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Abstract: Numerous approaches and methodologies have been established for online (while the load is 

supplied) estimation of the State-of-Charge of Lithium-ion cells and batteries. However, as 

battery load consumption fluctuates in real time because of delivered device operations, obtaining 

a precise online state of charge estimation remains a challenging task. This work proposes a new 

technique for online open circuit voltage measurement to estimate state of charge of batteries. 

This novel technique proposes the addition of an auxiliary regulated load that may be utilized to 

temporarily force specifically defined forms of the battery's current curve under particular 
conditions, which results in improving and simplifying online open circuit voltage computations. 

The effectiveness of the proposed technique was successfully validated through several 

experimental tests. The acquired findings demonstrated its efficiency with an acceptable online 

state of charge estimation accuracy. Typically, an estimation error of less than 2% was recorded 

in most tests, while the error was less than 1% when the battery’s state of charge was high. 
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Ip Pulse current 

Is Steady-state current 

LiB Lithium-ion Battery 

OCV Open Circuit Voltage 

OCVdp OCV drop caused by the pulse current during a pulse duration   

OCVds OCV drop caused by the steady-state current during a pulse duration   

SoC State of Charge 

T Time constant 

Tp Pulse time 

Ts Steady-state time 

Vch Charged voltage 

Vd Discharged voltage 
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1. INTRODUCTION 

Lithium-ion batteries (LiB) are extensively utilized as a power source in many different electronic 
devices such as phones, tablets, and laptops due to their decreasing prices, excellent density of energy, 

low self-discharge, and lifespan. In addition, LiB have outstanding efficiency in charging. They lose 

less energy throughout the charge/discharge cycle than other battery types because of the intelligent 
charging algorithm implemented in their BMS (Battery Management Systems). When storing significant 

amounts of energy, such as in electrical vehicles (EVs) and solar energy storage systems, this is a very 

helpful criterion. Regardless of these advantages, a major drawback of these batteries is the risk of 
burning since they can endure thermal runaway, an unsupervised and self-sustaining chemical reaction 

in which there is an unexpected temperature rise, frequently leading the battery to rupture and let out 

explosive and poisonous gases and fire. Because of this possible risk, the conveyance of lithium-ion 

batteries (LiB) onboard aircraft is strictly regulated both nationally and worldwide. All lithium-ion cells 
and batteries transported onboard airplanes but not wrapped with or enclosed within equipment (UN 

3480) must be handled at a State of Charge (SoC) that is equal or below to 30% of their entire capacity, 

according to transport rules and industry norms. 

SoC is an estimation of the amount of energy left in a cell or battery; which can be described as the 
quantity of electrical charge contained in the cell or the battery at any time t in relation to the nominal 

electrical charge [1,2]. SoC can be one of the significant features of lithium-ion cells for efficient and 

secure use in different fields such as control of photovoltaic–wind–battery systems [3,4], Electrical 

vehicles [5–7], microgrid energy management [8-10] and numerous other applications.  

In recent years, building sophisticated and clever SoC estimators for LiB has emerged as a prominent 
investigation topic. The major technical challenges impeding SoC advancement can be divided into 

three categories. The primary issue is that the battery structure is unpredictable, making precise 

modeling difficult. This is related to the fact that battery packs, cells, and active-materials are totally at 
distinct 3D dimensions, as well as temporal scale factors (e.g., aging). The second issue is that the inner 

climate is difficult to predict and is vulnerable to external environmental fluctuations. Expanding LiB 

from experimental-phase to industrial-phase manufacture reduces the association between estimated and 
real data, making it harder to detect the LiB's internal conditions with confidence.  Lastly, the lithium-

ion batteries’ inconsistencies have an immediate impact on the efficiency of the LiB pack, increasing 

their instability. Assessment methods established for smaller lithium-ion cells are obsolete on extensive 

lithium-ion batteries (e.g., LiB for electrical cars), thus estimating the SoC of a LiB or cell is very hard. 

As a result, better SoC approaches are urgently needed to address these difficulties [11]. 

Modeling allows us to comprehend more about battery behavior and assists in optimizing system 

efficiency and effectiveness. Battery models can be used to define V-I characteristics, SoC status, and 

the size of the battery. Therefore, several models were investigated to imitate the dynamic properties of 
the battery such as: (i) Electrical equivalent models, where single or multiple parallel pairs of resistance, 

capacitance, and additional circuit components are used to build an electric circuit that mimics the 

dynamic features of Lithium-ion batteries [12]. Moreover, PSO (Particle Swarm Optimization), GA 

(Genetic Algorithms), and ABC (Artificial Bee Colony) have been studied to predict the potential 
difference in the battery's output poles using the OCV method [13]. Based on the comparisons presented 

in [13], the ABC algorithm has demonstrated the best performance in OCV prediction operations. After 

ABC, the PSO algorithm demonstrated satisfactory outcomes. The GA with the quickest reaction time 
was unable to demonstrate the anticipated level of success. In the end, it was discovered that the ABC 

algorithm is the best approach when quick processing times and successful outcomes are required (ii) 

The potential difference of the battery poles is expressed using mathematical expressions of the SoC 
and the current in empirical models. An empirical model illustrates the basic complex features of a cell 

using mathematical equations or polynomials of reduced order [14]. (iii) The electrochemical model 
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(EM) is developed based on electrochemical processes rate and the charge exchange mechanism to 

describe the inner reactions within the battery. This model is the basis for several physical principles, 

including Faraday's first rule, Ohm's rule, diffusion rule of Fick, and the Butler-Volmer formula. The 
EM is written in the form of nonlinear PDEs (Partial Differential Equations). To improve the application 

of the electrochemical-model, a model with acceptable simulation reliability for activation frequencies 

ranging from 10 MHz to 1 kHz is constructed [15]. Hence, there exist many techniques for the estimation 
of SoC naming: Coulomb-counting [16,17], open-circuit-voltage (OCV) [18,19], Model-based method 

[20], impedance spectroscopy [20,21], Kalman-filter [22,23], data-driven models [24,25], etc. Each of 

these strategies has benefits and drawbacks, and still, more investigation is required. 

Coulomb counting is one of the simplest and most effective ways to estimate SoC; however, it might 
suffer from drift caused by errors in current measurement and must be recalibrated from time to time. 

One of the calibration methods is OCV which is defined by reading the OCV after letting the battery at 

repose for a few hours and then mapping that voltage to SoC using a predefined lookup table. Yet, this 

method involves the battery being at repose (offline) for an extended duration, which is not a favored 
option for many applications. Online OCV estimation is possible, and some online OCV estimate 

algorithms by adopting a certain ECM (Equivalent-Circuit-Model) were offered for estimating SoC in 

the literature, which processes the real-time current and voltage of the load using KF (Kalman-Filter), 
RLS (Recursive-Least-Squares), and EKF (Extended-Kalman-Filter)  [26–28]. However, the online 

OCV estimation is computationally complex and can be challenging with the existing methods because, 

in most applications, the load current, and voltage cannot be easily predicted or tracked effectively due 

to its drastic variations. The proposed method in this paper is to add an auxiliary controlled load, which 
can be employed to get a known predefined shape of the current curve under some conditions (for 

instance, during the test, the dynamic load current cannot exceed a certain level) that will help to 

facilitate the online OCV calculations. The proposed technique is explained in the paper’s context. A 
test bench is used, and a number of tests were performed as real typical scenarios to validate the 

approach’s accuracy. 

The paper is structured as follow: The suggested OCV estimation approach is explained in details in 

Section 2. Results and discussion are outlined in Section 3. Whereas, section 4 contains the conclusions 

and upcoming research directions. 

 

2. THE PROPOSED OCV ESTIMATION TECHNIQUE 

As mentioned in the previous section, several existing methods can be used to compute the OCV of LiB 
to estimate the state of charge; however, implementing these methods can be challenging and complex, 

and they may not be suitable for all load conditions. To remedy these issues our proposed OCV 

estimation technique suggests employing the setup shown in Fig. 1(a) to temporarily force the battery’s 
current to take on a predefined shape. The main load of the system is the dynamic load such as home, 

microgrid, or any other systems where their current cannot be predicted; hence, an auxiliary-controlled 

load is added. Therefore, the battery current can be controlled, as it will be the sum of the current 

consumed by both loads as expressed by Eq. (1): 

𝐼𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑  (1) 

Calculating the battery’s model parameters shown in Fig. 1(b) will become straightforward and easy, as 

the battery’s current can be adjusted to be of a suitable shape as depicted in Fig. 2. As a result, the OCV 
can be found; then, it is possible to estimate the state of charge (SoC) of the battery. However, this 

approach is not continuous, meaning that except for the period when the controlled load is activated to 

provide the required current shape, the SoC cannot be obtained regularly. Therefore, as illustrated in 

Fig. 3, it is preferable to be used to calibrate the coulomb counting method to overcome the problems of 
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initial SoC and accumulated error. Every aspect of this approach will be thoroughly explained in the 

later sections. 

2.1. Test Set-up 

Our method relies on the first order equivalent circuit model of the lithium-ion [7] illustrated in Fig. 

1(b), the model time constant is assumed to be less than 100s according to Table 1 [7]. 

  
(a) (b) 

Figure 1. The proposed circuits: (a) Dynamic load with the auxiliary controlled load. (b) Equivalent circuit of 

first-order RC model. 

 

Table1. Lithium-ion 1-RC model time constant for different SoC [7]. 
State-of-Charge  τ1 in s R1 in Ω  C1 in 103 F 

0 56.2430 0.0382 1.4743 
0.05 42.8082 0.0263 1.6265 
0.1 51.3875 0.0226 2.2758 
0.15 47.5964 0.0244 1.9491 
0.2 55.9597 0.0237 2.3622 
0.3 34.7826 0.0203 1.7126 
0.4 35.8938 0.0204 1.7612 
0.5 41.9287 0.0211 1.9919 

0.6 37.5657 0.0267 1.4049 
0.7 40.6504 0.0242 1.6798 
0.8 38.5654 0.0272 1.4178 
0.9 37.3134 0.0235 1.5878 
1 46.2321 0.0240 1.9287 

Fig. 2 depicts the fundamental operation of this approach. In a normal operating condition, the controlled 

load should be OFF and the battery’s current will match the dynamic load current, which may fluctuate 

excessively. Whenever it is required to determine the OCV, the controlled load is turned ON. 
Consequently, the battery’s current is adjusted to get the required form as illustrated. The specifications 

of the chosen current form are as follows: First, the current is fixed to the value Is for Ts duration, which 

will bring the capacitor C1 to a steady state. Then, the Ip current pulse will be applied for Tp duration. 
After that, the current will be set to the value Is for another Tp period. Finally, the controlled current load 

will be turned OFF, and the battery’s current will be equal to the dynamic load again. The purpose of 

this controlled current pattern is that it will induce a specific battery voltage response, which will 

facilitate the online OCV calculation. 

 
Figure 2. The fundamental operation of the controlled load approach. 
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Fig. 3 summarizes the working mechanism of this proposed method. As an application example, this 

method can be used with the Coulomb counting technique to calibrate or set its initial SoC and omit the 

occurring drift. First, the system reads the instantaneous battery’s current and the actual SoC that was 
tracked using Coulomb counting. If the SoC is very low or the battery’s current is high, the recalibration 

should not be performed. Otherwise, the different current form parameters Is, Ip, Ts, and Tp are set, and 

then the controlled load is turned on to apply the predefined current shape. It is worth noting that the 
dynamic current should be equal to or less than the current Is. However, if the dynamic load current 

suddenly rises above the current Is, the desired current shape for calculating the OCV will be distorted. 

In this case, the OCV estimation process will stop, the controlled load will be turned off, and the whole 

process will be restarted from the beginning. 

On the other hand, if the estimation process is completed successfully during the predefined timeline; 

then, the controlled load current will become zero, and the online OCV can be calculated using the 

proposed method that will be described later. Thus, the SoC can be obtained using the OCV-SoC lookup 

table mapping and finally, the Coulomb counting SoC can be recalibrated. This process can be repeated 

periodically when recalibration is required.   

 
Figure 3. Flowchart representing the working mechanism of the proposed technique. 

For the validation of the proposed technique, illustration tests of real scenarios were performed on an 
old LiB. Fig. 4 demonstrates the process of calculating the online OCV as clarified in Section 2.2 in 

addition to investigating the ability of the method to get the true OCV, and also extracting the 

relationship between the estimated OCV and an actual two hours OCV. 

From time 0 to 500 s, the battery’s current is random and less than 500 mA, similar to the dynamic load’s 
current. After that, the current is fixed to Is = 500 mA for Ts=500 s from the time 500 s to 1000 s, in 

order to mimic the controlled load usage (see Fig. 2) Then, at time 1000s, a current pulse Ip = 300 mA 

was added with pulse time Tp = 30 s. At 1030 s the current was forced to Is again for the duration Tp. 

Finally, at 1060 s, the battery’s current is 0A. In a real application, after the estimation of OCV, the 
controlled load current becomes 0 A, and the battery current will be equal to the dynamic load current. 

However, in the performed test scenario, the battery was disconnected for two hours to get its true OCV 

and compare it to the OCV obtained using the proposed method.   
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The parameters Is, Ts, Ip, and Tp can be set to different values (in a real application, Is should always be 

superior to the dynamic load current). However, for experimental purposes, these parameters were set 

to 500 mA, 500 s, 300 mA, and 30 s, respectively. Fig. 5(a) illustrates the points used for the online OCV 

calculation method. 

 
Figure 4. Conducted test for the OCV calculation. 

2.2. OCV Calculation 

To calculate the OCV online, the model parameters shown in Fig. 1(b) must be known. The voltage 

VC1, illustrated in Fig. 5(b) is assumed equivalent to the voltage across C1 shown in Fig. 1(b) of the 

lithium-ion equivalent circuit model during the current pulse Ip seen in Fig. 4 at time 1000 s.  Whereas, 
the voltages Vch and Vd should be extracted from the battery voltage response using the specific point 

presented in Fig. 5(a). 

  
(a) (b) 

Figure 5. Zoomed-in voltage of the test: (a) Illustration of the points used for the OCV calculation. (b) Illustration 

of voltage charging and discharging assumed curve shape of C1 during the test. 

First, the battery voltage response shown in Fig. 5(a) contains an OCV drop caused by the discharging 
current. Therefore, to extract the VC1 changes, the OCV drop during the current Is and during the current 

(Is+Ip) must be calculated and filtered out. Since the current was 500 mA for 500 s, the capacitor C1 can 

be assumed to be at its steady state voltage, at the last 30 s of the period Ts=500 s. Thus, the battery 
voltage drop from 970 s to 1000 s (see Fig. 5(a)) can be considered purely the OCV drop. It is expressed 

by Eq. (2), where OCVds signifies the OCV drop caused by the Is current in 30 seconds, and OCVdp 
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signifies the OCV drop when the current Ip is added within the same 30 seconds. Vp1 and Vp2 define the 

voltages at the points P1 and P2, respectively; and so on as expressed by Eq. (1): 

𝑂𝐶𝑉ds = 𝑉𝑝1 − 𝑉𝑝2 (2) 

Then, the OCV drop per 30 s after adding the current pulse at 800 mA (Is+Ip) must be calculated within 

the period from 1000 s to 1030 s. Assuming that the OCV drop rate per current is constant during the 

test, so it can be calculated using Eq. (3): 

𝑂𝐶𝑉dp = 𝑂𝐶𝑉ds (𝐼𝑠 + 𝐼𝑝)/𝐼𝑠 (3) 

When the pulse Ip = 300 mA is applied once the current reaches 500 mA, the capacitor can be considered 
in the charging phase, as shown in Fig. 5(b). The charged voltage Vch can be considered as the difference 

between Vp3 and Vp4 minus OCVdp as given by Eq. (4):  

𝑉𝑐ℎ = 𝑉𝑝3 − 𝑉𝑝4 −  𝑂𝐶𝑉dp (4) 

Whereas, the discharged voltage Vd is calculated using Eq. (5) (see Fig. 5(b)):  

𝑉𝑑 =  𝑉𝑐ℎ – (𝑉𝑝6 − 𝑉𝑝5 +  𝑂𝐶𝑉ds)  (5) 

The C1 charging equation can be expressed by Eq. (6) as follow: 

𝐼𝑝 𝑅1 (1 − 𝑒−
𝑇𝑝
𝑇 ) =  𝑉𝑐ℎ (6) 

Whereas, the discharging equation can be written in Eq. (7) as follow: 

𝑉𝑑 =  𝑉𝑐ℎ  𝑒−
𝑇𝑝
𝑇  (7) 

Therefore, from Eq. (7) the time constant T can be extracted by Eq. (8): 

𝑇 =  −𝑇𝑝/ ln (
𝑉𝑑

𝑉𝑐ℎ
) (8) 

Then, T can be substituted in Eq. (6) to calculate R1 as explained in Eq. (9) 

𝑅1 =
𝑉𝑐ℎ

𝐼𝑝 (1 − 𝑒−
𝑇𝑝
𝑇 )

 
(9) 

and R0 extracted by Eq. (10): 

𝑅0 =
𝑉𝑝2 − 𝑉𝑝3

𝐼𝑝
 (10) 

Finally, the estimated OCV can be calculated  at P2 using Eq. (11) based on the model given in Fig. 1(b) 

where OCV=Vb+VR0+VC1; by assuming that VC1 is in its steady state. 

𝑂𝐶𝑉@𝑃2 =  𝑉𝑝2 + (𝑅0 + 𝑅1) 𝐼𝑠 (11) 

Hence, the OCV in this test is calculated at P6 using Eq. (12). This value will later be compared to the 

two hours OCV.  
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𝑂𝐶𝑉@𝑃6 =  𝑂𝐶𝑉@𝑃2 −  𝑂𝐶𝑉dp −  𝑂𝐶𝑉ds (12) 

However, there is a voltage offset that has appeared; which needs to be added to the estimated OCV 

using Eq. (13): 

𝑂𝐶𝑉 =  𝑂𝐶𝑉@𝑃6 + 𝑜𝑓𝑓𝑠𝑒𝑡 (13) 

The above-outlined OCV calculation procedure does not involve C1. But, if it is needed, it can be 

calculated using Eq. (14): 

𝐶1 =
𝑇

𝑅1
 (14) 

 

3. RESULTS AND DISCUSSION 

3.1. Test Equipment 

All the validation tests and experiments outlined in the paper were conducted on an aged lithium-ion 

battery cell, which has the characteristics reported in Table 2. 

Table 2. Characteristics of the used LiB cell 

Producer Type Nominal capacity Max voltage Mini voltage 

LG LGABD18650 3000 mAh 4.35V 3.0V 

Fig. 6 provides a representation of the test bench that was utilized for the tests. It has already been used 

in previous work for battery characterization [29]. The ESP32 is the central controller entity that 

manages both Relay1 and Relay2 for the charging and discharging path. Moreover, it also controls the 
current intensity through the charging or discharging transistor. The ADS1115 is a 16-bit 2’s 

complement ADC that reads the battery voltage and the shunt resistor voltage to get the current’s value. 

It also measures the temperature values and then sends the data to the ESP32, which transmits it to the 
computer to be stored and processed. Furthermore, a separate heating chamber can be used. The test 

bench characteristics and performance are summarized in Table 3. 

 
Figure 6. Battery test bench diagram used in this work [29]. 
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Table 3. The test bench performances 

Voltage 
accuracy 

Current 
accuracy 

Configured sampling 
rate 

Max 
voltage 

Maximum 
current 

Load hysteresis at 
1A 

Voltage 
error 

Current 
error 

0.187mA 0.153mA 10 Samples/S 5V 5A <3.5mA 0.6mV <1.2% 

3.2. Results and Discussion 

Fig. 7 highlights the results obtained from the tests outlined in Fig. 4. These tests were conducted to 
determine the best correlation between the online estimated OCV values and the true OCV values after 

two hours rest of the LiB.. These tests are performed repeatedly at different SoC within a complete 

discharge cycle at room temperature (around 23°C). The error of the estimated OCV compared to the 
two hours OCV is consistent. The resulting error can be minimized by adding an offset of 13.82 mV (the 

average error) to the estimated value of OCV. The two hours OCV, the estimated OCV, and the 

estimated OCV with the offset are shown in Fig. 7. When comparing the two hours OCV with the 
(estimated OCV with offset), the error is very low; in some points, the plots are almost superimposed. 

The error, in general, does not exceed 8 mV except for one error spike of 15.7 mV where the SoC is 

around 0.63. In addition, when the SoC is very small, the error is high. 

As it can be noticed, in the last tests where SoC is less than 0.2, the error is not consistent. This can be 

due to the rapid drop rate change of the battery OCV. Hence, this method is not recommended at low 

SoC. 

 
Figure 7. Comparison between the two hours OCV, Estimated OCV, and Estimated OCV with offset. 

Furthermore, various additional tests were performed, not just to evaluate the accuracy of the online 

OCV estimation, but also to validate the accuracy of the discussed method to estimate the SoC. Although 
the graph in Fig. 7 can be used with the next tests to map the OCV to the SoC, an additional test was 

performed to extract OCV versus SoC with better resolution. First, the battery was fully charged; 

thereafter, it was discharged by 4% of its total capacity using a 500-mA constant current. Secondly, the 

battery is left at rest for two hours before recording its OCV. Finally, these steps are carried out 
repeatedly until the battery is completely discharged; the obtained OCV versus SoC relations is recorded 

in Fig. 8. 

 
Figure 8. OCV versus the SoC of the used LiB. 
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As stated before, our proposed method cannot be used continuously to estimate the SoC. Therefore, the 

predefined pulse can only be used whenever calibration is needed. However, for experimental purposes, 

the LiB was fully charged and then completely discharged continuously (without rest) in order to assess 
the performance of the proposed method for different SoC levels. The experiment involved using a fixed 

current of 500mA with a current pulse of 300 mA for 30 seconds at each 500 seconds interval as 

illustrated in Fig. 9. This test was performed at room temperature (around 23°C) on the same battery 

used in previous tests.  

 
Figure 9. Test to calculate the Battery’s SoC. 

As can be noticed in Fig. 9, each current pulse during the discharging process had a corresponding 

battery voltage response exactly as explicated before. Thus, the OCV can be calculated at each pulse 

using the equations Eq. (2) to Eq. (13). Moreover, the obtained OCV can be mapped to the SoC using 
the lookup table plotted in Fig. 8. As a reference, the true SoC was tracked using the Coulomb-counting 

technique; thus, the SoC estimation and the Coulomb-counting SoC were compared and the related error 

is plotted in Fig. 10. The error is smaller than 1% when the battery SoC is more than 70%, and when 
SoC is between 70% and 30% the error does not exceed 2%. However, when the battery is under 30%, 

the error starts exceeding 6%. 

 
Figure 10. The estimated SoC vs the Coulomb counting SoC.  

The equivalent circuit model’s parameters during the test in Fig. 9 are calculated using the same 

equations used for the OCV estimation and they are demonstrated in Fig. 11. It can be clearly noticed 
that when the SoC drops under 30%, the model parameters shift drastically. This trend may cause the 

incompatibility of the equivalent circuit model with the battery behavior, which leads to inaccuracy in 

the online OCV estimation; and thus, a big error in SoC estimation. 
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Figure 11. 1st order RC equivalent circuit model parameters. 

Moreover, another test was conducted similar to the one illustrated in Fig. 9; but this time the battery 

was put inside a heated chamber at 40°C (as illustrated in Fig. 12).  

 
Figure 12. Test to calculate the Battery’s SoC at 40°C. 

The battery’s SoC was then obtained following the same way as before. The new results are shown in 

Fig. 13. Surprisingly, the error is less than 1% when the SoC is more than 35%, and when the SoC is 

less than 35% the error does not exceed 3.5%. Thus, this method is not affected when the temperature 

changes from around 23°C to 40°C. At each test instance, the Coulomb counting SoC was calculated by 

dividing the discharged capacity at each time over the total discharged capacity of the test.  
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Figure 13. Comparison of the estimated SoC and the Coulomb counting SoC at 40°C.  

A final test was conducted exactly the same way as the two previous tests with only one difference, 

which is changing Is to 800 mA. The final test process is shown in Fig. 14. This test was performed at a 
room temperature of around 23°C. Once the discharging is completed, the current was set to 500 mA to 

get the same depth of discharge as the previous similar tests.  

 
Figure 14. Test to calculate the Battery SoC at 23°C with Is= 800 mA. 

By changing Is to 800 mA in this test, the measured error was too big exceeding 15%, as presented in 

Fig. 15. Although this could be an issue, the error can be smaller as before by setting the offset to 69.5 

mV instead of 13.82 mV, as shown in Fig. 16. Thus, each parameter value Is or Ip should have its 

corresponding predetermined offset. 

 
Figure 15. The estimated SoC vs Coulomb counting SoC with Is=800 mA. 
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As can be seen in Fig. 16, after modifying the offset in calculating the OCV in Eq. (13), the error 

becomes less than 1% when the battery SoC is more than 75%, and 2.25% or less when SoC is between 

30% and 75%. When the SoC of the battery is low, the error goes larger than 4%. It can be deduced 
from the performed SoC tests that the change in temperature from 23°C to 40°C does not affect the SoC 

precision. However, by changing the Is current during the controlled load intervention scenario, a 

considerable error occurs. Thus, a change in the offset to the right value corresponding to Is is necessary 

to minimize the error.  

 
Figure 16. The estimated SoC vs the Coulomb counting SoC with Is=800mA, after adjusting the offset to 69.5mA. 

3.3. Comparison 

Fig. 17 summarizes the obtained results throughout our study and then compares them to some existing 
work in the literature. The conducted test results demonstrate that the suggested approach has good 

precision when it is used at SoC levels above 35%, with an average error that does not exceed 1%, and 

a maximum error of less than 2.5%. Furthermore, if this method is used only when SoC is above 75% it 
will provide an SoC estimation with an error of less than 1%, compared with the results obtained by 

[26] where the authors worked with a similar method and stated SoC error less than 2%. Whereas, in 

the review paper [30], a comparison between recent hybrid methods and recent deep learning algorithms 

was shown.  Generally, the different methods were declared with an average error ranging from 1% up 
to 6%. According to the analysis extracted in [30], the work of [31] has revealed the minimum error for 

hybrid methods and [32] has exposed the smallest error concerning deep learning algorithms. Therefore, 

our obtained results were compared to these two former references ([31] and [32]). Generally, our 
developed method error is better with an average of less than 1% under (23°C) and especially when used 

with SoC higher than 75%. Moreover, [30] concluded the review by stating that the existing methods 

can estimate the SOC at varying temperatures with an average error within 3.5% and works under 

untrained temperatures; whereas, our obtained average error didn’t exceed 1% even under 40°C. 

 
Fig. 17. Comparison between our methods and recently developed methods. 
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4. CONCLUSION AND PERSPECTIVES 

This paper described the development of an online OCV estimation method, which is based on 

temporarily forcing a predefined current curve using an auxiliary controlled load. This novel technique 

can be an ideal solution for calibrating Coulomb counting method and setting its initial SoC value. The 
obtained results were acceptable with an estimation error typically less than 2%. When employed at high 

SoC, the results improve even further to less than 1%, even with the low performance of the battery test 

system in use since some drift in the current sensor was observed. The potential advantages of the 
proposed method are its simplicity and low computational complexity. Moreover, it obtains the 

parameters of the equivalent circuit model online, which enhances the accuracy, and reliability. 

Furthermore, it is not affected by aging and temperature; since, it has been shown that the SoC precision 

is unaffected by a temperature shift from 23°C to 40°C. 

Concerning future work vision, our objective is to re-conduct all tests with a sophisticated shunt resistor 
on a calibrated and high-performance battery test bench system that can produce better results. The 

approach can also be implemented to target a real application. The work can also include tests under 

variable temperatures and estimating the OCV with a 2-RC equivalent circuit model or any other model. 
Furthermore, more tests will be carried out for better current curves’ parameters and shapes to get 

optimal performances. 
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