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Abstract

In this paper, we introduce hybrid numbers with Fibonacci and Lucas hybrid number
coefficients. We give the Binet formulas, generating functions, exponential generating
functions for these numbers. Then we define an associate matrix for these numbers. In
addition, using this matrix, we present two different versions of Cassini identity of these
numbers.

1. Introduction

Recently, in [1], Özdemir defined the set of hybrid numbers which contains complex, dual and hyperbolic numbers as

K=
{

a+bi+ cε +dh : a,b,c,d ∈ R, i2 =−1,ε2 = 0,h2 = 1, ih =−hi = ε + i
}
.

This number system is a generalization of complex
(
i2 =−1

)
, hyperbolic

(
h2 = 1

)
and dual number

(
ε2 = 0

)
systems. Here, i is complex

unit, ε is dual unit and h is hyperbolic unit. We call these units as hybrid units. In the last few years, researchers from many different fields
have taken this number system and used it in various fields of applied sciences. For some applications of hybrid numbers we refer the reader
to [2, 3]. There is no doubt that this number system will be studied by other applied science researchers in the near future.
The conjugate of a hybrid number K = a+bi+ cε +dh is defined by

K = a−bi− cε−dh.

From the definition of hybrid numbers, the multiplication table of the hybrid units is given by the following table:

• 1 i ε h
1 1 i ε h
i i −1 1−h ε + i
ε ε h+1 0 −ε

h h −ε− i ε 1

Table 1: The Multiplication Table for Hybrid Units

This table shows that the multiplication of hybrid numbers is not commutative. Using the above datas, Özdemir [1] investigated various
algebraic and geometric properties of hybrid numbers. For instance, he defined a ring isomorphism between the hybrid number ring K and
the ring of real 2×2 matrices M2×2. This map is ϕ : K→M2×2 where

ϕ (a+bi+ cε +dh) =
[

a+ c b− c+d
c−b+d a− c

]
. (1.1)
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We refer the reader to [1] for more details and properties about hybrid numbers.
The well-known Fibonacci and Lucas sequences are defined as (for n≥ 0)

Fn+2 = Fn+1 +Fn

and

Ln+2 = Ln+1 +Ln

where F0 = 0, F1 = 1, L0 = 2 and L1 = 1. Note that for n≥ 1, Fn−1Fn+1−F2
n = (−1)n and Ln−1Ln+1−L2

n = 5(−1)n+1.
In [4], the authors introduced the Fibonacci hybrid numbers and derived some combinatorial properties of these numbers. For n≥ 0, they
defined the nth Fibonacci hybrid and nth Lucas hybrid numbers as

FHn = Fn +Fn+1i+Fn+2ε +Fn+3h

and

LHn = Ln +Ln+1i+Ln+2ε +Ln+3h

where FH0 = i+ ε +2h, FH1 = 1+ i+2ε +3h, LH0 = 2+ i+3ε +4h and LH1 = 1+3i+4ε +7h. They also gave the Binet formulas of
these hybrid numbers as

FHn =
ααn−ββ n

α−β

and

LHn = αα
n +ββ

n,

respectively, where α = 1+αi+α2ε +α3h, β = 1+β i+β 2ε +β 3h, α =
(

1+
√

5
)
/2 and β =

(
1−
√

5
)
/2.

Hybrid number sequences have been studied by many researchers. For instance, in [5], Cerda-Morales studied generalized hybrid Fibonacci
numbers and their properties. In [6], using an associate matrix, Irmak gave various identities about Fibonacci and Lucas quaternions by
matrix methods. In [7], Kızılateş investigated the q-Fibonacci and the q-Lucas hybrid numbers and gave some algebraic properties of
these numbers. In [8], the same author introduced the Horadam hybrid polynomials called Horadam hybrinomials. Liana et al. studied
Pell hybrinomials in [9]. In [10–15], Liana and Wloch introduced several hybrid number sequences and polynomials and gave various
properties of them. In [16], Şentürk et al. studied Horadam hybrid numbers and obtained various properties. In [17], the author examined
the ratios of Fibonacci hybrid and Lucas hybrid numbers. Karaca and Yılmaz [18] gave some fundamental definitions and theorems about
harmonic complex numbers and harmonic hybrid Fibonacci numbers in detail. Moreover, they examined some algebraic properties such as
Binet-like-formula, partial sums related to these sequences.
In this paper, motivated by the above papers, we introduce hybrid numbers with Fibonacci and Lucas hybrid number coefficients. We give
the Binet formulas, generating functions, exponential generating functions for these numbers. Then we define an associate matrix for these
numbers. Finally, using this matrix, we present two different versions of Cassini identity of these numbers.

2. Main Results

In this section, we define hybrid numbers with Fibonacci and Lucas hybrid number coefficients. Then we give Binet formulas, generating
functions, exponential generating functions, and some summation formulas for these numbers.

Definition 2.1. For n≥ 0, the nth term of hybrid number with Fibonacci hybrid number coefficients is given by

Fn = FHn +FHn+1i+FHn+2ε +FHn+3h. (2.1)

Definition 2.2. For n≥ 0, the nth term of hybrid numbers with Lucas hybrid number coefficients is given by

Ln = LHn +LHn+1i+LHn+2ε +LHn+3h. (2.2)

Remark 2.3. If we expand the definitions of Fn and Ln, we get

Fn = Fn−Fn+2 +2Fn+3 +Fn+6 +2Fn+1i+2Fn+2ε +2Fn+3h

and

Ln = Ln−Ln+2 +2Ln+3 +Ln+6 +2Ln+1i+2Ln+2ε +2Ln+3h,

respectively.

For n≥ 0, it is clear that

Fn+2 = Fn+1 +Fn (2.3)

and

Ln+2 = Ln+1 +Ln. (2.4)
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Theorem 2.4. For n≥ 0, Binet formulas of hybrid numbers with Fibonacci and Lucas hybrid number coefficients are given by

Fn =
(α)2

αn−
(

β

)2
β n

α−β
(2.5)

and

Ln = (α)2
α

n +
(

β

)2
β

n, (2.6)

respectively, where α = 1+αi+α2ε +α3h, β = 1+β i+β 2ε +β 3h, α =
(

1+
√

5
)
/2 and β =

(
1−
√

5
)
/2 .

Proof. Using the Binet formula of hybrid Fibonacci numbers, we have

Fn =
ααn−ββ n

α−β
+

ααn+1−ββ n+1

α−β
i+

ααn+2−ββ n+2

α−β
ε +

ααn+3−ββ n+3

α−β
h

=
ααn (1+αi+α2ε +α3h

)
−ββ n (1+β i+β 2ε +β 3 h

)
α−β

=
(α)2

αn−
(

β

)2
β n

α−β
.

By a similar calculation, we obtain

Ln = (α)2
α

n +
(

β

)2
β

n

Theorem 2.5. The generating functions of hybrid numbers with Fibonacci and Lucas hybrid number coefficients are

F(x) = ∑
n≥0

Fnxn =
11+7x+2i+2(1+ x)ε +(4+2x)h

1− x− x2

and

L(x) = ∑
n≥0

Lnxn =
25+15x+2(1+2x) i+2(3+ x)ε +2(4+3x) h

1− x− x2 ,

recpectively.

Proof. By taking the generating function of both sides of equation (2.1), we directly have

∑
n≥0

Fnxn = ∑
n≥0

FHnxn +

(
∑
n≥0

FHn+1xn

)
i+

(
∑
n≥0

FHn+2xn

)
ε +

(
∑
n≥0

FHn+3xn

)
h

=
11+7x+2i+2(1+ x)ε +(4+2x)h

1− x− x2 .

Similarly, we obtain

∑
n≥0

Lnxn = ∑
n≥0

LHnxn +

(
∑
n≥0

LHn+1xn

)
i+

(
∑
n≥0

LHn+2xn

)
ε +

(
∑
n≥0

LHn+3xn

)
h

=
25+15x+2(1+2x) i+2(3+ x) ε +2(4+3x)h

1− x− x2 .

Theorem 2.6. For m,n ∈ Z, generating functions of Fn+m and Ln+m are

∑
n≥0

Fn+mxn =
FHm +FHm−1x

1− x− x2 +

(
FHm+1 +FHmx

1− x− x2

)
i+
(

FHm+2 +FHm+1x
1− x− x2

)
ε +

(
FHm+3 +FHm+2x

1− x− x2

)
h

and

∑
n≥0

Ln+mxn =
LHm +LHm−1x

1− x− x2 +

(
LHm+1 +LHmx

1− x− x2

)
i+
(

LHm+2 +LHm+1x
1− x− x2

)
ε +

(
LHm+3 +LHm+2x

1− x− x2

)
h,

respectively.
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Proof. By the virtue of generating function of Fibonacci hybrid sequence given in [4], we have

∑
n≥0

Fn+mxn = ∑
n≥0

FHn+mxn +

(
∑
n≥0

FHn+m+1xn

)
i+

(
∑
n≥0

FHn+m+2xn

)
ε +

(
∑
n≥0

FHn+m+3xn

)
h

=
FHm +FHm−1x

1− x− x2 +

(
FHm+1 +FHmx

1− x− x2

)
i+
(

FHm+2 +FHm+1x
1− x− x2

)
ε +

(
FHm+3 +FHm+2x

1− x− x2

)
h.

Theorem 2.7. Exponential generating functions of Fn and Ln are given by

∑
n≥0

Fn
xn

n!
=

(α)2 eαx−
(

β

)2
eβx

α−β

and

∑
n≥0

Ln
xn

n!
= (α)2 eαx +

(
β

)2
eβx,

respectively.

Proof. Using equation (2.5) and equation (2.6), we get

∑
n≥0

Fn
xn

n!
= ∑

n≥0

 (α)2
αn−

(
β

)2
β n

α−β

 xn

n!

=
(α)2

α−β
∑
n≥0

(αx)n

n!
−

(
β

)2

α−β
∑
n≥0

(βx)n

n!

=
(α)2

α−β
eαx−

(
β

)2

α−β
eβx

=
(α)2 eαx−

(
β

)2
eβx

α−β

and

∑
n≥0

Ln
xn

n!
= ∑

n≥0

(
(α)2

α
n +
(

β

)2
β

n
)

xn

n!

= (α)2
∑
n≥0

(αx)n

n!
+
(

β

)2
∑
n≥0

(βx)n

n!

= (α)2 eαx +
(

β

)2
eβx

as desired.

Now we give some summation formulas containing Fn and Ln.

Proposition 2.8. The following formulas containing Fn and Ln are hold:

(i) ∑
n
k=0Fk = Fn+2− (18+2i+4 ε +6h) ,

(ii) ∑
n
k=0Lk = Ln+2− (40+6i+8 ε +14h) ,

(iii) ∑
n
k=0

(
n
k

)
Fk = F2n,

(iv) ∑
n
k=0

(
n
k

)
Lk = L2n.

Proof. We give only the proofs of (i) and (iii). The others can be done in a similar way.

(i) From the equation (2.3), we can write the following equations:

F0 = F2−F1,

F1 = F3−F2,

F2 = F4−F3,

...

Fn−1 = Fn+1−Fn,

Fn = Fn+2−Fn+1.
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If we add the above equations side by side, then we obtain

n

∑
k=0

Fk = Fn+2−F1

= Fn+2− (18+2i+4 ε +6h) .

(iii) With the help of the equation (2.5) and binomial theorem, we have

n

∑
k=0

(
n
k

)
Fk =

n

∑
k=0

(
n
k

) (α)2
αk−

(
β

)2
β k

α−β


=

(α)2

α−β

n

∑
k=0

(
n
k

)
α

k−

(
β

)2

α−β

n

∑
k=0

(
n
k

)
β

k

=
(α)2

α−β
(1+α)n−

(
β

)2

α−β
(1+β )n

=
(α)2

α2n−
(

β

)2
β 2n

α−β
(since 1+α = α

2 and 1+β = β
2)

= F2n.

3. A Matrix Approach For Hybrid Numbers with Fibonacci and Lucas Hybrid Number Coeffi-
cients

Firstly, let us consider the following matrix:

Q =

(
1 1
1 0

)
.

This Q-matrix was studied by Charles H. King [19] in 1960 for his Master’s thesis. It is well-known that

Qn =

(
Fn+1 Fn
Fn Fn−1

)
.

In 1963, Hoggatt and Ruggles [20] introduced the following R-matrix:

R =

(
1 2
2 −1

)
.

It is easily seen that

RQn =

(
1 2
2 −1

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Ln+1 Ln
Ln Ln−1

)
.

Now, motivated by [6], we define an associate matrix as

A =

(
18+2i+4ε +6h 11+2i+2 ε +4h
11+2i+2ε +4h 7+2ε +2h

)
.

Then we can easily see that

QnA =

(
Fn+1 Fn
Fn Fn−1

)
(3.1)

and

RQnA =

(
Ln+1 Ln
Ln Ln−1

)
. (3.2)

Theorem 3.1 (First Type of Cassini Identity). For n≥ 1, we have

Fn−1Fn+1−F2
n = (−1)n (1−34i+12ε−6h)

and

Ln−1Ln+1−L2
n = 5(−1)n+1 (1−34i+12ε−6h) ,

respectively.
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Proof. By using matrices (3.1) and (3.2), we have

Fn−1Fn+1−F2
n =

∣∣∣∣Fn+1 Fn
Fn Fn−1

∣∣∣∣
= |QnA|

= (−1)n
[
(7+2ε +2h)(18+2i+4ε +6h)− (11+2i+2ε +4h)2

]
= (−1)n (1−34i+12ε−6h)

and

Ln−1Ln+1−L2
n =

∣∣∣∣Ln+1 Ln
Ln Ln−1

∣∣∣∣
= |RQnA|

= 5(−1)n+1
[
(7+2ε +2h)(18+2i+4ε +6h)− (11+2i+2ε +4h)2

]
= 5(−1)n+1 (1−34i+12ε−6h) .

Theorem 3.2 (Second Type of Cassini Identity). For n≥ 1, we have

Fn+1Fn−1−F2
n = (−1)n (1−26i+28ε−14h)

and

Ln+1Ln−1−L2
n = 5(−1)n+1 (1−26i+28ε−14h) .

Proof. Again, by using matrices (3.1) and (3.2), we obtain

Fn+1Fn−1−F2
n = (−1)n

[
(18+2i+4ε +6h)(7+2ε +2h)− (11+2i+2 ε +4h)2

]
= (−1)n (1−26i+28ε−14 h)

and

Ln+1Ln−1−L2
n = 5(−1)n+1

[
(18+2i+4ε +6h)(7+2ε +2h)− (11+2i+2ε +4h)2

]
= 5(−1)n+1 (1−26i+28ε−14h) ,

respectively.

Now, let us define the conjugate matrix of A as

A =

(
18−2i−4ε−6h 11−2i−2 ε−4h
11−2i−2ε−4h 7−2ε−2h

)
. (3.3)

Thus, using the matrix A, we can give two types of Cassini identity for the conjugate hybrid numbers with Fibonacci and Lucas hybrid
number coefficient respectively. Note that

AQn =

(
18−2i−4ε−6h 11−2i−2 ε−4h
11−2i−2ε−4h 7−2ε−2h

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Fn+1 Fn
Fn Fn−1

) (3.4)

and

ARQn =

(
18−2i−4ε−6h 11−2i−2 ε−4h
11−2i−2ε−4h 7−2ε−2h

)(
1 2
2 −1

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Ln+1 Ln
Ln Ln−1

)
.

(3.5)

Theorem 3.3. For n≥ 1, we have

(i) Fn−1Fn+1−
(
Fn
)2

= (−1)n (1+26i−28ε +14h) ,

(ii) Fn+1Fn−1−
(
Fn
)2

= (−1)n (1+34i−12ε +6h) ,

(iii) Ln−1Ln+1−
(
Ln
)2

= 5(−1)n+1 (1+26i−28ε +14h) ,

(iv) Ln+1Ln−1−
(
Ln
)2

= 5(−1)n+1 (1+34i−12ε +6h) .

Proof. We give only the proofs of (i) and (iii). The others can be done in a similar way.
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(i) By using (3.4), we have

Fn−1Fn+1−
(
Fn
)2

=

∣∣∣∣Fn+1 Fn
Fn Fn−1

∣∣∣∣
=
∣∣AQn∣∣

= (−1)n
[
(7−2ε−2h)(18−2i−4ε−6h)− (11−2i−2ε−4h)2

]
= (−1)n (1+26i−28ε +14h) .

(iii) With the help of the (3.5), we obtain

Ln−1Ln+1−
(
Ln
)2

=

∣∣∣∣Ln+1 Ln
Ln Ln−1

∣∣∣∣
=
∣∣ARQn∣∣

= 5(−1)n+1
[
(7−2ε−2h)(18−2i−4ε−6h)− (11−2i−2ε−4h)2

]
= 5(−1)n+1 (1+26i−28ε +14h) .

Remark 3.4. This paper is revised version of the preprint [21].

4. Conclusion

In this paper, we have introduced hybrid numbers with Fibonacci and Lucas hybrid number coefficients. We have given the Binet formulas,
generating functions, exponential generating functions, some summation formulas for these numbers. Then we have defined an associate
matrix for these numbers. Using this matrix, we have given two different versions of Cassini identitiy of these numbers. For the interest of
the readers of our paper, the results given here have the potential to motivate further researchers of the subject of the higher order hybrid
numbers with Fibonacci and Lucas hybrid number coefficients.
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