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Abstract
3-dimensional analytical space which is covered by a metric is called a Minkowski geometry. In the Minkowski
geometries, the unit balls are symmetric, convex closed sets. So there are Minkowski geometries which unit
spheres are rhombic triacontahedron, icosidodecahedron and disdyakis triacontahedron. One of the fundamental
problems in geometry for a space with a metric is to determine the group of isometries. In this article we show
that the group of isometries of the 3−dimensional space covered by RT −metric, ID−metric and DT −metric
are the semi-direct product of Ih and T (3), where Icosahedral group Ih is the (Euclidean) symmetry group of the
icosahedron and T (3) is the group of all translations of the 3− dimensional space.
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1. Introduction
The history of man’s interest in symmetry goes back many centuries. Symmetry is the primary matter of aesthetic thus it has
been worked on, in various fields, for example in physics, chemistry, biology, art, architecture and of course in mathematics.
Polyhedra have attracted the attention because of their symmetries. Consequently, polyhedra take place in many studies with
respect to different fields [1, 2]. For each polyhedron, the faces of the polyhedron are the polygons that bound it; the edges are
the line segments where the faces meet; the vertices are the points where edges meet. Just as regular polygons were the most
”uniform” polygons possible, man wanted to find polyhedra that are as ”uniform” as possible.

The idea of convexity is completely the same for polyhedra as for polygons. A polyhedron is convex if any two points in
the polyhedron are joined by a line segment contained entirely in the polyhedron.

If a polygon has edges that have same lengths and all the angles are equal then it is said that it is regular. Similarly a
convex polyhedron is a regular polyhedron if each face is regular polygon, all faces are identical and all vertices are identical,
which means that all vertices are contained in the same number of faces. It is easy to see that in a regular polyhedron all edges
must have the same length. Regular polyhedra are only five and they are called Platonic Solids, in the honor of ancient Greek
philosopher Plato. If for a convex polyhedron each face is a regular polygon and all vertices are identical then it is called
semi-regular polyhedron. Actually, it is obvious that not all faces need to be the same type of polygon. These polyhedra are
called Archimedean Solids and they are thirteen.

Given a convex polyhedra, a new polyhedra can be formed, called its dual polyhedron as follows. First, for each face of the
original polyhedron, a point in its interior is chosen (for example, the center of gravity of the face can be chosen). These chosen
points are the vertices of the dual polyhedron, called dual vertices. Next, an edge in the original polyhedron is considered. This
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edge is contained in precisely two faces of the original polyhedron. Then an edge is put in the dual polyhedron joining two dual
vertices that are contained in these two faces of the original polyhedron. Thus the edges of the dual polyhedron are obtained.
Finally, a vertex in the original polyhedron is considered. This vertex is contained in some faces of the original polyhedron.
Then a face is put in the dual polyhedron that has its vertices the dual vertices that are contained in these faces of the original
polyhedron. Thus the faces of the dual polyhedron are obtained ( [3]). The dual solids of Archimedean solids are called Catalan
solids and they are thirteen just as Archimedean solids.

Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and
hyperbolic geometry. In Minkowski geometry the linear structure is the same as the Euclidean one but distance is not uniform
in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a certain symmetric closed convex set ( [4]).
Each of the geometries induced by maximum, taxicab, Chinese Checkers, αi and λ−distances is one of geometry of this
type ( [5–8]). Also there are Minkowski geometries which unit spheres are rhombic triacontahedron, icosidodecahedron and
disdyakis triacontahedron [9, 10].

Transformations are detailed in Martin’s book ( [11]). A set of transformations is said to form a group if it contains the
inverse of each and the product of any two (including the product of one with itself or with its inverse). The number of distinct
transformations is called the order of the group (This may be either finite or infinite). Clearly the symmetry operations of any
figure form a group. This is called the symmetry group of the figure. If the figure is completely irregular its symmetry group is
of order one, consisting of identity alone ( [12]).

Three essential methods geometric investigations; synthetic, metric and group approach. The group approach takes isometry
groups of a geometry and convex sets plays an substantial role in indication of the group of isometries of geometries. Those
properties are invariant under the group of motions and geometry studies those properties. There are a lot of studies about
group of isometries of a plane or a space (See [13–24]). This problem enforce us to find group of isometries of spaces which
unit spheres are rhombic triacontahedron, icosidodecahedron and disdyakis triacontahedron. Thus we show that the group of
isometries of the 3−dimensional space covered by RT −metric, ID−metric and DT −metric are the semi-direct product of
Ih and T (3), where Icosahedral group Ih is the (Euclidean) symmetry group of the icosahedron and T (3) is the group of all
translations of the 3− dimensional space.

2. Preliminaries
Rhombic triacontahedron is a polyhedron which faces are rhombus shaped and the ratio of the long diagonal to the short

diagonal of the each rhombus is exactly equal to the golden ratio ϕ . It has 30 faces, 60 edges and 32 vertices. Also rhombic
triacontahedron is dual polyhedron of icosidodecahedron so the symmetry groups of them are the same. Icosidodecahedron is
an Archimedean solid which has 32 faces, 30 vertices and 60 edges. Disdyakis triacontahedron is the solid which is a kleetope
of rhombic triacontahedron and it has 120 faces each one is a scalene triangle. Thus, the symmetry groups of them are the same
(see [25, 26]).

RT , ID and DT−metrics for 3−dimensional analytical space were introduced by authors in [9] and [10]. Now, the RT , ID
and DT−metrics and some properties of them are given briefly by [9, 10]. Let R3

RT , R3
ID and R3

DT which are called rhombic
triacontahedron, icosidodecahedron and disdyakis triacontahedron space denote 3-dimensional analytical space furnishing
rhombic triacontahedron metric, icosidodecahedron metric and disdyakis triacontahedron metric, respectively. The rhombic
triacontahedron 3-dimensional space R3

RT , the icosidodecahedron 3-dimensional space R3
ID and the disdyakis triacontahedron

3-dimensional space R3
DT are almost the same the Euclidean 3-dimensional space R3. The points, lines and planes are the same

but the distance function is different. Each of them is a Minkowski geometry (for detailed information see [4]).
The taxicab (Manhattan) and the maximum (Chebyshev) norms are defined as ∥X∥1 = |x| + |y| + |z| and

∥X∥
∞
= max{|x| , |y| , |z|}, respectively and they are special cases of lp-norm; ∥X∥p = (|x|p + |y|p + |z|p)1/p, where

X = (x,y,z) ∈ R3. Among lp-metrics only crystalline metrics, i.e., metrics having polygonal unit balls are l1− and l∞−
metrics [27]. First, we give some notions that will be used in the descriptions of distance functions we define. For P1 =(x1,y1,z1),
P2 = (x2,y2,z2)∈R3, M denotes ∥P1 −P2∥∞

and S denotes ∥P1 −P2∥1. Moreover X −Y −Z−X and Z−Y −X −Z orientations
are called positive (+) direction and negative (-) direction, respectively. M+ and M− express the next term in the respective
direction according to M. For example, if M = |x1 − x2|, then M+ = |y1 − y2| and M− = |z1 − z2|. The metrics for which the
unit spheres are the rhombic triacontahedron, the icosidodecahedron and the disdyakis triacontahedron are defined as follows:

dRT (P1,P2) = max
{

M ,
ϕ

2
M+

ϕ −1
2

M++
1
2

M−
}
,

dID(P1,P2) = max
{

M+(ϕ −1)M+ , M+(ϕ −1)2 M− , (ϕ −1)S
}
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and

dDT (P1,P2) = max


M+ 4ϕ−5

11 (M++M−) , 5ϕ+2
11 M+ 8ϕ−10

11 M++ 3ϕ−1
11 M−

ϕ+7
11 M+ 7ϕ−6

11 M++ 4−ϕ

11 M− , 6ϕ−2
11 M+ 3ϕ−1

11 M++ 12−3ϕ

11 M−
10ϕ−7

11 M+ 4ϕ−5
11 M++ 2ϕ+3

11 M−

 ,

where ϕ= 1+
√

5
2 is golden ratio.

Readers who are wondering how metrics are found can refer to references [9] and [10]. Here, the metrics are adapted only to
M, M+ and M− notations, and they are as seem to different from according to references [9] and [10], indeed they are the same.

According to definition of dRT−distance, there are two possible ways for the shortest paths between the points P1 and P2 as
shown in Figure 1. Paths are determined according to which of the quantitatives in the relevant metric will be maximum. So,
according to dRT−distance, there are two possible paths. These paths are;

i. A line segment which is parallel to one of the coordinate axes,

ii. Union of three line segments which one is parallel to one of the coordinate axes and the two others making arctan(1/2)
and arctan(

√
5/2) radians angle with one of the other coordinate axes.

Thus, the shortest dRT−distance between P1 and P2 is either the Euclidean length of such a line segment or sum of the
Euclidean length of such three line segments. Figure 1 shows the rhombic triacontahedron way from P1 to P2.

Fig. 1. The shortest paths between the points P1 and P2 according to dRT−distance

By a similar discussion icosidodecahedron and disdyakis triacontahedron ways from P1 to P2 are would easily be considered.
To the definition of dID−distance there are three possible ways for the shortest paths between the points P1 and P2 as shown in
Figure 2.

i. Union of two line segments which one is parallel to one of the coordinate axis and the other making arctan(
√

5/2)
radians angle with one of the coordinate axis.

ii. Union of two line segments which one is parallel to one of the coordinate axis and the other making arctan(1/2) radians
angle with one of the coordinate axis.

iii. Union of three line segments which each one is parallel to a coordinate axis.

Thus, the shortest dID−distance between P1 and P2 is for parts i and ii sum of the Euclidean lengths of two line segments,
for part iii

√
5−1
2 times of sum of the Euclidean lengths of mentioned three line segments.

To the definition of dDT−distance there are five possible ways for the shortest paths between the points P1 and P2 as shown
in Figure 3.

i. Union of three line segments which one is parallel to one of the coordinate axis and the other two are making
arctan

(
10

√
5+18

11

)
radians angle with one of the coordinate axis.

ii. Union of three line segments which one is parallel to one of the coordinate axis and the two others making arctan
(√

5
2

)
and arctan

(
3
√

5
2

)
radians angle with one of the other coordinate axis.
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Fig. 2. The shortest paths between the points P1 and P2 according to dID−distance

iii. Union of three line segments which one is parallel to one of the coordinate axis and the two others making arctan
( 1

2

)
and arctan

(
5+9

√
5

40

)
radians angle with one of the other coordinate axis.

iv. Union of three line segments which one is parallel to one of the coordinate axis and the two others making arctan
( 3

4

)
and arctan

(
13−5

√
5

24

)
radians angle with one of the other coordinate axis.

v. Union of three line segments which one is parallel to one of the coordinate axis and the two others making arctan
(

10
√

5−18
11

)
and arctan

(
10+3

√
5

11

)
radians angle with one of the other coordinate axis.

Thus, the shortest dDT−distance between P1 and P2 is for part i sum of the Euclidean lengths of three line segments, for
part ii 9+5

√
5

22 times of sum of the Euclidean lengths of mentioned three line segments, for part iii 15+
√

5
22 times of sum of the

Euclidean lengths of the three line segments, for part iv 1+3
√

5
11 times of sum of the Euclidean lengths of the three line segments

and for part v 5
√

5−2
11 times of sum of the Euclidean lengths of the three line segments. Readers can also refer to reference [29]

for metrics, paths, and more detailed information.

Fig. 3. The shortest paths between the points P1 and P2 according to dDT−distance

Let M0 = ∥X −X0∥∞
for X = (x,y,z) and X0 = (x0,y0,z0). A rhombic triacontahedron sphere with center (x0,y0,z0) and

radius r in R3
RT is the set of points (x,y,z) in the 3−dimensional space satisfying the equation

max
{

M0 ,
ϕ

2
M0 +

ϕ −1
2

M+
0 +

1
2

M−
0

}
= r,
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(a) (b) (c)
Fig. 4. a) The sphere with center O and radius r in R3

RT , b) The sphere with center O and radius r in R3
ID, c) The sphere with center O and

radius r in R3
DT

which is a polyhedron with 30 faces and 32 vertices. Coordinates of the vertices are translations to (x0,y0,z0) all possible
+/− signals of components of the points ((ϕ −1)r,0,r), (r,(ϕ −1)r,0), (0,r,(ϕ −1)r), (0,(2−ϕ)r,r), (r,0,(2−ϕ)r),
((ϕ −1)r,(ϕ −1)r,(ϕ −1)r), ((2−ϕ)r,r,0). Figure 4 (a) shows the RT−sphere centered at O = (0,0,0).

Similarly, coordinates of the vertices of an icosidodecahedron sphere with radius r and center (x0,y0,z0) in R3
ID are

translations to (x0,y0,z0) all possible +/− signals of components of the points, so its vertices are (0,0,r), (r,0,0), (0,r,0),(
ϕ−1

2 r, 1
2 r, ϕ

2 r
)

,
(

ϕ

2 r, ϕ−1
2 r, 1

2 r
)

,
(

1
2 r, ϕ

2 r, ϕ−1
2 r

)
, and coordinates of the vertices of a disdyakis triacontahedron sphere with

radius r and center (x0,y0,z0) in R3
DT are translations to (x0,y0,z0) all possible +/− signals of components of the points, so its

vertices are (0,0,r), (r,0,0), (0,r,0),
(

0, 5ϕ−7
3 r, 3ϕ−2

3 r
)

,
(

3ϕ−2
3 r,0, 5ϕ−7

3 r
)

,
(

5ϕ−7
3 r, 3ϕ−2

3 r,0
)

,
(

3ϕ−2
5 r,0, ϕ+3

5 r
)

,(
ϕ+3

5 r, 3ϕ−2
5 r,0

)
,
(

0, ϕ+3
5 r, 3ϕ−2

5 r
)

,
(

ϕ−1
2 r, r

2 ,
ϕ

2 r
)

,
(

ϕ

2 r, ϕ−1
2 r, r

2

)
,
(

r
2 ,

ϕ

2 r, ϕ−1
2 r

)
,
(

2ϕ−5
3 r, 2ϕ−5

3 r, 2ϕ−5
3 r

)
. Figure 4 (b)-(c)

shows the ID− sphere and DT−sphere centered at O = (0,0,0), respectively.
The following lemma gives relations between dRT ,dID or dDT and dE . These relations are used by finding isometries of

related spaces. For the proofs of the following lemma and its corollaries, one can see to [9, 10, 29].

Lemma 1. Let Md = ∥P∥
∞

and Sd = ∥P∥1 for P = (p,q,r) . Let l be the line through the points P1=(x1,y1,z1), P2=(x2,y2,z2)
in R3 and dE is Euclidean metric. If l has direction vector (p,q,r) thendRT (P1,P2) = µRT (P1P2)dE (P1,P2) ,

dID (P1,P2) = µID (P1P2)dE (P1,P2) ,
dDT (P1,P2) = µDT (P1P2)dE (P1,P2) ,

where

µRT (P1P2) =
max

{
Md , ϕ

2 Md +
ϕ−1

2 M+
d + 1

2 M−
d

}
√

p2 +q2 + r2
,

µID (P1P2) =
max

{
Md +(ϕ −1)M+

d , Md +(ϕ −1)2 M−
d , (ϕ −1)Sd

}
√

p2 +q2 + r2

and

µDT (P1P2) =

max


Md +

4ϕ−5
11

(
M+

d +M−
d

)
, 5ϕ+2

11 Md +
8ϕ−10

11 M+
d + 3ϕ−1

11 M−
d

ϕ+7
11 Md +

7ϕ−6
11 M+

d + 4−ϕ

11 M−
d , 6ϕ−2

11 Md +
3ϕ−1

11 M+
d + 12−3ϕ

11 M−
d

10ϕ−7
11 Md +

4ϕ−5
11 M+

d + 2ϕ+3
11 M−

d

√
p2 +q2 + r2

.

The above lemma states that dRT , dID and dDT−distances along any line are some positive constant multiple of Euclidean
distance along the same line. Consequently one can reach the following corollaries:
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Corollary 2. If P1, P2 and X are any three collinear points in R3, then

dE(P1,X) = dE(P2,X) ⇐⇒ dRT (P1,X) = dRT (P2,X),

dE(P1,X) = dE(P2,X) ⇐⇒ dID(P1,X) = dID(P2,X)

and

dE(P1,X) = dE(P2,X) ⇐⇒ dDT (P1,X) = dDT (P2,X).

Corollary 3. If P1, P2 and X are any three distinct collinear points in R3, then

dE(X ,P1)

dE(X ,P2)
=

dRT (X ,P1)

dRT (X ,P2)
=

dID(X ,P1)

dID(X ,P2)
=

dDT (X ,P1)

dDT (X ,P2)
.

Corollary 3 means that the ratios of Euclidean and dRT , dID, dDT−distances along a line are the same.
In the following part of this work, we will study the isometries of R3

RT , R3
ID and R3

DT and determine their groups of
isometries.

3. Isometries of spaces R3
RT , R3

ID and R3
DT

One of the fundamental question in geometry for S, which is a space with d metric, is to define the G group of isometries
If S is Euclidean 3-dimensional space with usual metric then it is obviously known that G consists of translations, rotations,
reflections, glide reflections and screw of the 3- dimensional space.

We need following definitions which are quoted from Martin ( [11]):

i. A transformation is one to one equivalence from the set of points in space onto itself. If d(X ,Y ) = d(α(X),α(Y )) for
every point X and Y , then α transformation is named an isometry.

ii. For all points X , if ι(X) = X , then ι is called identity.

iii. If an isometry α fixes some set of points then α is called a symmetry for that set of points.

iv. For ∆ plane, If σ∆(X) = X for point X on ∆ and if σ∆(X) = Y for point X off ∆ and ∆ is perpendicular bisector of XY
line segment, then σ∆, which is mapping on the points in RT H , is called reflection.

v. σ∆σΓ is defined a rotation about axis l, if Γ and ∆ are two intersecting planes at line l.

vi. σΠσ∆σΓ is defined a rotary reflection about the common point to Γ,∆ and Π if Γ,∆ ,which each one perpendicular to Π,
are intersecting planes.

vii. If σN(X) = Y for every X points and N is midpoint of X and Y , then σN inversion about N is called a transformation.
At the same time, σN is defined a point reflection.

Three essential methods geometric investigations; synthetic, metric and group approach. The group approach takes isometry
groups of a geometry and convex sets plays an substantial role in indication of the group of isometries of geometries. Those
properties are invariant under the group of motions and geometry studies those properties. There are a lot of studies about
group of isometries of a space (see [13–24]).

It is mentioned in introduction section that in Minkowski geometry the linear structure is the same as the Euclidean one but
distance is not uniform in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a certain symmetric
closed convex set. In [28], the author gives the following theorem:

Theorem 4. If the unit ball C of (V,∥∥) does not intersect a two-plane in an ellipse, then the group I (3) of isometries of
(V,∥∥) is isomorphic to the semi-direct product of the translation group T (3) of R3 with a finite subgroup of the group of linear
transformations with determinant ±1.

After this theorem remains a single question. This question is that what is the relevant subgroup?
Now we will show that all isometries of the R3

RT , R3
ID and R3

DT are in T (3).G(RT ), T (3).G(ID) and T (3).G(DT )
respectively. Here, G(RT ), G(ID) and G(DT ) denote the symmetry groups of rhombic triacontahedron, icosidodecahedron and
disdyakis triacontahedron, respectively. In the rest of article, we take △= RT,△= ID or △= DT. That is, △∈ {RT, ID,DT}.
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(a) (b) (c)
Fig. 5. a) The minimum distance set of R3

RT , b) The minimum distance set of R3
ID, c) The minimum distance set of R3

DT

Definition 5. Let P, Q be two points in R3
△. The minimum distance set of P,Q is defined by{

X | d△(P,X)+d△(Q,X) = d△(P,Q)
}

and denoted by [PQ] .

The minimum distance set, which has a very simple definition as the set of points whose sum of distances to P and Q
points is equal to the distance between P and Q, can be easily found with the help of various computer programs, although it
seems a bit difficult to determine this set when complex metrics are used in 3-dimensional space. In general, [PQ] stands for an
octahedron which is not necessary uniform in R3

RT as shown in Figure 5 (a). [PQ] stands for a parallelepiped in R3
ID and R3

DT
with diagonal PQ as shown in Figure 5 (b), (c), respectively.

Proposition 6. Let φ : R3
△ →R3

△ be an isometry and let [PQ] be the minimum distance set of P, Q. Then φ([PQ]) = [φ(P)φ(Q)].

Proof. Let Y ∈ φ([PQ]). Then,

Y ∈ φ([PQ]) ⇔ ∃X ∈ [PQ] ∋ Y = φ(X)
⇔ d△(P,X)+d△(Q,X) = d△(P,Q)
⇔ d△(φ(P),φ(X))+d△(φ(Q),φ(X)) = d△(φ(P),φ(Q))
⇔ Y = φ(X) ∈ [φ(P)φ(Q)] .

■

Corollary 7. Let φ : R3
△ → R3

△ be an isometry and [PQ] be the minimum distance set. Then φ maps vertices to vertices and
preserves the lengths of the edges of [PQ].

Proposition 8. Let φ : R3
△ → R3

△ be an isometry such that φ(O) = O. Then φ ∈ G(△).

Proof. Since △∈ {RT, ID,DT}, there are three possibility for △. Let △= RT , and let V1 = (ϕ −1,0,1) , V9 = (0,1,ϕ −1) ,
V13 = (0,2−ϕ,1) , V25 = (ϕ −1,ϕ −1,ϕ −1) and R = (ϕ −1,1,ϕ +1) be five points in R3

RT . Consider [OR] which is an
octahedron in Figure 6 (a).

Also points V1, V9, V13,V25 lie on minimum distance set [OR] and unit sphere with center at the origin. Moreover these
four points are the corner points of a rhombic triacontahedron’s face which is a rhombus. φ maps points V1,V9,V13,V25 to the
vertices of a rhombic triacontahedron by Corollary 7. Since φ preserve the lengths of the edges, ViVl , VjVk and VjVl are four
edges of the rhombic triacontahedron and f (V1) =Vi , f (V9) =Vj , f (V13) =Vk , f (V25) =Vl such that i, j ∈ {0,1, ...,12} and
k, l ∈ {13,14, ...,31}. Since rhombic triacontahedron has 30 rhombus faces, there are 30 possibilities to points which they can
map, and also there are four possibilities to points which they can map on the face of rhombic triacontahedron. Therefore total
number of possibilities are 120. Some of these cases can be seen as follows:

i. If φ(V1) = V1, φ(V9) = V3, φ(V13) = V13 and φ(V25) = V15, then φ = σ∆ is the reflection about the plane
∆ : −x−ϕy+(ϕ −1)z = 0.

ii. If φ(V1) = V1, φ(V9) = V3, φ(V13) = V15 and φ(V25) = V13, then φ = r 2π

5
is the rotation with rotation axis ∥(√

(ϕ +2)/5,
√
(3−ϕ)/5,0

)
.
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(a) (b) (c)
Fig. 6. a) The unit sphere with center O and [OR] in R3

RT , b) The unit sphere with center O and [OR] in R3
ID, c) The unit sphere with center O

and [OR] in R3
DT

iii. If φ(V1) =V1, φ(V9) =V9 , φ(V13) =V13 and φ(V25) =V25 then φ is the identity.

The remaining cases can be similarly given.
Let △=ID, and let V7=

(
ϕ−1

2 , 1
2 ,

ϕ

2

)
,V15=

(
ϕ

2 ,
ϕ−1

2 , 1
2

)
,V23=

(
1
2 ,

ϕ

2 ,
ϕ−1

2

)
and R=(ϕ,ϕ,ϕ) be four points in R3

ID. Consider
[OR] that is the parallelepiped with diagonal OR (Figure 6 (b)). Also points V7, V15, V23 lie on minimum distance set [OR] and
unit sphere with center at the origin. Moreover, these three points are the corner points of an icosidodecahedron’s face which is
a equilateral triangle. φ maps points V7,V15,V23 to the vertices of an icosidodecahedron by Corollary 7. Since φ preserve the
lengths of the edges, φ(V7) = Ai, φ(V15) = A j and φ(V23) = Ak such that i, j,k ∈ {1,2, ...,30}. Since icosidodecahedron have
20 equilateral triangle faces, there are 20 possibilities to points which they can map, and also there are six possibilities to points
which they can map on the face of icosidodecahedron. Therefore total number of possibilities are 120. Some of these cases can
be seen as follows:

i. If φ(V7) =V1, φ(V15) =V9 and φ(V23) =V13, then f = σ∆ is the reflection about ∆ : −x−ϕy+(ϕ −1)z = 0.

ii. If φ(V7) =V1, φ(V15) =V13 and φ(V23) =V9, then φ = r 4π
3

is the rotation with rotation axis ∥
(
0,(ϕ −1)/

√
3,ϕ/

√
3
)
.

iii. If φ(V7) = V1, φ(V15) = V11 and φ(V23) = V7 then φ = σOr 6π

5
is the rotary inversion with rotation axis ∥(√

(ϕ +2)/5,−
√
(3−ϕ)/5,0

)
The remaining cases can be similarly given.

Let △= DT , and let V31 =
(

ϕ−1
2 , 1

2 ,
ϕ

2

)
,V55 =

(
5−2ϕ

3 , 5−2ϕ

3 , 5−2ϕ

3

)
,V27 =

(
0, ϕ+3

5 , 3ϕ−2
5

)
and R =

(
ϕ−1

2 , 2ϕ+11
10 , 11ϕ−4

10

)
be four points in R3

DT . Consider [OR] that is the parallelepiped with diagonal OR (Figure 6 (c)) Also points V31, V55, V27 lie
on minimum distance set [OR] and unit sphere with center at the origin. Moreover these three points are the corner points
of a disdyakis triacontahedron’s face which is a scalene triangle. φ maps points V31,V55,V27 to the vertices of an disdyakis
triacontahedron by Corollary 7. Since φ preserve the lengths of the edges, φ(V31) = Ai, φ(V55) = A j and φ(V27) = Ak such that
i ∈ {1,2, ...,6,31,32, ...,54} , j ∈ {7,8, ...,18,55,56, ...,62} , k ∈ {19,20, ...,30}. Since icosidodecahedron have 120 scalene
triangle faces, there are 120 possibilities to points which they can map, and also there are only one possibility to points which
they can map on the face of disdyakis dodecahedron. Therefore total number of possibilities are 120. Some of these cases can
be seen as follows:

i. If φ(V31) =V1, φ(V55) =V9 and φ(V27) =V21, then φ = σ∆ is the reflection about the plane ∆ : −x−ϕy+(ϕ −1)z = 0.

ii. If φ(V31) =V1, φ(V55) =V9 and φ(V27) =V19, then φ = r 4π
3

is the rotation with rotation axis ∥
(
0,(ϕ −1)/

√
3,ϕ/

√
3
)
.
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iii. If φ(V31) = V1, φ(V55) = V17 and φ(V27) = V19 then φ = σOr 6π

5
is the rotary inversion with rotation axis ∥(√

(ϕ +2)/5,−
√
(3−ϕ)/5,0

)
.

The remaining cases can be similarly given.
Only three possible examples are given here for each of the three cases. It is necessary to show each of the 120 possibilities

that are actually possible, one by one. But this is a rather tedious and very long list for a research article. Readers who want to
observe each of these situations can refer to [29] for a detailed review of all situations, one by one. ■

Theorem 9. Let φ : R3
△ → R3

△ be an isometry. Then there exists a unique TA ∈ T (3) and ψ ∈ G(△) where φ = TA ◦ψ .

Proof. Let φ(O) = A such that A = (a1,a2,a3). Define ψ = T−A ◦φ . We know that ψ(O) = O and ψ is an isometry. Thereby,
ψ ∈ G(△) and φ = TA ◦ψ by Proposition 8. The proof of uniqueness is trivial. ■

4. Conclusions
In this paper, the spaces of which their sphere are rhombic triacontahedron, icosidodecahedron and disdyakis triacontahedron
are introduced and some properties of metrics which are used setting up these spaces are given. Also, isometry groups of these
spaces are given. So each of the groups of isometries of the spaces covering with rhombic triacontahedron, icosidodecahedron
and disdyakis triacontahedron metrics is the semi-direct product of the icosahedral group Ih and T (3), where Ih is the (Euclidean)
symmetry group of the icosahedron and T (3) is the group of all translations of the 3-dimensional space. In the future works,
handled solids in this paper are Catalan and Archimedean solids, the new metric space by considering different solids from
these solids can be constructed and investigate their some properties which are related to metrics.
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[6] Gelisgen, Ö., & Kaya, R. (2015). The isometry group of Chinese Checker space. International Electronic Journal Geometry,

8(2), 82–96.
[7] Kaya, R., Gelisgen, O., Ekmekci, S., & Bayar, A. (2009). On the group of isometries of the plane with generalized absolute

value metric. Rocky Mountain Journal of Mathematics, 39(2), 591–603.
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