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Abstract

In this paper, Cattaneo-Hristov heat diffusion is discussed in the half plane for the first time, and
solved under two different boundary conditions. For the solution purpose, the Laplace, and the sine-
and exponential- Fourier transforms with respect to time and space variables are applied, respectively.
Since the fractional term in the problem is the Caputo-Fabrizio derivative with the exponential kernel,
the solutions are in terms of time-dependent exponential and spatial-dependent Bessel functions.
Behaviors of the temperature functions due to the change of different parameters of the problem are
interpreted by giving 2D and 3D graphics.
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1 Introduction

Heat conduction, also called diffusion, is the exchange of thermal energy between different
physical systems. The classical theory of heat conduction is based on Fourier’s law, that is, almost
200 years ago. Fourier’s law implies that infinitesimal heat changes propagate at an infinite
speed. This result makes the law a paradox that cannot specifically represent microscopic heat
distribution. The physical validity of this law is for heat transfer models in low dimensions and
also in macroscopic scales.
To remove the inconsistency of Fourier’s law for heat transfer occurring in non-homogeneous
mediums or for microscopic scales, different non-local dependencies between heat flux and
temperature gradient have been proposed. As a result, different types of heat conduction equations
have emerged and this has led to the development of non-classical theories on heat conduction. In
this sense, fractional operators with singular or non-singular kernels have played a significant
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role in various types of real-world problems [1–6]. For instance, in a thin rectangular plate the
non-local relation between the heat flux q (t) and the temperature gradient gradT =

[
∂T
∂x

∂T
∂y

]
can

be given by [7]

q (t) = −k

t∫
0

K (t − τ) gradT (x, y, τ) dτ, (1)

where k is the coefficient of thermal conductivity. When this relation is combined with the laws of
conservation of energy, it leads to the following generalized heat conduction equation [8]:

∂T
∂t

= a

t∫
0

K (t − τ)∆T (x, y, τ) dτ. (2)

in which a is the thermal diffusivity coefficient. The decisive factor here is the type of kernel
function K which physically corresponds to the memory effects in heating systems. Some leading
non-local laws with various types of kernel functions can be summarized as follows:

q (t) = −k

t∫
0

gradT (x, y, τ) dτ (Full memory/without fading memory [9]), (3)

q (t) =


k

Γ(α)
∂
∂t

t∫
0
(t − τ)α−1 gradT (x, y, τ) dτ, 0 < α ≤ 1,

− k
Γ(α−1)

t∫
0
(t − τ)α−2 gradT (x, y, τ) dτ, 1 < α ≤ 2,

(long-tail memory [10]), (4)

q (t) = −
k
ξ

t∫
0

exp
(
−

t − τ

ξ

)
gradT (x, y, τ) dτ (short-tail memory [11, 12]), (5)

where ξ denotes the finite relaxation time of the heating process. In Eq. (3), the kernel is constant
K = 1 so there is no fading in memory. In Eq. (4), the relations between heat flux and temperature
gradient have long-term memory power kernels K = (t − τ)α−1 and K = (t − τ)α−2. Thus,
constitutive relations given in Eq. (4) led to the emergence of the heat equation with Caputo
fractional derivative. Analytical solutions of these equations with different initial and boundary
conditions and in different coordinate systems have been studied in detail by Povstenko [13–17].
Furthermore, the thermal stresses due to fractional heat conduction were researched [18–22], and
even the optimal control problem of these thermal stresses was investigated later [23, 24].

The integro-differential equation with Jeffrey kernel K = exp
(
− t−τ

ξ

)
based on the constitutive

law stated in Eq. (5) was proposed for the damped heat diffusion in rigid conductors. A few
years ago, Hristov conceived of relating the Jeffrey kernel in the Cattaneo model to the Caputo-
Fabrizio fractional derivative that has a non-singular kernel [25]. The obtained model is called the
Cattaneo-Hristov heat diffusion equation in the literature. This development shows that different
constitutive equations can be reconstructed with non-singular fractional derivatives [26–28] which
was detailed studied by researchers [29, 30]. In fact, this is a wise answer to understanding the
physical background of fractional derivatives.
There are limited but undoubtedly valuable studies in the literature to find the analytical and
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numerical solutions of the Cattaneo-Hristov heat equation [31–37] in one dimensional space.
Although the Cattaneo-Hristov heat equation was constructed on the half-real line, it should be
enlarged to the other coordinates according to the geometry of the medium heat conduction acting.
In this manner, Avci [38] investigated the solution process of the Cattaneo-Hristov heat diffusion
on an axial symmetrical finite cylinder and also analyzed the thermal stresses due to the heat
sources applied from the boundaries of the cylinder. Motivated by this fact, the current study aims
to represent the elastic heat diffusion in the half-plane. Therefore, this work focuses on solving the
two-dimensional Cattaneo-Hristov equation with the Dirichlet boundary conditions by Laplace,
sine- and exponential- Fourier integral transforms. To our knowledge, this is the first study on the
two-dimensional Cattaneo-Hristov diffusion equation, and therefore it is possible that the work
will contribute to the technological development of thermally elastic film materials.
On the other hand, we aim to investigate the harmonic temperature effect, which is a remarkable
concept in the classical or fractional diffusion processes, for the Cattaneo-Hristov diffusion model.
The behavior of the classical diffusion under a harmonic effect was first investigated by Ångström
[39]. This physical phenomenon is referred to as "‘oscillatory diffusion"’ or "‘diffusion waves"’ in
the literature. The harmonic effect on diffusion can be analyzed in two ways. In the first one, a
harmonic source function is stipulated [40, 41]. On the other hand, it is considered that there is
a harmonic effect at the boundary [42]. In [43], all possible harmonic effects are analyzed for a
one-dimensional diffusion problem. The harmonic effect on the fractional diffusion models has
been studied in the recent few years [44–47]. It should be noted that these fractional diffusion
equations were described by Caputo derivative with the singular kernel. As far as is known, the
current study is the first to examine the Cattaneo-Hristov diffusion process modeled with the
Caputo-Fabrizio derivative under a harmonic boundary effect.
The paper is organized as follows: In Section 2, we give some preliminary definitions required for
the formulation of problems. In Section 3, we obtain the fundamental solutions to the Dirichlet
problem for the Dirac pulse and non-moving harmonic pulse, then evaluate the behavior of tem-
peratures according to the change of order of the fractional derivative by the graphics. Moreover,
we discuss the results from both the mathematical and physical perspectives in this section. Finally,
we provide the concluding remarks in Section 4.

2 Preliminaries

The birth of fractional analysis occurred per se in the solution of Abel’s tautochrone problem. In
fact, Abel was unaware that he had found a new theory today known as the Riemann-Liouville
fractional calculus [48]. This clearly shows us that fractional operators actually arise naturally
when trying to understand physical phenomena. Fractional operators are particularly effective
tools for understanding memory effects, clarifying hereditary properties, and modelling transport
processes in complex environments. What is important is the accurate use and interpretation of
fractional operators that differ depending on their kernel functions. As is known, the leading
Riemann-Liouville and Caputo operators of conventional fractional calculus include singular
kernels denoting long-tail memory. On the other hand, computational difficulties arising from the
nature of these derivatives and their weakness in model processes complying with the exponential
decay law have led to the emergence of the Caputo-Fabrizio and Atangana-Baleanu fractional
derivatives with regular kernels.
Now, we remind the Caputo-Fabrizio fractional derivative, which also models the Cattaneo-
Hristov heat diffusion discussed in the present study.

Definition 1 [49] Let f ∈ H1 (0, t) and 0 < α < 1, then the Caputo-Fabrizio fractional derivative is



284 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 281–296

defined by

CFDα
t f (t) =

N (α)

1 − α

t∫
0

d f (s)
ds

exp
(
−

α

1 − α
(t − s)

)
ds, (6)

where N (α) denotes the normalization function satisfying N (0) = N (1) = 1.

The closed-form solution to the problem will be obtained using integral transforms. Since the
Laplace transform is applied for the time variable, we indicate the Laplace transform property of
the Caputo-Fabrizio derivative is as follows:

L
{

CFDα
t f (t)

}
(s) =

s f ∗ (s)− f (0)
s + α (1 − s)

, 0 < α ≤ 1, (7)

in which asterisk denotes the Laplace transform of the function. For the Dirichlet problems
considered in the half plane, we apply the exponential Fourier transform via y variable [50]:

F { f (y)} = f (η) =

∞∫
−∞

f (y) eiyηdy, −∞ < y < ∞, (8)

with its inverse transform:

F−1
{

f (η)
}
= f (y) =

1√
2π

∞∫
−∞

f (η) e−iyηdη. (9)

Also, the exponential-Fourier transform of the second-order derivative is reminded as

F
{

d2 f (y)
dy2

}
= −η2 f (η) . (10)

Then, we use the following sine-Fourier transform for the Dirichlet problem [50]:

F { f (x)} = f̃ (ξ) =

∞∫
0

f (x) sin (xξ) dx, 0 ≤ x < ∞, (11)

with the relevant inverse transform:

F−1
{

f̃ (ξ)
}
= f (x) =

2
π

∞∫
0

f̃ (ξ) sin (xξ) dξ, (12)

Since the sine-Fourier transform is used in the domain 0 ≤ x < ∞ for a prescribed Dirichlet
boundary condition, we apply the following property

F
{

d2 f (x)
dx2

}
= −ξ2 f̃ (ξ) + ξ f (0) . (13)
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3 Statement of the problem

In this section, we aim to obtain the closed-form solutions to the Cattaneo-Hristov heat conduction
problem in the half-plane. For this purpose, let us consider the initial boundary value problem
defined as follows:

∂T(x, y, t)
∂t

= a1∆T (x, y, t) + a2 (1 − α) CFDα
t ∆T (x, y, t) , (14)

0 < x < ∞,−∞ < y < ∞, 0 < t < ∞,

t = 0 : T (x, y, 0) = 0, (15)

x = 0 : T (0, y, t) = f (y, t) , (16)

where ∆T = ∂2T
∂x2 + ∂2T

∂y2 is the Laplacian of temperature function. Firstly, applying the exponential-
Fourier transform with respect to the spatial coordinate y and considering the property Eq. (10)
lead to

∂T (x, η, t)
∂t

= a1

(
∂2T (x, η, t)

∂x2 − η2T (x, η, t)
)

+a2 (1 − α)CF Dα
t

(
∂2T (x, η, t)

∂x2 − η2T (x, η, t)
)

. (17)

with the transformed initial and boundary conditions:

t = 0 : T (x, η, 0) = 0,

x = 0 : T (0, η, t) = f (η, t) .

Then, the sine-Fourier transform is applied according to the spatial coordinate x under the relation
Eq. (13) and the result is obtained as follows:

∂T̃(ξ, η, t)
∂t

= a1

(
−
(

ξ2 + η2
)

T̃(ξ, η, t) + ξ f (η, t)
)

+a2 (1 − α)CF Dα
t

(
−
(

ξ2 + η2
)

T̃(ξ, η, t) + ξ f (η, t)
)

. (18)

Finally, applying the Laplace transform to the time variable t gives the transformed solution:

T̃
∗
(ξ, η, s) = ξ

(aβs + a1α) f
∗
(η, s)− a2β f (η, 0)

βs2 + [aβ (ξ2 + η2) + α] s + a1α (ξ2 + η2)
, (19)

where α is the order of the Caputo-Fabrizio derivative, a1 and a2 are some real constants such that

a1 =
k1

Cpρ
, a2 =

k2

Cpρ
, (20)

for effective thermal conductivity k1 and elastic conductivity k2. Also, Cp is the specific heat and ρ

is the density of particles on the plate.

β = 1 − α, a = a1 + a2. (21)
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Inversion of the transformations gives the closed-form solution

T(x, y, t) =
√

2
π
√

π

∞∫
−∞

∞∫
0

T̃(ξ, η, t)e−iyη sin (xξ) dξdη, (22)

which can be arranged using Euler’s formula as

T(x, y, t) =
2
√

2
π
√

π

∞∫
0

∞∫
0

T̃(ξ, η, t) cos (yη) sin (xξ) dξdη. (23)

To simulate the two-dimensional Cattaneo-Hristov diffusion equation, we consider two particular
cases. In the 1st case, our the aim is to extend the original Cattaneo-Hristov heat diffusion problem
considered for x ∈ (0,∞) to the half-real plane (x, y) ∈ (0,∞) × (−∞,∞). In the 2nd case,
we intend to examine the effect of the harmonic temperature function at the boundary on the
Cattaneo-Hristov model, which has also an important effect on both classical and fractional heat
conduction problems.

Case 1: Fundamental solution to two-dimensional Cattaneo-Hristov heat diffusion

Here, we consider the Dirac delta pulse at the boundary given by Eq. (16) for Cattaneo-Hristov
heat diffusion equation:

T (0, y, t) = f (y, t) = δ (y) . (24)

Substituting the exponential Fourier and Laplace transforms of this condition in Eq. (19) gives

T̃
∗
(ξ, η, s) = ξ

a1 (βs + α)

βs3 + [aβ (ξ2 + η2) + α] s2 + a1α (ξ2 + η2) s
. (25)

Next, inverting the Laplace transform reveals

T̃(ξ, η, t) =
ξ

ξ2 + η2

{
1
2

(
C (ξ, η)

B (ξ, η)
− 1

)
exp

(
B (ξ, η)− A (ξ, η)

2β
t
)
+ 1

−
1
2

(
C (ξ, η)

B (ξ, η)
+ 1

)
exp

(
−B (ξ, η)− A (ξ, η)

2β
t
)}

, (26)

where the notations defined in the following are used only for convenience

A (ξ, η) = aβ
(

ξ2 + η2
)
+ α, (27)

B (ξ, η) =

√
aβ2 (ξ2 + η2)

2
+ 2 (a2 − a1) aβ (ξ2 + η2) + α2, (28)

C (ξ, η) = (a2 − a1) β
(

ξ2 + η2
)
− α. (29)
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To make the solution suitable for numerical calculations, we need to reduce the double integral
in Eq. (23) to a single integral by converting it to polar coordinates. For this purpose, we first
suppose that

ξ = ρ cos θ, η = ρ sin θ, (30)

and so we obtain

T(x, y, t) =
2
√

2
π
√

π

∞∫
0

π
2∫
0

T̃1(ρ, t) cos (yρ sin θ) sin (xρ cos θ) ρ2 cos θdθdρ, (31)

where T̃1 = T̃/ξ and since ρ2 = ξ2 + η2 from Eq. (30), T̃1 can be written as the function of (ρ, t)
according to Eqs. (26)-(29). By using the change of the variable υ = sin θ and considering the
following integral relation [51, 52]:

1∫
0

cos (yρυ) sin
(

xρ
√

1 − υ2
)

dυ =
π

2
x√

x2 + y2
J1

(√
x2 + y2

)
, (32)

in which J1 is the first kind Bessel function of order 1. Thereby, the closed-form solution is arrived
at as

T (x, y, t) =

√
2
π

∞∫
0

T̃1(ρ, t)
x√

x2 + y2
J1

(√
x2 + y2

)
ρ2dρ. (33)

and solved by numerical computation of the improper integral. Then, the results are depicted in
Figure 1.

In Figure 1(a), we aim to illustrate the dependence of heat diffusion on the variation of order
of fractional derivatives. The 2D graphics show the cross-section of the temperature surface for
the arbitrary values of x = y = 0.5. Note that the α parameter plays two critique roles in the
discussed model, one as a coefficient and the other to determine the influence of fading memory.
As α approaches 1, the damping memory effect weakens due to the coefficient role of α, and the
temperature function tends to behave as in the classical heat equation. In the case of α = 1, the
elastic conductivity constant k1 in the coefficient a1 also loses its effect.

In Figure 1(b), the behavior of the temperature surface is shown for the arbitrary values of
α = 0.6 and t = 0.5. In this graph, the instantaneous Dirac heat pulse at the boundary of the
region is clearly visible. For evolution equations such as heat conduction, examining the effects
of instantaneous changes at the beginning or at the boundary is important both in obtaining
fundamental solutions and in the sense of physical behavior. Due to this importance, the Dirac
delta pulse effect is examined in different classical or fractional heat conduction models, as in the
current study.
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Figure 1. Temperature function for Dirac delta pulse at the boundary

Case 2: Non-moving harmonic temperature at the boundary

In this case, the behavior of the Cattaneo-Hristov heat diffusion is investigated under the effect of
a time non-moving harmonic boundary temperature which is described by

T (0, y, t) = f (y, t) = δ (y) exp (iωt) , (34)
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where ω denotes the angular frequency. Substituting integral transforms of the condition Eq. (34)
into the transformed solution Eq. (19) and rearranging the results give

T̃
∗
(ξ, η, s) = ξ

{[
a1βs2 + a1αs − a2βω2

]
+ i [aβωs + a1αω]

}
/
{

βs4 +
[

aβ
(

ξ2 + η2
)
+ α

]
s3 +

[
βω2 + a1α

(
ξ2 + η2

)]
s2

+
[

aβ
(

ξ2 + η2
)
+ α

]
ω2s + a1α

(
ξ2 + η2

)
ω2

}
. (35)

For demonstration purposes, we focus on the real part of the transformed temperature function
for the subsequent calculations. Inverting the Laplace transform of the real part of Eq. (35), one
can obtain

T̃(ξ, η, t) =
ξ

D (ξ, η)

{
E (ξ, η)

2B (ξ, η)

[
exp

(
B (ξ, η)− A (ξ, η)

2β
t
)
− exp

(
−B (ξ, η)− A (ξ, η)

2β
t
)]

+ F (ξ, η) sin ωt +G (ξ, η) cos ωt

−
G (ξ, η)

2

[
exp

(
B (ξ, η)− A (ξ, η)

2β
t
)
− exp

(
−B (ξ, η)− A (ξ, η)

2β
t
)]}

, (36)

where the notations A (ξ, η) and B (ξ, η) are given by Eqs. (27) − (28) and the other abbreviations
are as follows:

D (ξ, η) =
(

a2β2ω2 + a2
1α2

) (
ξ2 + η2

)2
+ 2a2αβω2

(
ξ2 + η2

)
+ β2ω4 + α2ω2,

E (ξ, η) =
[

a2 (a1 − a2) β3ω2 − a2
1a2α2β

] (
ξ2 + η2

)2

+
[

a (a1 − 2a2) αβ2ω2 − 2a1 (a1 − a2) αβ2ω2 − a2
1α3

] (
ξ2 + η2

)
− 2a2β3ω4 − a2α2βω2,

F (ξ, η) = aβ2ω3 + a1α2ω,

G (ξ, η) =
(

a2β2ω2 + a2
1α2

) (
ξ2 + η2

)2
+ a2αβω2.

Substituting the function T̃ (ξ, η, t) into Eq. (23) and using the same calculations in Eqs. (30)-(32)
by indicating T̃2 (ξ, η, t) = T̃ (ξ, η, t) /ξ led to the closed-form solution as

T (x, y, t) =

√
2
π

∞∫
0

T̃2(ρ, t)
x√

x2 + y2
J1

(√
x2 + y2

)
ρ2dρ, (37)

which is also depicted by calculating the improper integral numerically.
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Figure 2. Time dependent temperature functions for non-moving harmonic boundary at x = y = 0.5 via
variations of α and w, respectively.

Similar to Figure 1(a), Figure 2(a) shows also the dependence of temperature on the variation of α

in the case of a non-moving harmonic temperature source at the boundary. Figure 2(b) shows the
temperature response due to the change of angular frequency acting in the harmonic boundary
temperature. As the angular frequency decreases, the wavelength of the temperature increases.
It can be seen in both figures that temperature exhibits wave behavior similar to the boundary
condition. This result clearly indicates Cattaneo’s theory that wave phenomena may also occur in
heat diffusion.
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Figure 3. Temperature surfaces with non-moving harmonic boundary for α = 0.6 at t = 0.5 and t = 1.5,
respectively.

The time cross-section of the elastic heat diffusion at arbitrarily chosen times t = 0.5 and t = 1.5 is
demonstrated in Figure 3. The wavelike temperature behaviour can be clearly seen for α = 0.6 in
both figures. This case can be similarly observed from the other α values depicted in Figure 2(a).

4 Conclusion

From the engineering point of view, it is important to know the mechanical and thermal behaviors
of the materials under a heat force. These properties can be analyzed experimentally or with
mathematical tools. In terms of mathematical analysis, it is crucial to exact modeling of the heat
diffusion of the material. Although the Cattaneo-Hristov equation that models heat diffusion
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with fading memory was constructed on the real line that physically corresponds to a wire, it is
also significant to know the heat diffusion of a plate or a film with a fading memory effect. This
situation can be generalized according to the geometry of materials, such as cylinders, spheres,
cubes etc., which vary via the application area of the engineering problems. Therefore, this
paper concerns the Cattaneo-Hristov diffusion equation in the half-plane. Two types of boundary
conditions have been considered for the Dirichlet problem which are Dirac delta and non-moving
harmonic temperatures, respectively. The closed-form solutions are arrived at by applying Fourier
and Laplace integral transforms. The temperature functions have been illustrated under the
variations of the model parameters using MATLAB software. These analyses performed for the
two boundary temperatures can also be considered for different boundary conditions and different
coordinate systems in future works.
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