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CHOLESKY ALGORITHM OF A LUCAS TYPE MATRIX
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ABSTRACT. Many generalizations have been made for Fibonacci and Lucas
number sequences and many properties have been found about these sequences.
In the article , the authors obtained many features of these sequences with
the Cholesky decomposition algorithm, using the 2 x 2 matrix belonging to a
generalization of the Fibonacci sequence. In this study, it is shown that many
different features can be found by using a 2 x 2 matrix belonging to the Lucas
number sequence with the same method.

1. INTRODUCTION

Most identities for the Fibonacci number sequence F,, and the Lucas number se-
quence L,, are obtained by changing the recursion relations and/or initial conditions

of the sequences and making sequence generalizations ( - , ﬂgﬂ— , , —
27)).

The Fibonacci numbers F,, are defined by a quadratic recurrence relation:
Fn+2:Fn+1+Fn7nZO (1)

with initial conditions Fy = 0 and Fy = 1, see [15]. Binet formula for the numbers
F, is

an — g
R )
where o = 1+2‘/5 and 3 = 1’2\/5 . From here, it can be noted that and
af = -1,
a+p = 1,

a—pB = /5.
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We also recall [15] that

L(n—zli/% i1
Fn - ( . ) 5
7=0 J

where || denotes the greatest integer function. Using the Binet formula, we can
write the following equation for negative indices:
F = (-1)""'E,.
Analogously, the numbers L,, are defined by a quadratic recurrence relation:
Lyyo=Lpy1+ Ly, n>0

with initial conditions Ly = 2, L; = 1, see [17]. Binet formula for the numbers L,
is

L,=a"+ 5" (3)
Also the F,, and L, numbers satisfied following identity
L,=F,_1+ F,y1. (4)
Morever, from above equalities we have that
L_,=(-1)"L,.

In [8] and [28|, the Cholesky decomposition (Cholesky factorization) is defined
as: If A € R} is symmetric positive definite matrix, then there exists a unique
lower triangular matrix G € R” with positive diagonal entries such that 4 = GGT.
Here G7 is the transpose matrix of the G. The calculation of G and G7 matrices
is called the Cholesky algorithm.

Matrix method is also very useful method to obtain the properties of Fibonacci
and Lucas sequences, see [6], [13], [16], |18], [22], [24], [26]. In particular, Horadam
and Flipponi obtained some new features for Fibonacci and Lucas sequences by
using the matrix M}, which is created by the Cholesky matrix decomposition algo-
rithm [13]. While doing this work they used the k-Fibonacci generalized sequence
and the M matrix belonging to this sequence.

We observed that the application of the same method for the M matrix con-
stituting the Lucas sequence creates different sequence properties. In this study,
the matrix functions of the zM]' matrix sequence, which was created by using the
M = i) ; } matrix that produced the Lucas sequence, were examined and new
results were obtained.

2. MAIN RESULTS

From [16] let’s consider the 2 x 2 symmetric matrix

u[ 3]
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which has eigenvalues o + 2 and g + 2. For a positive integer n,

. 5t [ L£:1 L{:il } , if n is odd, 5
5% [ F]’;“‘l FF” ] . if n is even,
n n—1

see |16]. Now let us define the matrix sequence My, in the following steps.
Let My := M, therefore

3

MIZM:|:1

DN —
| I

and Cholesky decomposition of M; is obtained as

_ T_ ay 0 ay C1
]\41—7_‘1111_[01 b1:||:0 b1:|’

where T is a lower triangular matrix and 7} 1T is the transpose matrix of T1. So Tt
is an upper triangular matrix. The a1, by and ¢; components of T} easily obtained
with the matrix equation above. In fact, the system

a? = 3,
aicy = 1,
b% + c% = 2

can be written, whose solution is

a1 = :l:\/§

c1T =

bl = :l:\/?*C%

Any of the four solutions obtained creates a Cholesky decomposition of the sym-
metric matrix Mj.

We also know that the product of a lower triangular matrix and an upper trian-
gular matrix is generally not commutative, so it is known that the inverse product
TIT Ty gives a symmetric matrix My similar to but different from M; [7]. If we

consider the b, = \/g solution, we get

SIER|

when b; = —\/g the off-diagonal components of M, are negative.
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In contrast, My can be decomposed similarly so that

Me=rr] = | 0L ]

C2 b2 0 bg
where
10
ay = =+ 3
VvV V6
o = 2 =x¥
a9 6
6
by = ig.

The inverse product T: 2T T5 gave rise to a matrix M3 with the sign of the off-diagonal
entries based on bs.

If we repeat such a procedure indefinitely, we get the sequence (Mj)]" of the 2x
2 symmetric matrices. Henceforth M} be called the k-order Lucas-type Cholesky
algorithm matrix.

Due to the unclear sign of Cholesky decomposition, the above matrix sequence
is not the only possible result of applications of the Cholesky algorithm to M.
However, other possible outcomes may differ only in the sign of the off-diagonal
components of the above matrix sequence, in any term of the sequence except the
first term. However, from now on we will only consider the positive definite (M)
matrix sequence.

Since the matrices My, are similar, they have the same eigenvalues. M}, tends to
a diagonal matrix containing these eigenvalues as k tends to infinity.

The following Lemma can be easily obtained from [15] and [27]

Lemma 1. Let k be a positive integer, then
i) If k is odd, then Ly_1Lgy1 = 5sz + 1.

i1) If k is even, then 5Fj11 = L2§+1

iii) If k is even, then L} + 1 = Fyiq <L2§71 + ng) .

+ L2,
2

Theorem 1. Let k be positive integer, then

L 1
1| Le+ ey
yan [ 1 Lis } , if k is odd,
M= L3 . +1I13% Vb
g+l 2

1 . .
c , if k is even.

Vb L3 + L3
9 -1

Proof. From the M; and M, matrices we found earlier, it can be seen that the
equality is achieved in the case of kK =1 and k = 2.
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If k£ is odd:
Ly T
My = — =TT,
TR [ 1 Lig Rk
hence, using Lemma 1, we obtain
vV Lik+1 0
T = VFy
1 V5 VFy
\/FkLkJrl \/Lk+1
Therefore
vV Lkt 1 v Lyt
M — 7' — VFx VFrLii VFy 0
k+1 Ay 0 J5 VFe 1 NG VFy
\/m \/FkLk+1 \/Lk+1
2
I U I
Lyy1 V5 5Fy
Here, using the Lemma 1
1 L2k+1 1 + L%-H \/g
Miqa T 2 2
Lk+1 ) Lk+1 + Lk—l
2 2
is obtained.
If k£ is even: i
1 [ L3, + LA Vb
M, = — 3+ 2 ) )
Lk \/5 Lk +Lﬁ 1
L 2
hence, using Lemma 1, we obtain
i vV Frt1
| Vom0
1 VL
L m\/Fk+1 \/Fk+1
Therefore
vV Fre+1 1 /Frt1
Mysw = T Tp= Ve VIiy/Fiss VO 0
+1 k Lk 0 VEx 1 VL
v/ Fri1 \/E\/Fk+1 \/Fk+1
B 1 5F§El+1 1
= k
Fk+1 1 Ly
_ 1 Ly 1
Fep | 1 Le |
Here, the equation Lo Ly = 5F7, | +1 obtained from Ly, Lo, = 5F5, , + L2

in |15 p.109] is used. O
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Theorem 2. If we apply the Cholesky algorithm to M™, we obtain the followings:

5% | Lotk Ln if k is odd and n is odd
Fe Ln Ln—k ’ ’
3 | F F
52 n+k n . . ;
- { FOE } , if k is odd and n is even,
(M7 = 58 | Lk Fu/5 if k is even and n is even
Lk Fn\/g Ln—k ’ ’
2zt [ 5E, L5 - :
5 2 n+k n
I [ L.\V5 BF. . ] , if k is even and n is odd.

We can also see that the equation (My)™ = (M™), and for simplicity we will use
the notation MJ' := (My)" = (M™)y.

Proof. It can be easily seen by induction using Theorem 1 and equation (5) . O

Here, suppose the above power equation is true for some value of n, say N.
In this case, (My)Y = (MY);. From this, it can be easily seen that (M;)N*+!1 =
My (Mp)N = Mp(MN), = (MN*1) so if the above power equation is true for N,
it is also true for NV + 1.

2.1. Functions of the Matrix M. From the theory of functions of matrices |7,
if the function f is a function defined on the spectrum of a 2 x 2 matrix A = [a;;]
with distinct eigenvalues \; and Ag, then

f(A) = X = [z35] = col + c1 4, (6)
where I is the 2 x 2 identity matrix and the coefficients ¢y and ¢; are given by the
solution of the system

Co + Cl>\1 = f()\l),
co+ecire = f(h).
Therefore
T11  T12 — e 10 s air a2
To1  T22 01 as1 a2 |’
_ Co + c1a11 C1012 )
c1a21 Co + cra22

From the last equation, we get

r11 = Co+ 1011,

T2 = C1G12,



CHOLESKY ALGORITHM OF LUCAS TYPE MATRICES 137

T21 = C10621,
Tz = Co -+ Ci1022.

In equation (6), let us write A\; and A instead of A and find ¢y and ¢; values

(B+2)"flz(a+2)") — (e +2)"f(=(6+2)")

© - (B+2)" — (a+2) ’
o = J@B+2)") — flz(a+2)")
' B+2)" —(a+2)"
and then

zi1 = [(a11 — A1) f(A2) — (a1 — A2) f(A)]/ (A2 — A1),
12 = a2[f(A2) — fF(A)]/ (A2 — A1),

To1 = a[f(A2) — F(A1)]/ (A2 — M),

T2 = [(aza — A1) f(A2) — (aza — A2) f(A1)]/ (A2 — A1).

Lemma 2. Let k and n be arbitrary positive integers. For x an arbitrary quantity,
let us consider the matriz x M| having eigenvalues

A= z(a+2)",
Proof. Tt is easily seen by induction. ([

To express the y;; components of Y = [y;;] = f(zM]') in separate formulas, we
can give the following theorem with

.o B flala+2)") — (a+2)" fz(B+2)")
’ (B+2)" — (a+2)"

and
f@(B+2)") = fz(a+2)")
B+2)n = (a+2)"

Theorem 3. Let k and n be arbitrary positive integers.
i) If n is even and k is odd, then

5% [ AFj + ¢Fp i OF,

it) If n is odd and k is odd, then

y = 5T [ AP+ 0Losr  OLy
R ¢Ln, AFy 4 ¢Ln—k

6=

Y =
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it1) If n is odd and k is even, then

Y:

5% [ ALk +56Fusn  V36L,

i) If n is even and k is even, then

Y

_ 5% [ ALk + Lok V50F,
Lk \/5¢Fn )\Lk + ¢Lnfk

Proof. Taking x M} as matrix A in equation (6) and applying the above steps using
Lemma 2 the desired result is obtained. [l

Theorem 4. If f is the matriz inversion function then

5

—n—=1
x}j‘k { I;nlj: [jnlr; ] if k is odd and n is odd,
% [ F_n};: }:n]j; } if k is odd and n is even,
5% _
Ezk |: 7[1/;;_\1}5 in:ig :| ) if k is even and n is even,

57”271 |: 5Fn7k _Ln\/5:|

if k is even and n is odd.

Proof. Tt can be easily seen using the identity (zM)~! = LM ™, (z £0). O

x

3. RELATIONS WITH SOME FINITE SERIES

In this section, sums of some finite series containing F;,, and L,, are found using
some properties of the Lucas-type Cholesky algorithm matrix Mj.

Lemma 3. If k is a positive integer, then

and

M2 = 5M,;, — 51, (7)

_ 1
Mklzl—ng. (8)

Proof. Using equation (1), it easily be obtained from equations Theorem 1 and
Theorem 2.

O
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1 1
Lemma 4. If x is an arbitrary quantity with the constraints  # — and x # ﬁ
o
then

(5°+ Fux 1) 1 — 2y

1 Y , ifn is odd,
(xMp —1)"" = 5ra? =572 Fpr+1
(52 Lpaz — 1) I — a M}

5722 — 5% L,x + 1

, if n is even.

Proof. Tt can be easily seen using equations (2), (3), (4) and Lemma 3 and the
following equations

Ligyn —5F,Fy =—L,_x if k is odd and n is odd [15, p. 111, 83.],

Fyin — FyLy = —Fn_  if k is odd and n is even [15, p. 118, 58.],
Liyn — LnLy = —Ln—  if k is even and n is even [15, p. 111, 83.],
Fyin — LyF,, = —F,_  if k is even and n is odd [15, p. 118, 58.].

Lemma 5. For positive numbers k and n the following equality holds

M =357 (n> M2
PR

Proof. From equation (7) we can write (M7 +5I)" = (5Mj)", from which the proof
can be obtained by using the binomial expansion. O

Theorem 5. i) Let n be a nonnegative even integer and k be an arbitrary positive
integer. Then we have

_n - n
B =54 Y () B

Jj=0

n n n
Ln$k =572 Z <J.>L2j1k~

Jj=0

it) Let n be a nonnegative odd integer and k be an arbitrary positive integer. Then

we have
—n—1 n n
Fozr =52 E (.)szﬂFkv
=0

—n+1 n n
LnZFk:5 2 Z(j)LQJ:Fk

Jj=0
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Proof. If n is even positive integer and k is odd positive integer, then from Theorem
2 and Lemma 5,

52 [ Foup F S\ [ Foy Py
MPr =" n+ n — 57 il J+ J ,
TR, [ F, Fo_x } jz::() j)F | Foy  Foj_g

hence,

5” FnJrk F, _ j:Q Jj=0 ‘
Fn ank & n Fy. 2 "\ ’

Z (]) 23 (g) 2j—k
j=0 j=0

therefore,

" /n
Fozr =572 ( .)FQj:Fk~

=0\

Other equations are obtained in a similar way. O

Lemma 6. For positive integers k,n, s the following equality holds

M]?n+s _5n Z(_l)n+j (n) M;H.

j=0 J
Proof. From equation (7), we can write
(5My — 5I)" My = MP"** (9)

from which the proof can be obtained by using the binomial expansion. O

Theorem 6. For positive integers n and s the following equality holds

i—o (_1)n5%Ls+j7 if j is even,

Fopys = i <n> { (_1)n+1.5%[’s+ja if j is odd,

=0 N (_1)n5%Fs+ja if § is even.

Proof. Tt can be easily seen with Lemma 6 and Theorem 2. (Il
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Theorem 7. For positive integers k and n the followings holds

" Cpnsigp .

S (n) ] C5 2 Lawwe i s odd, if k is odd and n is odd,
j=o0 7 5 2 Fyjrp, ifj is even,

> () g ‘) Ij?jk’ Zf] s odd, if k is even and n is odd,
j=0 "’ =52 Fjgp, if j is even,

Lnik - n 5n—j+1F f i is odd
S

> () L, LaFks U 05044, if k is odd and n is even,

j=o0 7 =572 Ljzi, ifJ is even,

5 F. if 7 is odd . . ;
] ik W ’ if k is even and n is even,

=0 / 5% L+, if j is even,
s ()4 07 iy i 5 odd, ek i odd and n s odd,
=0 =572 Ljry, if 7 is even,

nejo1 Tl if k is even and n is odd,
52 Lk, ifJ is even,

non | =5 Fypp,  if jois odd,
Z(){ T Fizk, ifjiso

n—j

Fn:I:k - n 5n7j71L . dd
> (%) _n-g IE ij z.s ot if k is odd and n is even,
i=0 52 Fyzp, if j is even,

n

i
N (n 52 Ly , 4y dd;
3 ( ) { ik, U J is o

nej e if k is even and n is even.
=572 Fjzy, if j is even,

Proof. Using equation (8) we can write (I — 2Mj)" = (M]*)~". Here,

(I - ka 2: < ) ! =M= ()

Let n, k be odd positive integers.

n j—1 n J
n 1572 | L; L; n 152 | F; F;
—1)yY = Jj+k J 1)y 220 j+k j
JZ—EJ (j>( "5 [ Li Lik }Jr ]zzzo (j>( "SR [ Fj o Fi-k
7 odd J even

5 Lnfk _Ln
Fk _Ln Ln+k

—(n+1)
2

FOF, ] , if 7 is even,
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from which the following result is obtained

N (n\ | 5T Ljk, if jis odd
Ly r = Z(){ 5%;1 j+ks if J is odd,

=\ Fiik, if jis even,

" /n —5"?[«_, if j is odd,
Ln+k = Z(){ 5n—%‘+1F§7Z fj

o \J if j is even.

Other equations are obtained in a similar way.
Theorem 8. Let h, k and n be positive integers and
O(n) = 5nT+1an —1, 9(n):=5%Lyx— 1.
i) If n is odd, then

h
_ . O(n)I — xM}
ipprd = QUL T M (o ng (D)
jz_:ol' Mk 52 — Q(n) (JL‘ Mk I>
B _thM:(thz) — e M — 0(n) (xMI?)hH +0(n)I
= 5nz2 —0(n) .
it) If n is even, then
h
4 , I(n)l — M}
pd — LT AEME (Rl m(htl)
jgox M, 5722 — 9(n) (x M I)
B x,LJrQMI?(thz) — 2 MP —9(n) (ng)thl +9(n)l
= 5 — 0(n) '
Proof.
h . .
(2A" — 1) a AmT = ghLgnteD)
§=0

is valid for every square matrix A. Using equation (10) and Lemma 4, i) and ii) can

easily be shown.

1
Theorem 9. Let n and s be arbitrary integers where x # — and x # —
o

following equations are satisfied:
i)

h

ijF R (_1)n_1xh+2Fnh+s + x}L+1Fn(h+1)+s - (_1)S$ans -
nj+s —

= (=) 1a2+ Lz —1
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inL = (_l)nilzhjLZth-&-s + xh+1Ln(h+1)+s + (_1)S'TLH—S — L
= nats (=1)n=122 + Loz — 1 '

Proof. The equation i) can be obtained by using the Lemma 4 and Theorem 2. By
substitute s £ 1 for s in equation i) we obtained ii). O

4. RELATIONSHIPS WITH SOME INFINITE SERIES

In this section, we consider a method using functions of the matrix M}’ to find
sums of infinite series containing F),, and L,. Under certain restrictions, some sum
formulas can be computed using the results given in Section 3.

Theorem 10. If

1
- <z < —
then,
= (-1)*"'zF,_, — F,
2 :ij"j‘*‘S - n—1,2 ’
= (=) 1a2 4+ L,z —1
= (=1)*zL,_, — L,
E :sznﬂ-s = 1.2 :
= (=) 1a2 4+ L,z —1

Proof. If the limits of i) and ii) in Theorem 9 are taken on both sides as h goes to
infinity, we get the equations. [

4.1. Calculation of Certain Functions of zM}. In [7] and [13] we see that the
authors obtain some identity with the matrix functions. Similarly, we can examine
some series of Fibonacci and Lucas sequences using the zM;' matrices.

Theorem 11. For positive numbers k, n the following equality holds
@ M"

J!

(oo}

Y =exp(aM}) = Z

j=0

Proof. If we take A = M} in the equation given in |7, p. 113] for the exponential
function of a matrix A, we get the result. O

Theorem 12. For positive integers k and n the following identities holds

> L ‘n "
> SR _ o expaa®) + 5 exple”),
=0 7



144 S. YILMAZ, B. ERDOGAN

o0

I
Z 3: j'j = exp(za™) + exp(z5"),
=0
- ij'n— n n
> T = (<1 o* exp(ra”) + 5 exp(ef"),
j=0 '
oo 7 k n k n
Z @ Fintk _ o exp(za™) — " exp(xB™)
= 4! a—p ’
i I F, _ exp(za™) — exp(xf")
227 o5
S Fpk _ (e [ exple) = 0 explao)
= 4! a—pf

Proof. When f is an exponential function, if we replace Y in Theorem 3 by its
equivalent given in Theorem 11, we obtain these identities from the matrix equation.
O

The technique presented above allows us to consider a very large number of
infinite series involving F,, and L,, by considering power series expansions ( [1], |7],
[21]) of other functions of the matrix zM¥. Finally, let us examine the expansion
of tan~ly.

Theorem 13. Under the constraint

1 1
— < zrz< —
a'rl_ —an

i (71)j+1$2j71Ln(2j—1)+s

571 = o’ tan" ' (za") + 8% tan" ! (zB").
J—

5. CONCLUSION

In this work, many identities for Fibonacci and Lucas sequences have been ob-
tained. Although some of these are identities that can be obtained more simply in
different ways, they are not found in the literature. What we really want to do here
is to show how productive the Cholesky decomposition method is.
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