonic function *u* is not a pluriharmonic function, so there is no reason for

u to be equal at the real part of some holomorphic function. Therefore, to dodge this impasse, we use the following lemma.

Lemma 2.1. *[\[6,](#page-6-4) Lemma 2.4] Let* $\theta = \sum$ 1≤*j,k*≤*n* $\theta_{jk}dz_j \wedge d\overline{z}_k$ *be a positive, d-closed* $(1,1)$ *-*

current satisfying $\theta \leq M i \partial \overline{\partial} |z|^2$. Then there exists $u : \mathbb{C}^n \to \mathbb{C}$ solving the equation *i∂∂u* = *θ, and such that*

$$
|u(z)| \le CM(1+|z|)^2 \log(1+|z|),\tag{2.2}
$$

where the constant C depends only on the dimension n.

Where *M* is a positive constant and the proof is based on using Poincaré's lemma and on [\[2,](#page-5-3) Theorem 9]. Now, let us state our local holomorphic optimal assessment in \mathbb{C}^n .

Lemma 2.2. *Let* $A = (a_k)_{k \in \mathbb{N}}$ *be a sequence in* \mathbb{C}^n , φ *be a real* C^2 -plurisubharmonic f unction on \mathbb{C}^n , and $i\partial\overline{\partial}\varphi(z) \approx \partial\overline{\partial}|z|^2$. Then there is a holomorphic function G_k on $\mathbb{B}(a_k, \rho)$ *for* $\rho > 0$ *such that* $G_k(a_k) = 0$ *and a positive constant* C_1 *such that:*

$$
\sup_{z \in \mathbb{B}(a_k, \rho)} |\varphi(z) - \varphi(a_k) - 2\Re G_k(z)| \le C_1.
$$
\n(2.3)

Proof. The fact that φ is a C^2 -plurisubharmonic function on \mathbb{C}^n thus by Remark [1.2,](#page-1-1) we have that $i\partial\overline{\partial}\varphi(z)$ is a closed positive current of bidegree (1,1) and by assumption *i∂∂ϕ* is equivalent to *i∂∂*|*z*| 2 . Whence, by applying Lemma [2.1](#page-3-0) there is a function *ϕ*¹ on \mathbb{C}^n satisfying both $i\partial\overline{\partial}\varphi_1(z) = i\partial\overline{\partial}\varphi(z)$ and the extra size assumption inequality [\(2.2\)](#page-3-1). Therefore, the function $u = \varphi - \varphi_1$ is pluriharmonic and it is the real part of a holomorphic function H, i.e., $\varphi - \Re H = \varphi_1$. Let us choose the holomorphic function $2G_k(z)$:= $\mathcal{H}(z) - \mathcal{H}(a_k)$ and by using the fact that the function $(1+|z|^2)^2 \log(1+|z|)$ is a bounded continuous function for $z \in \mathbb{B}(a_k, \rho)$, we have the existence of a positive constant C_1 such that:

$$
|\varphi(z) - \varphi(a_k) - 2\Re G_k(z)| = |\varphi_1(z) - \varphi_1(a_k)| \le C_1.
$$

3. The proof of Theorem [1.4](#page-2-1)

Proof of Theorem [1.4.](#page-2-1) Our approach is based on the techniques used for proving [\[1,](#page-5-0) Theorem 1, part (b)]. Therefore, let us consider $g(z) = (\nu(z) - \nu(z) * \mathcal{X}_r(z)) * E(z)$ such that $E(z) \approx |z|^{2-2n}$ is the fundamental solution of the Laplacian operator on \mathbb{C}^n for $n \geq 2$, thus we have

$$
\Delta \mathfrak{g}(z) = \nu(z) - \nu(z) * \mathfrak{X}_r(z). \tag{3.1}
$$

Let us consider $\psi(z) = g(z) + \varphi(z)$, then by employing the fundamental solution of the Laplacian operator in \mathbb{C}^n , the expression of \mathfrak{g} , and the fact that A is relatively separated, there is a positive constant C_{ε} relying on ε such that

$$
|\psi(z) - \varepsilon^{2-2n} - \varphi(z)| \le C_{\varepsilon}, \text{ for } z \in \mathbb{B}(a_j, \varepsilon) \text{ and } a_j \in \mathcal{A}.
$$
 (3.2)

Let $h \in F^2_\varphi(\mathbb{C}^n)$, and $U(z) = |h(z)|^2 \exp(-\psi(z))$, since that $\log(|h(z)|^2)$ is subharmonic, i.e., its Laplacian is positive, then in one side we have

$$
\Delta \log(U(z)) = \Delta (\log(|h(z)|^2)) - \Delta \psi(z) \geq -\Delta \psi(z).
$$

Then, by using a direct calculus, we have

$$
-\Delta\psi(z) \leq \Delta \log(U(z)) = \frac{\Delta U(z)}{U(z)} - \frac{1}{U^2(z)} \left| \frac{\partial U(z)}{\partial z} \right|^2
$$

$$
\leq \frac{\Delta U(z)}{U(z)}.
$$

Whence $\Delta U(z) \geq -U(z)\Delta \psi(z)$, thus

$$
\int_{\mathbb{C}^n} U(z) \Delta \psi(z) dm(z) \ge - \int_{\mathbb{C}^n} \Delta U(z) dm(z).
$$
\n(3.3)

Form the expression of U, we have that U is integrable on \mathbb{C}^n , thus by employing a smooth function with compact support in \mathbb{C}^n and the dominated convergence theorem, the right-hand side of [\(3.3\)](#page-4-0) is positive, thus we have $\int_{\mathbb{C}^n} U(z) \Delta \psi(z) dm(z) \geq 0$. Now, by employing [\(3.1\)](#page-3-2) the fact that $\psi(z) = \mathfrak{g}(z) + \varphi(z)$, and inequality [\(1.3\)](#page-2-0), we have $\Delta \psi(z) \leq \nu(z) - \eta$.

Whence, from [\(3.3\)](#page-4-0), we have

$$
0 \leq \int_{\mathbb{C}^n} U(z) \Delta \psi(z) dm(z) \leq \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z)) (\nu(z) - \eta) dm(z). \tag{3.4}
$$

Or

$$
\eta \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z)) dm(z) \le \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z)) \nu(z) dm(z). \tag{3.5}
$$

Then, by using the fact that $\nu(z) = \sum$ *aj*∈A 1 $\frac{1}{\exp(\varepsilon^{2n-2})}$ $\mathfrak{X}_{\mathbb{B}(0,\varepsilon)}(z-a_j)$ and [\(3.2\)](#page-3-3), inequality [\(3.5\)](#page-4-1) becomes

$$
\eta \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\psi(z)) dm(z) \lesssim \sum_{a_j \in \mathcal{A}} \int_{|z-a_j| < \varepsilon} |h(z)|^2 \exp(-\varphi(z)) dm(z). \tag{3.6}
$$

Whence, by using inequality [\(2.3\)](#page-3-4) of Lemma [2.2,](#page-3-5) we have

$$
\int_{|z-a_j|<\varepsilon} |h(z)|^2 \exp(-\varphi(z))dm(z)
$$
\n
$$
= \int_{|z-a_j|<\varepsilon} |h(z) \exp(-G_j(z))|^2 \exp(-\varphi(z) + 2\Re G_j(z))dm(z)
$$
\n
$$
\lesssim \int_{|z-a_j|<\varepsilon} |g_j(z)|^2 \exp(-\varphi(a_j))dm(z), \tag{3.7}
$$

where $g_j(z) = h(z) \exp(-G_j(z))$ is a holomorphic function, then it is complex differentiable. Consequently, we have

$$
\int_{|z-a_j|<\varepsilon} |g_j(z)|^2 \exp(-\varphi(a_j))dm(z) \leq 2\varepsilon^2 |h(a_j)|^2 \exp(-\varphi(a_j)) + 2\varepsilon^4 \exp(-\varphi(a_j) \sup_{|z-a_j|<\varepsilon} |Dg_j(z)|^2, (3.8)
$$

such that $Dg_j(z) = \frac{\partial g_j(z)}{\partial z_1^{\alpha_1} \partial z_2^{\alpha_2} \dots \partial z_n^{\alpha_n}}$ where $\sum_{n=1}^n$ *l*=1 $\alpha_l = 1$ and $(\alpha_l)_{1 \leq l \leq n} \in \mathbb{N}^n$.

Below, we apply Cauchy integral formula, e.g., [\[3,](#page-5-4) Chapter I, 4.1 Theorem], for showing that $\exp(-\varphi(a_j))$ sup |*z*−*a^j* |*<ε* $|Dg_j(z)|^2$ is less, up to a multiplicative constant, to

Z $\int_{|z-a_j|<\varepsilon} |g_j(\tau)|^2 \exp(-\varphi(a_j)) d\tau$. Thus, let $\mathbb{P}(a_j, \varepsilon)$ be the polydisc of polyradius $\varepsilon =$ *n*−*times*

($({\epsilon}, \ldots, {\epsilon}) \in (0, \infty)^n$ and of center $a_j = (a_j^{(1)})$ $a_j^{(1)}, a_j^{(2)}$ $a_j^{(2)}, \ldots, a_j^{(n)}$ $\binom{n}{j} \in \mathbb{C}^n$. Precisely, $\mathbb{P}(a_j, \varepsilon) =$ ${z = (z_k)_{1 \leq k \leq n} \in \mathbb{C}^n : |z_k - a_j^{(k)}|}$ $|f_j^{(k)}| < \varepsilon$ *such that* $\overline{\mathbb{P}}(a_j, \varepsilon)$ and $T_{a_j, \varepsilon}$ are the closure and the boundary of $\overline{\mathbb{P}}(a_i, \varepsilon)$, respectively.

The fact that g_j is a holomorphic function then there is $\xi \in \overline{\mathbb{P}}(a_j, \varepsilon)$ such that $|\text{D}g_j(z)|^2 = |\text{D}g_j(\xi)|^2$, and we have $z \in \overline{\mathbb{P}}(a_i, \varepsilon)$

$$
\exp(-\varphi(a_j)) \sup_{|z-a_j|<\varepsilon} |Dg_j(z)|^2 \leq \exp(-\varphi(a_j)) |Dg_j(\xi)|^2
$$

$$
\leq \frac{1}{(2\pi)^n} \int_{T_{a_j,\varepsilon}} |g_j(\tau)|^2 \exp(-\varphi(a_j)) d\tau
$$

$$
\leq \int_{|z-a_j|<\varepsilon} |g_j(\tau)|^2 \exp(-\varphi(a_j)) d\tau. \tag{3.9}
$$

Now, by utilizing [\(3.7\)](#page-4-2)-[\(3.9\)](#page-5-5) and summing up over all pair disjoint balls $(\mathbb{B}(a_i, \varepsilon))_{i \geq 1}$, inequality [\(3.6\)](#page-4-3) becomes

$$
\eta \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z) \lesssim \exp(\varepsilon^2) \sum_{a_j \in \mathcal{A}} |h(a_j)|^2 \exp(-\varphi(a_j)) + \exp(\varepsilon^4) \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z).
$$
\n(3.10)

Whence by taking close to zero and $\eta > 2$, we have

$$
\int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z) \leq \sum_{a_j \in \mathcal{A}} |h(a_j)|^2 \exp(-\varphi(a_j)) = ||h(a)||_{l^2_{\varphi, \mathcal{A}}}^2. (3.11)
$$

Now, by employing the assumption that $i\partial\bar{\partial}\varphi(z) \approx i\partial\bar{\partial}(|z|^2)$, we apply [\[11,](#page-6-3) Lemma 7] (with $p = 2$) that for each a_j , we have

$$
|h(a_j)|^2 \exp(-\varphi(a_j)) \lesssim \int_{\mathbb{B}(a_j,1)} |h(z)|^2 \exp(-\varphi(z)) dm(z). \tag{3.12}
$$

Then, the fact that A is relatively separated, and thanks to (3.12) , we have

$$
||h(a)||_{l^2_{\varphi,A}}^2 \le rel(A) \int_{A+\mathbb{B}(0,1)} |h(z)|^2 \exp(-\varphi(z)) dm(z)
$$

$$
\lesssim \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z).
$$
 (3.13)

Whence, by combining Inequalities (3.11) and (3.13) , we have

$$
\int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z) \lesssim ||h(a)||_{l^2_{\varphi,A}}^2 \lesssim \int_{\mathbb{C}^n} |h(z)|^2 \exp(-\varphi(z)) dm(z).
$$

The proof of Theorem [1.4](#page-2-1) is complete.

References

- [1] B. Berndtsson and J. Ortega-Cerdà, *On interpolating and sampling in Hilbert spaces of analytic functions,* J. reine angew Math. **464**, 109-128, 1995.
- [2] B. Berndtsson and M. Andersson, *Henkin-Ramirez formulas with weight factors,* Ann. Inst. Fourier. **32** (3), 91-110, 1982.
- [3] K. Fritzsche and H. Grauert, *From Holomorphic Functions to Complex Manifolds,* Springer New York, NY, 2002.
- [4] H. Führ, K. Gröchenig, A. Haimi, A. Klotz and J.L. Romero, *Density of sampling and interpolation in reproducing kernel Hilbert spaces,* J. Lond. Math. Soc. **96** (3), 663-686, 2017.
- [5] J. Garnett,*Bounded analytic functions,* Springer-Verlag New York, 2007.
- [6] K. Gröchenig, A. Haimi, J. Ortega-Cerdà and J.L. Romero, *Strict density inequalities for sampling and interpolation in weighted spaces of holomorphic functions,* J. Funct. Anal. **277** (12), 34 pp, 2019.
- [7] W. K. Hayman, P. B. Kennedy, *Subharmonic Functions,* Academic Press, London 1976.
- [8] L.L. Helms, *Potential Theory*, Springer Dordrecht Heidelberg London New York, 2009.
- [9] C.O. Kiselman, *Plurisubharmonic functions and potential theory in several complex variables,* Development of mathematics 1950-2000, 655-714, Birkhäuser, Basel, 2000.
- [10] M. Klimek, *Pluripotential theory,* London Mathematical Society Monographs, Clarendon Press, 266 p, 1991.
- [11] N. Lindholm, *Sampling in weighted* L^p *spaces of entire functions in* \mathbb{C}^n *and estimates of the Bergman kernel,* J. Funct. Anal. **182** (2), 390-426, 2001.
- [12] Yu. Lyubarskii and K. Seip, *Sampling and interpolation of entire functions and exponential systems in convex domains*, Ark. Mat. **32** (1), 157-193, 1994.
- [13] J. Ortega-Cerdà and K. Seip, *Beurling-type density theorems for weighted L^p spaces of entire functions,* J. Anal. Math. **75** (1), 247-266, 1998.
- [14] K. Seip, *Interpolation and sampling in spaces of analytic functions,* **33**, University Lecture Series. American Mathematical Society, Providence, RI, 2004.
- [15] K. Seip. *Density theorem for sampling and interpolating in the Bargmann-Fock spaces III,* Math. Scand. **73**, 112-126, 1993.
- [16] K. Seip and R. Wallstén, *Density theorems for sampling and interpolation in the Bargmann-Fock space II,* J. reine angew. Math. **429**, 107-113, 1992.
- [17] K. Seip, *Density theorem for sampling and interpolating in the Bargmann-Fock spaces I,* J. reine angrew Math. **429**, 91-106, 1992.
- [18] K. Seip, *Reproducing formulas and double orthogonality in Bargmann and Bergman spaces,* SIAM J. Math. Anal. **22** (3), 856-876, 1991.