
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 73, Number 4, Pages 875–893 (2024)
DOI:10.31801/cfsuasmas.1339770
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: August 21, 2023; Accepted: May 4, 2024

DYNAMICAL BEHAVIOR OF A DISEASED PREDATOR-PREY

MODEL WITH FEAR EFFECT AND PREY HARVESTING

M. Siva PRADEEP1, T. Nandha GOPAL2, M. SIVABALAN3, N. P. DEEPAK4,

M. MAGUDEESWARAN5

1,2,3,4Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and

Science, 641 020, Coimbatore, Tamilnadu, INDIA
5Department of Mathematics, Sree Saraswathi Thyagaraja College, 642 107, Pollachi, INDIA

Abstract. This article consists of a three-species food web model that has

been developed by considering the interaction between susceptible prey, in-
fected prey and predator species. It is assumed that susceptible prey species

grow logistically in the absence of predators. It is assumed that predators
consume susceptible and infected prey . We consider the effect of fear on sus-

ceptible prey due to predator species. Again, the harvesting of susceptible and

infected prey has been considered. Furthermore, the predator consumes its
prey in the form of Holling-type interactions. The positive invariance, positiv-

ity, and boundedness of the system are discussed. The conditions of all biolog-

ically feasible equilibrium points have been examined. The local stability of
the systems around these equilibrium points is investigated. Furthermore, the

occurrence of Hopf-bifurcation concerning the harvesting (h) of the system has

been investigated. Finally, we demonstrate some numerical simulation results
to illustrate our main analytical findings.

1. Introduction

The term ecology (oecologie) was coined in 1876 by the German evolutionary bi-
ologist Ernst Haeckel [1]. He combined two Greek words, ”oikos,” meaning ”house”
or ”dwelling place,” and ”logos,” meaning ”science” or ”study,” to form the word.
Ecology is the study of plants and animals activities. Plants and animals are the
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scientific study of the relationship of organisms to each other and to their physi-
cal environment. Epidemiology is the study of the prevalence and determinants of
health-related conditions or events in specific populations and the application of this
study to control health problems. Epidemiology began with Adam and Eve, both of
whom sought to examine the quality of the “forbidden fruits.” Epidemiology is the
study of the distribution and determination of health-related conditions or events
in specific populations and the application of this study. Mathematical ecology
and mathematical epidemiology are major fields of study in their own right. But
there are some commonalities between them. A branch of ecology that considers
the effects of transmissible diseases is called eco-epidemiology. Eco-epidemiology is
a new branch of mathematical biology that considers both ecological and epidemi-
ological problems simultaneously. Eco-epidemiological research deals with diseases
that spread in an interactive population in which epidemiologic and demographic
features are incorporated into a model [2, 3].

Eco-epidemiological systems are used to investigate the dynamic connection be-
tween predator and prey in one population or a population of susceptible and
infected animals. Mathematical models have become significant instruments in
examining the flow and manipulation of prevention. Kermack-Mckendrick’s [4]
pioneering work on SIRS epidemiological models has drawn a lot of interest from
researchers. Many investigators have studied the population ecology of prey, preda-
tors, or both. The non-linear relationship between populations of predators and
their prey has been and will remain one of the subjects that are most frequently
addressed in both mathematical ecology and epidemiology due to its worldwide
existence and significance. Although these issues appear straightforward mathe-
matically at first glance, they are challenging and complicated. Ecology and epi-
demiology are two distinct, essential, and significant areas of research. Lotka [5] and
Volterra [6] models, the first advance in current mathematical ecology, can be exam-
ined using the system of dynamical equations. Environmental epidemiology is the
complete study of epidemiology and ecology. Eco-epidemiology exerts a significant
ecological impact. It is referred to as the study of infection spread between interact-
ing organisms. A variety of mathematical and statistical methodologies are avail-
able for analysing eco-epidemiological data. Many ecosystems around the world have
predator-prey interactions between species, as well as the lion-deer association. In
the environment, predator and prey species display oscillations in population in-
crease and decline or abundance. Animal conservationists and mathematicians have
long been intrigued by the study of this volatility in seemingly stable patterns. As
a result, many others have extensively studied the dynamics of prey-predator inter-
actions over the last three decades. [7], [8], [9]. Population growth models with the
spread of diseases frequently exhibit complicated, non-linear mathematical dynam-
ics. The fundamental goal of these models is to investigate points of equilibrium,
their analyses of stability, solutions in the type of periodic, bifurcations, system
behaviour of chaotic nature, and so on.
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Alfred J. Lotka was the first to investigate the relationships between populations
of predators and their prey. A biological representation in terms of mathematical
modelling of communications among the population density of predators and pop-
ulation density of prey, called ”functional response,” is the major part of biological
modelling in the population density of predators and population density of prey.
There are numerous functional responses, namely the types I–III of the Holling
response, the Varley-Hassell response, the Beddington-DeAngelis response, and the
Crowley-Martin response. Arditi and Ginzburg’s [10] relatively popular type of
ratio-dependent response. Much more information on predator-prey systems with
Crowley-Martin functional responses has become available in recent decades. In
the recent era, some renowned authors [11, 12], [13], [14], [15], [16], [17]. studied
functional responses to comprehend the importance of the relationship between the
prey and predator in the ecosystem. They used some functional responses, such as
the Crowley-Martin functional response, to make the model system more realistic
and controllable in the ecosystem. Several investigators [18–21] started exploring
a non-linear analysis of the predator-prey scenario involving infection in either the
prey or predator population or both populations or the two forms of infection in the
predator population system with a functional non-linear response that includes the
function of type II Holling. The global and local stability investigations explored
the prey-predator food web model with the function of type II Holling, which in-
cluded the bifurcation analysis for the ratio-dependent intraguild predation model.
Recently, several investigators have discovered that there is frequently a constant
percentage of prey that is shielded from predators by the refuge. The interactions
between prey and predators may be stabilised by refugia, according to several stud-
ies and mathematical models. In [22], Maynard Smith discovered that the presence
of a static proportional size of refuge of any size neutrally altered the static nature
of equilibrium, according to the stochastic stability of a Lotka-Volterra unbiased
model. A neutrally stable Lotka-Volterra model’s dynamic stability was unaffected
by the presence of a constant proportionate refuge. Tapan Kumar Kar [23] con-
sidered a Holing type II response function integration and predator model with
prey refuge. Commercial exploitation of biological resources to meet society’s in-
creasing demands has long been a cause of concern for ecologists, bioeconomists,
and resource managers of nature. The impact of harvests is extensively used in
forestry, wildlife management, and fisheries. This research uncovered a wide range
of fascinating dynamics, such as points of equilibrium, analyses of bifurcation, and
limit cycles. In eco-epidemiology, we explore predator-prey models that include in-
fection dynamics. We seek to investigate the dynamics of the predator-prey model
using this functional response. A form of predator-dependent functional response
is a ratio-dependent functional response. The predation rate of the prey is sup-
posed to be the number of prey consumed by a predator per unit of time. When
predator-prey interactions involve intensive searching, ratio-dependent predator-
prey models are more suitable than other types. Recently, [24], [25], [26] many
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researchers have investigated the apparent biological and physiological evidence of
growth under different conditions. The prey population density is low in a ratio-
dependent model, and as the number of prey grows, the reaction to every predator
activity becomes more constant (i.e., a type II reaction under Holling). [15]). Re-
cently, several investigators have discovered that there is frequently a constant
percentage of prey that is shielded from predators by the refuge. Predator-prey in-
teractions have been included in the Lotka-Volterra model for a very long time. In
a similar vein, the seminal work on the interaction of the susceptible, infected,
and recovered has been an interesting topic of study. The original predator-prey
model was developed, in large part, by Vito Volterra and Alfred James Lotka.
Ecology models and epidemiology models are the two basic categories into which
mathematical models are often divided. In the ecological framework, the relation-
ship between the population density of some communities is studied. Epidemiology
systems are used to investigate the spread of illnesses between wildlife and humans.
It is increasingly crucial to do research on the dynamics of illness within ecological
systems. On the one hand, several studies of prey-predator dynamics have been
conducted in recent decades, taking into account the impact of a range of biological
characteristics. Many mathematical models have been created and investigated in
the field of epidemiology, taking into consideration various incidence rates and ill-
nesses. Experts were particularly interested in their recommended ecological models
since it is well-accepted that species harvesting is necessary for species coexistence.
Ecology models and epidemiology models are the two basic categories into which
mathematical models are often divided. There are three different forms of har-
vesting: constant, proportional to density, nonlinear, and others. All of these have
been proposed and investigated. There have been several suggestions for harvest-
ing methods based on research, including harvesting continuously and depending
on density in proportional harvesting. We research predator-prey models as well as
disease dynamics in eco-epidemiology. Using this physiological response, we hope
to investigate the dynamics of the predator-prey paradigm. To address this prob-
lem, we study the impact of fear in an eco-epidemiological model with infected
prey in this paper. To the best of the available information, none of the scholars
have explored the three-species food web model of prey-predator relationships that
combines species relationships, such as Holling type II function and disease in prey
populations, with the influence of fear in prey harvesting. We explore the diseased
prey-predator model utilising Holling type II interaction as well as the influence of
fear on susceptible prey populations due to predators and prey harvesting, moti-
vated by this fact. The rest of the paper is structured as follows: The mathematical
analysis is investigated in Section 2. In Section 3, some preliminary aspects of the
model have been studied. Section 4 deals with the point of equilibrium at the
boundary and its stability. In Sections 5 and 6, we determine the existence of
the interior point of equilibrium (E∗(s∗, i∗, p∗)) and investigate its local and global
stability. The occurrence of Hopf-bifurcation is shown in Section 7. Numerical
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simulations are examined for the proposed model in Section 8. The conclusion of
the paper and the biological consequences of our mathematical results are found in
Section 8, which concludes the paper.

2. Model Formation

The framework demonstrates the relationship between the population density
of prey with infection. Which leads to the following structure of non-linear differ-
ential equations. The suggested framework was applied to examine the non-linear
population density of susceptible, infected prey and predator biological model

dS
dT = r1S

1+FP (1− S+I
K )− λIS − α1SP

a1+S −H1E1S,
dI
dT = λIS − d1I − b1IP

a1+I −H2E2I,
dP
dT = −d2P + cb1IP

a1+I + cα1SP
a1+S .

 (1)

Here the conditions are S(0) ≥ 0, I(0) ≥ 0 and P(0) ≥ 0 the table displays specific
biological meanings of the parameters.

Table 1. Biological representation of the model

Parameters Units Biological representation
S Number of components per unit area (tons) Population density of susceptible Prey
I Number of components per unit area (tons) Population density of prey with infection
P Number of components per unit area (tons) Population density of Predator
r1 Per day (T−1) Prey population densities growth rate
K Number of components per unit area (tons) The carrying ability of nature
λ Per day (T−1) Infection rate
a1 Per day (V ) Constant of Half-saturation
α1 Per day (T−1) Susceptible prey to predator consumption
b1 Per day (T−1) Capture rate by predator
c Per day Conversion rate of prey to predator
d1 Per day (T−1) density of diseased prey mortality rate
d2 Per day (T−1) Density of predator population mortality rate
F Number of components per unit area (tons) Impact of fear

E1, E2 Number of components per unit area (tons) Harvesting Effect
H1, H2 Number of components per unit area (tons) Prey’s catchability coefficient

The condition for the fear effect is

F1(β, p) =
1

1 + βp
(2)

This describes the level of fear in susceptible prey as a consequence of the predator.
Here, β represents the quantity of fear. Given the epidemiological meaning of β,
the following condition is strongly acceptable:

F1(0, p) = F1(β, 0) = 1

limβ→∞F1(β, p) = 0 = limp→∞F1(β, p)
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∂F1(β, p)

∂β
< 0,

∂F1(β, p)

∂p
< 0.

In this work we incorporate prey and the fear effect β. Then the system change
into the non-dimensional .
Here,
s = S

K , i = I
K , p = P

K .
Now (1) becomes,

ds
dt = rs

1+βp (1− s− i)− is− sαp
s+a − h1s

di
dt = is− di− θip

a+i − h2i
dp
dt = −δp+ cθip

a+i +
cαsp
s+a .

 (3)

here the conditions are,

r =
r1
λK

, α =
α1

λK
, h1 =

H1E1

λK
,

d =
d1
λK

, h2 =
H2E2

λK
, θ =

b1
λK

,

a =
a1
K

, δ =
d2
λK

, β =
F
K

.

According to the preliminary criteria {s(0), i(0), p(0)} ≥ 0. The operations de-
scribed over are in R3

+.

3. Positivity, Existence and Boundedness of solutions

In this section we discusses the positivity and boundedness solution of the sys-
tem.(3)

3.1. Positivity of solutions.

Theorem 1. In the R3
+ all the (3) systems solutions are non-negative .

Proof. Since {s(0), i(0), p(0)} ≥ 0, hence the system (3) written as,

s(t) =s(0)exp

(∫ 1

0

[
r

1 + βp
(1− i− s)− i− pα

s+ a
− h1

]
ds

)
≥ 0,

i(t) =i(0)exp

(∫ 1

0

[
−d+ s− θp

a+ i
− h2

]
ds

)
≥ 0,

p(t) =p(0)exp

(∫ 1

0

[
cθi

a+ i
+

cαs

s+ a
− δ

]
ds

)
≥ 0.
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Existence of the solutions:
For t < 0, let Z = (s(t) + i(t) + p(t)), and E(Z) = (O1Z,O2Z,O3Z)

T
, where

O1Z = rs
1+βp (1− s− i)− is− αsp

s+a − h1s,

O2Z = is− id− θip
a+i − h2,

O3Z = −δp+ cθip
a+i +

cαsp
s+a .

Then, (3) is then able to be formed as dZ
dt = E(Z), where, O : C+ → R3

+ with,

Z(0) = Z0 ∈ R3
+.

Here, E⟩ ∈ C∞(R) for i = 1, 2, 3. As a result, the mathematical operator O is both

locally Lipschitzian and completely continuous on R3
+. Therefore, the solution of

(3) exists and unique. Hence the region R3
+ is an invariant domain of the system

(3) solutions are positive. □

Theorem 2. If c < 1, Max rs
1+βp (1− s) = r

8 , and β = min(h1, d + h2, δ) in

R3
+ all the system (3) solutions are bounded.

Proof. s, i and p denote the model (3) solutions with positive criteria, hence
ds
dt ≤ sr(1− s).
We know that lim supt→∞ s ≤ 1,. Let, Z = s+ i+ p.

dZ
dt

=
ds

dt
+

di

dt
+

dp

dt

=
rs

1 + βp
(1− s− i)− si− h1s−

(1− c)sαp

s+ a

+ si− id− (1− c)θip

a+ i
− pδ − h2i

≤ rs

1 + βp
− pδ − id− h1s− h2i (where, c < 1)

≤ r

8
− pδ − id− h1s− h2i

(
since, (Max(

rs

1 + βp
(1− s) =

r

8
)

)
≤ r

8
− βZ, where β = min(h1, d+ h2, δ),

we have,
dZ
dt

+ βz ≤ r

8
.

Using the differential inequality theorem, we obtain

0 < Z ≤ r

4β
(1− exp−βt) + Z(s0, i0, p0) exp

−βt .

For t → ∞, we have 0 < Z < r
4β in the R3

+ all the systems (3) solutions are

uniformly bounded, for ϵ > 0 are in the region,

Ω =

{
(s, i, p) ∈ R3

+; s+ i+ p ≤ r

4β
+ ϵ

}
.

□
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4. The Existence of Point of Equilibrium

This section examines the potential points of equilibrium (3). The system (3)
has three points of equilibrium and one endemic point of equilibrium:

rs

1 + βp
(1− s− i)− si− αsp

s+ a
− h1s = 0,

is− di− θip

a+ i
− h2i = 0,

− δp+
cθip

a+ i
+

cαsp

s+ a
= 0.

• E0(0, 0, 0) is the point of equilibrium, which is trivial,
• E1(

r−h1

r , 0, 0) is the free of infection and free of predator point of equilib-
rium that exists for r > h1.

• The absence of predator point of equilibrium is E2(ŝ, î, 0),

where, ŝ = d+ h2, î =
r(1−d−h2)−h1

r+1 , it exists for r(1− h2 − d) > h1

• Endemic or positive or interior equilibrium is E∗(s∗, i∗, p∗), where

i∗ = a(aδ+(δ−cα)s∗)
(cαs∗+(cθ−δ)(s∗+a)) , p

∗ = ac(s∗−d)(s∗+a)
(cαs∗+(cθ−δ)(s∗+a)) and s∗ is the unique

positive root of the quadratic equation
AS2 + BS + C = 0,
where,

A =r(αc+ θc− δ),

B =(θc− δ)(ar − r) + αc((1 + βp)− r) + a(δ(1 + βp) + (δ − cα)r),

C =− a(r(1 + βp))(cθ − δ) + (cα(1 + βp)(d)− aδ((1 + βp) + r))).

Endemic equilibrium exists for δ > αc.

5. Local Stability Analysis

In order to investigate the local stability property of the system(3), we first find

the Jacobian matrix of the system in the form J(E) =

 n11 n12 n13

n21 n22 n23

n31 n32 n33

.

Here,

n11 =
r

1 + βp
(1− 2s)− i

(
r

1 + βp
+ 1

)
− αap

(s+ a)2
− h1, n12 = −s(

r

1 + βp
+ 1),

n13 =
prs

(1 + βp)2
(1− s− i)− αs

s+ a
, n21 = i, n22 = s− d− h2 −

aθp

(a+ i)2
,

n23 =− θi

(a+ i)
, n31 =

acαp

(s+ a)2
, n32 =

acθp

(a+ i)2
,
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n33 =− δ +
cθi

a+ i
+

αcs

s+ a
.

Theorem 3. E0(0, 0, 0) is the point of equilibrium, which is trivial, is stable if
r < h1, otherwise unstable.

Proof. The characteristic equation of the point of equilibrium E0 is,
(λ01 − (r − h1))(λ02 − (−d− h2))(λ03 + δ) = 0,
λ01 = r − h1, λ02 = −d− h2, λ03 = −δ,
here,λ02 < 0, λ03 < 0. E0(0, 0, 0) is the point of equilibrium, which is trivial,is
stable if r < h1 otherwise it is unstable. □

Theorem 4. E1(
r−h1

r , 0, 0), the free of infection and free of the predator point of
equilibrium, is stable if cα < δ and h1 > r(1− d− h2) , otherwise unstable.

Proof. The characteristic equation of the point of equilibrium E1 is,

(λ11 − ((h1 − r)))(λ12 − (1− d− h2 −
h1

r
))(λ13 − (

−α(r − h1)

ra+ (r − h1)
− δ)) = 0,

λ11 = h1 − r, λ12 = 1− d− h2 −
h1

r
, λ13 =

−cα(r − h1)

ra+ (r − h1)
− δ,

here, E1(
r−h1

r , 0, 0) being free of infection and free of the predator point of equilib-
rium, is stable if cα < δ and h1 > r(1− d− h2) , otherwise unstable. □

Theorem 5. The equilibrium E2(ŝ, î, 0) which absence of predator is asymptoti-
cally stable if δ > c(θ + α).

Proof. The matrix in the form of Jacobian at E2 is J(E3) =

 q11 q12 q13
q21 q22 q23
q31 q32 q33

,

where,

q11 =r(1− 2ŝ) + i(r + 1), q12 = (−1− r)ŝ, q13 = − αŝ

s+ a
,

q21 =î, q22 = 0, q23 = − θî

a+ î
,

q31 =0, q32 = 0, q33 =
cαŝ

a+ ŝ
− δ +

cθî

a+ î
.

Here, the characteristic equation of the above matrix in the form of Jacobian is,
λ3 + Lλ2 +Mλ+N = 0. Here,

L = −q11 − q33,

M = −q21q12 + q33q11,

N = q12q21q33.

If and only if L,N and LM − N are positive, then the negative real parts are
the roots of the above characteristic equation. According to the Routh-Hurwitz
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criterion. now, LM − N = −q11(−q12q21 + q33(q33 + q11)). Now, the sufficient
conditions for q33 to be negative is δ > c(α + θ). The E2 is locally asymptotically
stable provided the above condition in theorem satisfied. □

Theorem 6. The endemic or positive point of equilibrium E∗ is asymptotically
stable.

Proof. The matrix in the form of Jacobian at E∗ is J(E∗) =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

,

where,

r11 =− s∗(h1 − r + ar + (1 + r)i∗ + 2rs∗)

s∗ + a
, r12 = −s∗(

r

1 + βp∗
+ 1),

r13 =
p∗rs∗

(1 + βp∗)2
(1− s∗ − i∗)− αs∗

s∗ + a
,

r21 =i∗, r22 =
aθp∗i∗

(a+ i∗)2
, r23 =

θi∗

(a+ i∗)
,

r31 =
acαp∗

(s∗ + a)2
, r32 =

acθp∗

(a+ i∗)2
, r33 = 0.

Here, the characteristic equation of the Matrix in the form of Jacobian E∗ is

λ3 + Fλ2 + Gλ+H = 0, (4)

here,

F = −r11 − r33,G = −r21r12 + r22r11 − r13r31 + r23r32,

H = r13(−r22r31 + r21r32) + r23(r12r31 − r11r32).

If F > 0,H > 0,FG − H > 0. The negative real parts are the roots of the above
characteristic equation if and only if F ,H and FG −H are non-negative, according
to the Routh-Hurwitz criterion. The E∗ is locally asymptotically stable. □

6. Hopf-Bifurcation Analysis

In this part, we use the harvesting (h1) effect to analyse the model’s bifurcation.
Using the bifurcating parameter h1, the following theorem shows the presence of
Hope-bifurcation.

Theorem 7. The model (3) confronts Hopf-bifurcation if the bifurcation parameter
h1 surpasses a critical point. The following Hopf-bifurcation conditions arise at
h1 = h∗

1:
1.A1(h

∗
1)A(h∗

1)−A3(h
∗
1) = 0.

2. d
df (Re(λ(h1)))|h1=h1

∗ ̸= 0 Here lambda is the zero of the parametric solution

correlated with the equilibrium’s interior point.
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Proof. For h1 = h∗
1, let the equation of characteristic (4) is in the form

(λ2(h∗
1) +A2(h

∗
1))(λ(h

∗
1) +A1(h

∗
1)) = 0. (5)

This indicates that the roots of the preceding equation are±i
√

A2(h∗
1) and−A1(h

∗
1).

To achieve the Hopf-bifurcation at h1 = h∗
1 the following transversality criterion

must be fulfilled.

d
dh∗

1
(Re(λ(h∗

1)))| ≠ 0.

For h1, the above equation (5) has general roots

λ1 = r(h1) + is(h1),

λ2 = r(h1)− is(h1),

λ3 = −A1(h1).

Weather check the criteria d
dh∗

1
(Re(λ(h∗

1)))| ≠ 0.

Let λ1 = r(h1) + is(h1) in the (5), we get

C(h1) + iD(h1) = 0.

Where,

C(h1) = r3(h1) + r2(h1)A1(h1)− 3r(h1)s
2(h1)− s2(h1)A1(h1) +A2(h1)r(h1) +A1(h1)A2(h1),

D(h1) = A2(h1)s(h1) + 2r(h1)s(h1)A1(h1) + 3r2(h1)s(h1) + s3(h1).

In order to fulfill the (5) we must have C(h1) = 0 and D(h1) = 0 , then calculating
C and D with respect to h1. We have

dC
dh1

= ς1(h1)r
′
(h1)− ς2(h1)s

′
(h1) + ς3(h1) = 0, (6)

dD
dh1

= ς2(h1)r
′
(h1) + ς1(h1)s

′
(h1) + ς4(h1) = 0, (7)

where,

ς1 = 3r2(h1) + 2r(h1)A1(h1)− 3s2(h1) +A2(h1),

ς2 = 6r(h1)s(h1) + 2s(h1)a1(h1),

ς3 = r2(h1)A
′

1(h1) + s2(h1)A
′

1(h1) +A
′

2(h1)r(h1),

ς4 = A
′

2(h1)s(h1) + 2r(h1)s(h1)A
′

1(h1).

On multiplying (6) by ς1(h1) and (7) by ς2(h1) respectively

r(h1)
′
= − ς1(h1)ς3(h1) + ς2(h1)ς4(h1)

ς12(h1) + ς22(h1)
. (8)
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Substituting r(h1) = 0 and s(h1) =
√
A2(h1) at h1 = h∗

1 on ς1(h1), ς2(h1), ς3(h1),
and ς4(h1), we obtain

ς1(h
∗
1) =− 2A2(h

∗
2),

ς2(h
∗
1) =2A1(h

∗
1)
√

A2(h∗
1)

ς3(h
∗
1) =A

′

3(h
∗
1)−A2(h

∗
1)A

′

1(h
∗
1),

ς4(h
∗
1) =A

′

2(h
∗
1)
√

A2h∗
1.

The equation (8), implies

r
′
(h∗

1) =
A′

3(h
∗
1)− (A1(h

∗
1A2(h

∗
1)))

2(A2(h∗
1) +A2

1(h
∗
1))

, (9)

if A′

3(h
∗
1) − (A1(h

∗
1)A2(h

∗
1))

′ ̸= 0 which implies that d
dh∗

1
(Re(λ(h∗

1)))| ≠ 0, and

λ3(h
∗
1) = −A1(h

∗
1) ̸= 0.

Therefore the condition A′

3(h
∗
1) − (A1(h

∗
1)A2(h

∗
1))

′ ̸= 0 It has been guaranteed
that the transversality criterion is satisfied, hence the model (3) has attained the
Hopf-bifurcation at h1 = h∗

1. □

7. Numerical Simulations

In this section, several numerical experiments on the system (3) are carried out
to verify the mathematical findings. The rate of fear β , predation rate α and
harvesting h1 are the essential parameters in this study, and they will be used
as control parameters. For the specified fixed parameter values given in Table 2,
the numerical simulation is carried out using the MATLAB and MATHEMATICA
software packages.

Table 2. Parameter values

Parameters Numeric value
r 0.5
a 0.3
c 0.6
d 0.25
θ 0.4
δ 0.2
β Variable
α Variable
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Figure 1. The population of infected prey, and predators for α =
0.15, 0.2, 0.28, 0.3.

Figure 2. Solutions of time series (3) around the point of equi-
librium E2 and the point of equilibrium E4.

7.1. Effect of varying the predation rate α. Let β = 0.3, h1 = 0.2 For the
parameters specified in Table 2. E2 is predator free equilibrium and the endemic
point of equilibrium E∗ exists for 0.1 < α < 035, respectively, for the given para-
metric values. The stability of for α = 0.3 and α = 0.28 is shown in Figure(2).
Figure (1) shows that as the predator population grows, so does the predation rate
α and the number of infected prey.

7.2. Effect of varying the harvesting rate h1. Let α = 0.3, β = 0.15 For the
parameters specified in Table 2.E2 is predator free equilibrium and the endemic
point of equilibrium E∗ exists for0.0140625 < h1 < 0.307377, respectively, for
the given parametric values. From Figure (3) shows that increasing the rate of
harvesting in susceptible prey leads to a decrease in population of susceptible prey
and population of predator while increasing the population of infected prey.

7.3. Bifurcation of harvesting rate h1. Case-I:(Changing only the parameter
value h1 and h2 = 0)
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Figure 3. For α = 0.25, the population concentrations of sus-
ceptible prey, infected prey, and predators are as follows for the
parametric values shown in the table. Where h1 =
0.01, 0.08, 0.2, 0.3

If h1 = 0.08 then the model (3) is locally asymptotically stable about the positive
equilibrium point E∗(0.052861, 0.917829, 0.204774) and other parameter values are
same, which is shown in Figure (4). Now, we increasing the value of bifurcation
parameter h1 = 0.133, then the model (3) lost its stability, arise limit cycle at
E∗(0.04899, 0.920924, 0.220149) which shown in figure(5) .
Case-II:(Changing the parameters values both h1 and h2)
Now, we choose h1 = 0.08 and h2 = 0.15 then the model (3) will behaves the locally
asymptotically stable corresponding to the interior equilibrium point
E∗(0.150488, 0.839649, 0.496640), which is shown in Figure (6). We fix h2 = 0.15
and increase the value h1 = 0.35 then the model (3) lost its stability, arise limit
cycle and undergoes the Hopf-bifurcation around the positive equilibrium point
E∗(0.151952, 0.838477, 0.465983), it is projected in Figure 7. Then the dynamical
changes of the model ( 3) for h1 ∈ (0.01, 0.5), h2 = 0 and h1 ∈ (0.2, 0.5), h2 = 0.15,
respectively displayed in Figure (8) and Figure (9).
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Figure 4. The time analysis and phase portrait for the model(3)
when h1 = 0.08 and h2 = 0.

Figure 5. The time analysis and phase portrait for the model (3)
when h1 = 0.35 and h2 = 0.
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Figure 6. The time analysis and phase portrait for the model (3)
when h1 = 0.08 and h2 = 0.15

Figure 7. The time analysis and phase portrait for the model (3)
when h1 = 0.35 and h2 = 0.25
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Figure 8. The dynamical changes of the model(3) with h1 ∈
(0.01, 0.5) and h2 = 0

Figure 9. The dynamical changes of the model (3) with h1 ∈
(0.2, 0.5) and h2 = 0.15.

8. Conclusion

We researched an eco-epidemiological system that included infection in the pop-
ulation density of prey and fear in the susceptible prey population density as a
result of predator attacks on susceptible and diseased prey and harvesting in both
prey populations. An eco-epidemic model deals with ecosystems of interacting pop-
ulations among which a disease spreads. Different control measures and techniques
are used to control the disease; harvesting is one of them. It is observed that
harvesting plays a very crucial role in preventing the spread of infectious diseases.
The positivity ensures that the population cannot be negative, while the bound-
edness of the solution could be understood as a natural limitation for growth due
to limited resources. In addition, each biologically possible point of equilibrium
can be represented (3). Furthermore, we investigated the suggested model’s local
stability (3) and observed the occurrence of Hopf-bifurcation, and we determined
that modifying the cost of fear β and modifying the cost of harvesting h1 has an
instantaneous effect on the model’s stability (3). As a result, Hopf-bifurcation con-
strained the developed analytical arguments around the E∗ simulation findings. In
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the proposed models, we deduce that the existence of fear has a higher impact on
stability shifts via the Hopf bifurcation. Finally, for the non-delayed models, we
examine the time series of the impact of fear and the effect of harvesting in phase
portraits and bifurcation diagrams. However, the future direction of the research
seems more attractive. Moving forward, we plan to conduct an in-depth analysis of
the model and delve into the effect of delay on the dynamics of the model. These
future studies will yield exciting results related to the effect of delay.
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