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Abstract: Item Response Theory (IRT) models traditionally assume a normal distribution for ability. Although 

normality is often a reasonable assumption for ability, it is rarely met for observed scores in educational and 

psychological measurement. Assumptions regarding ability distribution were previously shown to have an effect 

on IRT parameter estimation. In this study, the normal and uniform distribution assumptions for ability were 

compared for IRT parameter estimation, when the actual distribution was either normal or uniform. Uniform 

distribution assumption in 2PL model yielded more accurate estimates of ability independent of the actual ability 

distribution. Similarly, a uniform distribution assumption for ability yielded more accurate estimates of ability in 

3PL model when the actual ability distribution was uniform. For Rasch model, there was not an explicit pattern 

for comparing accuracy of ability estimates from uniform and normal distribution assumptions. 
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Introduction 
 

Item Response Theory (IRT), also known as latent trait theory, is a modern mental test paradigm which is 

extensively used in psychological measurement (Embretson, 1996), and in educational measurement (Lord & 

Novick, 1968). It also has a wide usage in other fields such as public health, ecology and sociology. Student 

ability as a latent trait is unobservable and can not be measured directly. IRT defines a continuous and 

monotonic mathematical function (Reckase, 2009) for explaining the relationship between latent ability and 

student responses to test items (Embretson & Reise, 2000).  

 

IRT models traditionally assume a normal distribution for ability while estimating ability of students. Normality 

is often a reasonable assumption for ability (Embretson & Reise, 2000). However, the normality assumption is 

rarely met for observed scores in educational and psychological measurement (e.g., Cook, 1959; Lord, 1955; 

Micerri, 1989). Micerri (1989), in example, examined 440 raw-score distributions from large-scale achievement 

and psychometric measures. Of these measures, 125 were moderately asymmetric (i.e., 28.4%), and 135 were 

extremely asymmetric (i.e., 30.7%).  

 

Estimation of parameters in IRT models can be done by employing either marginal maximum likelihood 

estimation (Bock & Aitkin, 1981) or Bayesian estimation methods. Both methods make prior assumptions 

regarding the ability distribution (Baker & Kim, 2004, de Ayala, 2009). In this study, Markov chain Monte Carlo 

estimation was used for estimation of the models, which is a Bayesian estimation technique. Bayesian estimation 

method requires specification of a prior distribution for each parameter in the model that reflects prior 

assumptions regarding that parameter. Parameter estimates may be biased if priors are poorly specified in 

Bayesian estimation (e.g., Mislevy, 1986). Therefore, a sufficiently informative prior should be used for 

obtaining accurate estimates of model parameters (Baker & Kim, 2004; Mislevy, 1986). 

 

Assumptions with respect to ability distribution have been shown to have an effect on IRT parameter estimation, 

depending on the deviation from the actual ability distribution (Reise & Yu, 1990; Roberts, Donoghue, & 

Laughlin, 2002; Sass, Schmitt, & Walker, 2008; Sen, Cohen, & Kim, 2016; Seong, 1990; Stone, 1992). The bias 

in item parameter estimates due to misspecification of actual ability distribution often can be reduced by 
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increasing sample size and test length (e.g., de Ayala & Sava-Bolesta, 1999; Kirisci, Hsu, & Yu, 2001, Reise & 

Yu, 1990; Roberts et al., 2002; Seong, 1990; Stone, 1992). 

 

In this study, the normality assumption for ability was investigated for its sufficiency to yield reasonable 

estimates of item and ability parameters, especially when the actual ability distribution was uniform. A 

simulation study was done to analyze student responses with a normal and a uniform underlying ability using a 

unidimensional IRT model for dichotomous items. These IRT models included Rasch (Rasch, 1960), two-

parameter logistic (2PL; Birnbaum, 1968), and three-parameter logistic (3PL; Birnbaum, 1968) IRT models. 

Uniform and normal ability distributions were assumed for estimation of each IRT model. Finally, item and 

ability parameter estimates from these models were compared to the generating item and ability parameters. 

Thus, normal and uniform priors were compared for accuracy of item and ability parameter estimation in 

unidimensional IRT models for dichotomous items, when the actual ability distribution was normal or uniform. 

 

 

Methods 
 

Unidimensional Item Response Theory Models 

 

The most commonly used unidimensional IRT models are the ones for dichotomous items (e.g., multiple 

choice). These models include Rasch, 2PL and 3PL models. The name of 2PL and 3PL models are based on the 

number of item parameters included in the models. Namely, the 2PL model has two item parameters, and the 

3PL model has three item parameters. The 3PL model defines the probability that an examinee  with ability   

answers item  correctly  by the following equation: 

 

 

(1) 

 

where  is the item difficulty parameter for item ,  is the item discrimination parameter for item , and  is 

the pseudo-guessing parameter for item . Fixing  parameter in 3PL model to zero reduces the 3PL model to a 

2PL model. Thus, the probability that an examinee  with ability   answers item  correctly in a 2PL model is 

defined as: 

 

 

(2) 

 

Similary, fixing the  parameter to zero and the parameter to one in a 3PL model yields a Rasch model. The 

Rasch model defines the probability that an examinee  with ability   answers item  correctly as: 

 

 

(3) 

 

 

Simulation Design  

 

Student responses to dichotomous test items were generated using R (2016) software for Rasch, 2PL and 3PL 

models. Underlying ability distributions were generated to follow either a standard normal distribution or a 

uniform distribution on the interval [-3, 3]. Two test lengths (15-item and 30-item) and two sample sizes (600 

and 2,000) were generated. Twenty-five data sets were simulated for each simulation condition. Item parameters 

used to generate student responses are given in Table 1. 

 

 

 

 

 

Table 1: Item parameter estimates used for generating student responses 
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Rasch 2PL 3PL 

 
b b a b a c 

1 2.75 2.75 1.0 2.75 1.0 0.25 

2 2.50 2.50 1.0 2.50 1.0 0.25 

3 2.25 2.25 1.0 2.25 1.0 0.25 

4 2.00 2.00 1.0 2.00 1.0 0.25 

5 1.75 1.75 1.0 1.75 1.0 0.25 

6 1.50 1.50 1.5 1.50 1.5 0.15 

7 1.25 1.25 1.5 1.25 1.5 0.15 

8 1.00 1.00 1.5 1.00 1.5 0.15 

9 0.75 0.75 1.5 0.75 1.5 0.15 

10 0.50 0.50 1.5 0.50 1.5 0.15 

11 0.25 0.25 2.0 0.25 2.0 0.10 

12 0.00 0.00 2.0 0.00 2.0 0.10 

13 -0.25 -0.25 2.0 -0.25 2.0 0.10 

14 -0.50 -0.50 2.0 -0.50 2.0 0.10 

15 -0.75 -0.75 2.0 -0.75 2.0 0.10 

 

 

Estimation of Item Parameters 

 

Estimation of parameters was done by using the Markov Chain Monte Carlo (MCMC) method as implemented 

in the computer software OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009). A burn-in period of 3,000 

iterations was used with a total number of 30,000 iterations for each model. Following priors were used for 

MCMC estimation of model parameters: 

 

 
                                              (4) 

                                            

 

Following priors were used for estimation of ability parameter, depending on the prior assumptions regarding 

ability: 

 

 
or        (5) 

 
 

The scale of ability is arbitrary in IRT estimation which is denoted as metric identification problem (de Ayala, 

2009, p.41; Baker & Kim, 2004). The metric of ability was identified using item centering method (de Ayala, 

2009). That is, the mean of item difficulty parameter estimates were fixed to zero for estimation of each model. 

The scale of parameters from estimated models were placed on scale of the generating parameters by using mean 

and sigma equating method (Marco, 1977). 

 

 

Item Recovery Analyses 

 

Item recovery analyses were conducted to compare parameter estimation from the MCMC analyses with a 

normal prior and the MCMC analyses with a uniform prior. For this purpose, accuracy indices and Pearson 

correlations were calculated to compare item parameter estimates from the MCMC analyses with a normal prior 

to the generating parameters. Similarly, accuracy indices and Pearson correlations were calculates to compare 

item parameter estimates from MCMC analyses with a uniform prior to the generating parameters. Accuracy 

indices included mean bias, mean absolute error (MAE), mean-square error (MSE), and root-mean-square error 

(RMSE). The mean bias, MAE, MSE, RMSE and Pearson correlation values were calculated across twenty-five 

replications for 15-item and 600 sample size condition, and for 30-item and 2,000 sample size condition, 

individually, for each IRT model. As an example, the equations for calculating the accuracy indices and Pearson 

correlation for item difficulty (b) are given below:  

 

  (6) 
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  (7) 

 

 

  (8) 

 

  (9) 

 

 (10) 

 

Where ( i) is the generating item difficulty parameter for item , ( ir) is the item difficulty parameter estimate for 

item  from MCMC analyses with a uniform/normal prior from rth replication, R is total number of replications 

which is 25, and n is the total number of items which is either 15 or 30. 

 

 

Results and Findings 
 

Accuracy indices and correlations for parameter recovery are calculated for item difficulty, item discrimination, 

item pseudo-guessing, and ability parameters (see Appendix A, Tables A1-A4). The MSE values did not indicate 

a substantial difference between uniform and normal prior for item difficulty for different IRT models. However, 

there were differences in MSE values for remaining item parameters and ability.  

 

Post-hoc comparisons were conducted for transformed MSE values using Tukey’s HSD procedure (see Table 2). 

Square-root or natural logarithm transformation was adopted for transformation of MSE values in order to 

achieve normally distributed residuals. Cohen’s d values for the post-hoc comparisons are reported in Table 2. 

Cohen’s d values of 0.2, 0.5, and 0.8 indicate small, medium, and large effects, respectively (Cohen, 1988). 

Cohen’s d values of 0.8 and larger were considered to reveal a substantial difference in mean MSE values 

between uniform and normal priors for a given parameter from a particular model for a given number of items 

and sample size condition. 

 

Results did not indicate a difference in mean MSE values between normal and uniform prior for item difficulty  

from Rasch model, for both 15-item and 600 sample size and for 30-item and 2,000 sample size. There was not a 

constant pattern for differences in mean MSE values between uniform and normal prior for ability from Rasch 

model. 

 

For the 15-item and 600 sample size, there was not a substantial difference in mean MSE values between 

uniform and normal prior for estimation of item difficulty and item discrimination using a 2PL model, when the 

actual distribution was uniform.  When the actual distribution was normal, uniform prior yielded larger mean 

MSE value compared to the normal prior.  For the 30-item and 2,000 sample size, for both item difficulty and 

item discrimination, the normal prior yielded larger mean MSE value when the actual distribution was uniform. 

Similarly, the uniform prior yielded larger mean MSE value when the actual distribution was normal, for both 

item difficulty and item discrimination. For estimation of ability using a 2PL model, the normal prior yielded 

larger mean MSE values compared to uniform prior for all conditions. 

 

For analyses of 15-items using a 3PL model for 600 sample size, there was not a substantial difference in mean 

MSE values between uniform and normal prior for both item difficulty and item discrimination, when the actual 

distribution was uniform. For item pseudo-guessing, uniform prior yielded larger errors compared to normal 

prior, when the actual distribution was uniform, for 15-item and 600 sample size condition. Again for 15-item 

and 600 sample size condition, uniform prior yielded larger errors compared to normal prior, when the actual 

distribution was normal, for estimation of item difficulty, item discrimination and item pseudo-guessing.  

 

For 30-item and 2,000 sample size, normal prior yielded larger mean MSE values compared to uniform prior, for 

estimation of item difficulty and item pseudo-guessing parameter, when the actual distribution was uniform. For 

item discrimination, on the other hand, there was not a substantial difference in mean MSE values between 

normal and uniform priors. Again for 30-item and 2,000 sample size, uniform prior yielded larger mean MSE 

values for item difficulty, item discrimination, and for item pseudo-guessing parameter, when the actual 
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distribution was normal. For estimation of ability in 3PL model, normal prior yielded larger mean MAE values 

compared to uniform prior, when the actual distribution was uniform. The effect sizes for the difference between 

normal and uniform priors were medium to large (i.e., between 0.5 and 0.8) when the actual distribution was 

normal.  

 

Table 2: Estimates of cohen's d values from post-hoc comparisons using tukey'd HSD procedure for transformed 

MSE values 

      Rasch 2PL 3PL 

Condition 
Actual 

Dist.  

Prior 

Dist. 
b θ b a θ b a c θ 

15-item 

and 600 

sample size 

Uniform 
Normal – 

Uniform 

0.138                            

U>N 
1.240   

U>N 

0.579  

N>U 

0.236  

U>N 
3.467   

N>U 

0.611  

N>U 

0.780  

U>N 
0.915  

U>N 

7.627   

N>U 

Normal 
Normal – 

Uniform 

0.026   

U>N 

0.455 

U>N 
1.243   

U>N 

2.819 

U>N 

7.526   

N>U 

2.299   

U>N 

5.090  

U>N 

2.319  

U>N 

0.756 

N>U 

30-item 

and 2,000 

sample size 

Uniform 
Normal – 

Uniform 

0.245   

U>N 
3.809   

U>N 

0.999   

N>U 

1.314 

N>U 

3.197   

N>U 

2.240   

N>U 

0.281 

U>N 
1.466   

N>U 

6.022    

N>U 

Normal 
Normal – 

Uniform 

0.013   

U>N 
2.092 

N>U 

1.231 

U>N 

3.914  

U>N 

3.903   

N>U 

2.998   

U>N 

7.894   

U>N 

1.056   

U>N 

0.727  

U>N 

Note:  1) Dist.: Distribution, N: Mean parameter estimate for the model with normal prior, U: Mean parameter 

estimate for the model with uniform prior, b: Item difficulty,  a: Item discrimination, c: Item pseudo-guessing,  

θ: Ability 2) Large effect sizes (i.e., larger than .80) are shown in bold. 

 

 

Conclusion 
 

The primary purpose of using IRT models is to locate students on a continuous scale by estimating their ability 

(Baker, 2001). This study compared uniform and normal distribution assumptions for estimation of item and 

ability parameters in IRT models. Assuming a uniform distribution for ability led to more accurate estimates of 

ability in the 2PL model no matter if the actual ability distribution was uniform or normal. Similarly, assuming a 

uniform distribution for ability in the 3PL model yielded more accurate estimates of ability when the actual 

ability distribution was uniform. However, the difference between assuming a normal or uniform distribution for 

ability was only moderate for estimation of ability, when the actual distribution was normal. For the Rasch 

model, there was not an explicit pattern for comparing accuracy of ability estimates from uniform and normal 

distribution assumptions. These results suggest using a uniform distribution assumption in a 2PL model in order 

to achieve more accurate estimates of ability. Similarly, a uniform distribution assumption for ability may be 

used for achieving more accurate estimates of ability in a 3PL model if the actual ability distribution is not 

known.  
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Appendix A 
 

 

Accuracy Indices and Correlations 

 

Table A1: accuracy indices and correlations for 15-item and 600 sample size when actual distribution is uniform 

 
MRM 2PL 

 
Item difficulty Ability Item difficulty Item discrimination Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 1.037 0.977 0.000 0.000 0.036 0.030 0.900 0.932 

MAE 0.083 0.086 1.078 1.011 0.073 0.080 0.124 0.114 0.916 0.949 

MSE 0.011 0.012 1.506 1.405 0.009 0.011 0.025 0.022 1.064 1.145 

RMSE 0.107 0.109 1.227 1.185 0.092 0.107 0.159 0.149 1.031 1.070 

Cor. 0.995 0.995 0.931 0.930 0.996 0.995 0.945 0.961 0.957 0.953 

 

Table A1 Continues 

 
3PL 

 
Item difficulty Item discrimination 

Item pseudo-

guessing 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 -0.123 -0.151 0.001 -0.018 0.922 1.039 

MAE 0.124 0.136 0.234 0.205 0.035 0.030 0.978 1.059 

MSE 0.026 0.033 0.078 0.061 0.002 0.001 1.295 1.477 

RMSE 0.162 0.183 0.280 0.246 0.043 0.038 1.138 1.215 

Cor. 0.989 0.986 0.869 0.953 0.735 0.868 0.933 0.930 

 

Table A2: Accuracy indices and correlations for 15-item and 600 sample size when actual distribution is normal 

 
MRM 2PL 

 
Item difficulty Ability Item difficulty Item discrimination Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 0.848 0.901 0.000 0.000 -0.172 -0.047 0.862 0.978 

MAE 0.078 0.078 0.918 0.921 0.147 0.104 0.257 0.154 0.876 0.983 

MSE 0.010 0.010 1.144 1.110 0.033 0.021 0.099 0.038 0.969 1.145 

RMSE 0.099 0.099 1.069 1.054 0.182 0.145 0.314 0.195 0.985 1.070 

Cor. 0.996 0.996 0.833 0.835 0.986 0.991 0.790 0.900 0.900 0.908 

 

Table A2 Continues 

 
3PL 

 
Item difficulty Item discrimination 

Item pseudo-

guessing 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 -0.114 -0.150 0.020 0.001 0.967 1.062 

MAE 0.230 0.136 0.447 0.210 0.049 0.040 1.007 1.070 

MSE 0.075 0.035 0.288 0.061 0.004 0.002 1.389 1.407 

RMSE 0.274 0.187 0.537 0.247 0.061 0.048 1.179 1.186 

Cor. 0.968 0.985 0.226 0.913 0.432 0.656 0.868 0.875 
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Table A3: Accuracy indices and correlations for 30-item and 2,000 sample size when actual distribution is uniform 

  MRM 2PL 

  Item difficulty Ability Item difficulty 

Item 

discrimination Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 1.136 1.000 0.000 0.000 -0.002 0.037 1.003 1.029 

MAE 0.048 0.050 1.145 1.005 0.046 0.057 0.063 0.079 1.006 1.034 

MSE 0.004 0.004 1.548 1.249 0.004 0.006 0.007 0.011 1.156 1.235 

RMSE 0.059 0.062 1.244 1.117 0.060 0.075 0.081 0.104 1.075 1.112 

Cor. 0.998 0.998 0.958 0.960 0.998 0.998 0.982 0.985 0.975 0.971 

 

Table A3 Continues 

 
3PL 

 
Item difficulty Item discrimination 

Item pseudo-

guessing 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 -0.172 -0.036 -0.002 -0.019 0.987 1.043 

MAE 0.076 0.113 0.207 0.188 0.019 0.025 0.999 1.049 

MSE 0.010 0.023 0.059 0.052 0.001 0.001 1.222 1.357 

RMSE 0.099 0.153 0.242 0.229 0.025 0.033 1.106 1.165 

Cor. 0.996 0.990 0.928 0.973 0.919 0.910 0.958 0.953 

 

Table A4: Accuracy indices and correlations for 30-item and 2,000 sample size when actual distribution is normal 

 
MRM 2PL 

 
Item difficulty Ability Item difficulty 

Item 

discrimination 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0 0 0.838 0.945 0 0 -0.117 -0.014 0.945 1.003 

MAE 0.047 0.047 0.863 0.948 0.090 0.061 0.158 0.076 0.946 1.003 

MSE 0.003 0.003 0.935 1.071 0.013 0.009 0.037 0.009 1.023 1.115 

RMSE 0.059 0.059 0.967 1.035 0.115 0.093 0.191 0.095 1.011 1.056 

Cor. 0.999 0.999 0.904 0.906 0.994 0.996 0.956 0.976 0.935 0.944 

 

Table A4 Continues 

 
3PL 

 
Item difficulty Item discrimination 

Item pseudo-

guessing 
Ability 

Prior Uniform Normal Uniform Normal Uniform Normal Uniform Normal 

Bias 0.000 0.000 0.032 -0.032 0.025 0.005 0.932 0.968 

MAE 0.182 0.088 0.470 0.145 0.036 0.029 0.941 0.969 

MSE 0.047 0.016 0.364 0.034 0.002 0.001 1.101 1.087 

RMSE 0.216 0.126 0.604 0.185 0.043 0.038 1.049 1.043 

Cor. 0.980 0.993 -0.058 0.922 0.829 0.806 0.910 0.921 

 

 


