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Abstract
In this article, firstly, it is aimed to introduce the ruled surfaces, which is generated by quasi-vectors, by using the
relationship between the Frenet frame and the quasi-frame, the quasi-equations, the quasi-curvatures in the
spaces E3 and E4. Calculating the coefficients of the first fundamental form, Gaussian and mean curvatures of
ruled surfaces, which are generated by quasi vectors are obtained in 4-dimensional Euclidean space. In addition
to these, the relation between the Gaussian and mean curvatures of the ruled surfaces is given. Then, some
geometric properties such as developability, minimality and striction line for those surfaces are investigated. Also,
an example of surface curvatures by using the coefficients of fundamental form is obtained and the shapes of
the ruled surface sample in projection spaces are plotted.
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1. Introduction
The theory of surfaces and curves, as explored by researchers such as Kuhnel, Gray and Do-Carmo, continues to intrigue
scholars in the field of differential geometry. Gaspard Mongea’s contributions to the study of these surfaces are notable. Ruled
surfaces, generated by the movement of a straight line along a curve, have taken considerable attention due to the work of
Otsuki, Shiohama, Ravani, and Ku. Investigations by Aydemir, Kasap, Sarıoğlugil, Tutar, Şentürk, Yüce, Dede, and others have
facilitated understanding these surfaces both in Euclidean and Minkowski spaces. In 3-dimensional Euclidean space, many
scientists have published work, in particular the canal surface, which is [1–4], and the tubular surface, which is [5, 6], the ruled
surface, which is the [4, 7–15]. Various geometric properties of ruled surfaces in Minkowski space, have analysed a lot of
studies [16–19].

The construction of a moving frame or the Frenet frame, composed of mutually orthonormal vectors, becomes possible
when dealing with differentiable curves in an open interval. The curvatures measures the deviation of the curve from a straight
line and these curve elements form what is known as the Frenet apparatus. The Bishop’s parallel transport frame provides an
alternative to the Frenet frame, particularly well- suited for smooth curves, while the quasi-frame offers an alternative that
simplifies calculations and serves as a more generalized version of the parallel transport frame.

The quasi-normal vector introduced by Coquillart is central to the concept of the quasi-frame, which leverages fixed
projection vectors and Euclidean angles to create a frame consisting of the unit tangent, unit quasi-normal, and unit
quasi-binormal vectors. The quasi-frame proves valuable, especially in cases where second-order derivatives are absent, offering
a broader scope than the Frenet frame. In their studies, the authors have utilized the Bishop [6,20], the Darboux [8,9,12,13,15],
and the q-frame [21–24] for the theory of curves in E3 and E4 spaces. Some researchers [9, 16, 25–31] have also examined the
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theory of curves in 3 and 4-dimensional Euclidean spaces too.
Researchers like Kaymanlı have reseached ruled surfaces generated by quasi vectors T, Nq and Bq in Euclidean 3-space,

uncovering properties like the Gaussian and mean curvatures [7]. Different frames such as the quasi-frame in [5, 7, 16] and
the Darboux frame in [12, 13, 15, 17] have been used to conduct studies on surfaces in space E3. Focusing on Euclidean
4-space E4, reseaches like Alessio, Elsayied, Bayram, Bulca, Öztürk and Mello have investigated the Frenet elements and
derivative equations for space curves with unit speed, and have extended extending this study to superconformal ruled
surfaces [23, 25, 31–34]. Furthermore, the differential geometry of ruled surface, which is the [32, 35–37], canal surface,
which is the [33] and tubular surfaces surface, which is the [38, 39], particularly with the aid of Frenet and various frames in
the 4-dimensional Euclidean space E4, has been addressed. Also, Yüce has worked Weingarten map of the hypersurfaces in
E4 [40].

This article aims to contribute on 2-dimensional ruled surfaces by explaining the quasi-frame and the quasi-curvature of a
space curve in four-dimensional Euclidean space using the kx and kz projection vectors in the xz-plane. It establishes definitions
and parametric expressions for surfaces such as ruled surfaces in both 3 and 4-dimensional Euclidean spaces. The ruled surfaces
generated by the quasi-frame vectors in Euclidean 3-space and 2-dimensional ruled surfaces in Euclidean 4-space are presented,
along with their respective first and second partial derivatives, fundamental form coefficients, and properties like striction
lines, Gaussian curvatures, and mean curvatures. To enhance clarity, the calculation of quasi-vectors and quasi-curvatures
for a specific space curve in 4-dimensional Euclidean space, including the equations of ruled surfaces are shown with an
example. Moreover, an illustration demonstrates surface curvatures using fundamental form coefficients, visually represented in
projection spaces.

2. Preliminaries
Let α(s) be a space curve with a non-vanishing second derivative. The Frenet frame is defined as follows,

T =
α ′

∥α ′∥ , B =
α ′∧α ′′

∥α ′∧α ′′∥ , N = B∧T.

The curvature κ and the torsion τ are given by

κ =
∥α ′∧α ′′∥
∥α ′∥3 ,τ =

det(α ′,α ′′,α ′′′)

∥α ′∧α ′′∥2 .

The well-known Frenet formulas are given by T′

N′

B′

= v

 0 κ 0
−κ 0 τ

0 −τ 0

 T
N
B

 ,
where v = ∥α ′(s)∥ .

As an alternative to the Frenet frame, we use a new adapted frame along a space curve, the quasi-frame. Given a space
curve α(t), the quasi-frame consists of three orthonormal vectors, these are the unit tangent vector T, the quasi-normal Nq and
the quasi-binormal vector Bq. The quasi-frame

{
T,Nq,Bq,k

}
is given by

T =
α ′

∥α ′∥ , Nq =
T∧k
∥T∧k∥

, Bq = T∧Nq,

where k is the projection vector [21]. For simplicity, we have chosen the projection vector k = (0,0,1) in this paper. However,
the quasi-frame is singular in all cases where T and k are parallel. In that case the projection vector k can be chosen as
k = (0,1,0) or k = (1,0,0). The quasi-frame and the Frenet frame along a space curve are shown in Fig. 1.

Let α(s) be a curve that is parameterized by arc length s. The variation equations of the directional quasi-frame [5] is given
by  T′

N′
q

B′
q

=

 0 k1 k2
−k1 0 k3
−k2 −k3 0

 T
Nq
Bq

 ,
where the quasi-curvatures are

k1 =< T′,Nq > k2 =< T′,Bq > k3 =< N′
q,Bq > .
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Fig. 1. The quasi frame and Frenet frame

Let α(t) = α : I ⊂ R → E4 be any space curve in Euclidean 4-space. Let X = (x1,x2,x3,x4), Y = (y1,y2,y3,y4) and
Z = (z1,z2,z3,z4) be three vectors in E4, with the standard inner product as

< X,Y >= x1y1 + x2y2 + x3y3 + x4y4.

The norm of the vector X in E4 is given by ||X|| =
√
< X,X >. The curve is said to be parameterized by arc length s if

< α ′,α ′ >= 1. Let e1,e2,e3 and e4 be orthonormal basis vectors in E4. The vector product of the vectors X,Y,Z is given by
the determinant as follows

X∧Y∧Z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣
or in vector form

X∧Y∧Z = (x2y3z4 − x2y4z3 − x3y2z4 + x3y4z2 + x4y2z3 − x4y3z2,

−x1y3z4 + x1y4z3 + x3y1z4 − x3y4z1 − x4y1z3 + x4y3z1,

x1y2z4 − x1y4z2 − x2y1z4 + x2y4z1 + x4y1z2 − x4y2z1,

−x1y2z3 + x1y3z2 + x2y1z3 − x2y3z1 − x3y1z2 + x3y2z1),

where{
e1 ∧ e2 ∧ e3 = e4, e2 ∧ e3 ∧ e4 = e1,
e3 ∧ e4 ∧ e1 = e2, e3 ∧ e2 ∧ e1 =−e4,

[23, 25].
Let U,V and W be vectors in E4. Then,

i. if these vectors linearly independent, then the vector U∧V∧W ∈ E4 is orthogonal to the vectors U,V,W and, if any
two vectors replace, the sign changes.

ii. if the vectors are not linearly independent, the cross product must be the zero vector.

iii. in four dimension space, U∧V has not been defined. Since the matrix of type 3×4 has on determined [25].

For the curve with unit speed in Euclidean 4-space E4 such that α : I → E4 and α ′′(s) ̸= 0, the Frenet vectors are given
by, [25], T(s) = α ′(s), N2(s) = N3(s)×T(s)×N1(s),

N1(s) =
α ′′(s)
∥α ′′(s)∥

, N3(s) =
α ′(s)×α ′′(s)×α ′′′(s)
∥α ′(s)×α ′′(s)×α ′′′(s)∥

.
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Let α : I ⊂ R→ E4 be a unit speed curve in Euclidean 4-space E4. Let us denote T(s) = α ′(s) and call as a unit tangent
vector of α at s. We denote the first Serret-Frenet curvature of α by κ(s) = ∥α ′′(s)∥. If κ(s) ̸= 0, then the unit principal normal
vector N1(s) of the curve α at s is given by N′

1(s)+κ(s)T(s) = τ(s)N2(s); where τ is the second Serret-Frenet curvature of α .
If τ(s) ̸= 0, then the unit second principal normal vector N2(s) of the curve α at s is given by N′

2(s)+ τ(s)N1(s) = η(s)N3(s),
where η is the third Serret-Frenet curvature of α . Then we have the Serret-Frenet formulae [29]:

T′(s) = κ(s)N1(s),
N′

1(s) = −κ(s)T(s)+ τ(s)N2(s),
N′

2(s) = −τ(s)N1(s)+η(s)N3(s),
N′

3(s) = −η(s)N2(s).

(1)

Here Frenet curvatures κ = k1, τ = k2 and η = k3 are the first, second and third curvature functions of the curve α , respectively,
[31].

In this part, we investigate the quasi-frame as an adapted frame along a space curve in E4. Let α = α(s) be a space curve,
the quasi-frame in E4 consists of four orthonormal vectors {T,Nq,Bq,Cq}, where T is the unit tangent vector field, Nq is the
quasi-normal vector field, Bq and Cq are the first and second qausi-binormal vector fields respectively. The frame is given by

T =
α ′(s)
∥α ′(s)∥

, Nq =
T∧kx ∧ky∥∥T∧kx ∧ky

∥∥ ,
Bq = Cq ∧T∧Nq, Cq =

α ′(s)∧Nq (s)∧α
′′′
(s)∥∥α ′(s)∧Nq (s)∧α

′′′
(s)
∥∥ , (2)

where kx and ky are the projection vectors. For simplicity, we choose kx = (1,0,0,0) and ky = (0,1,0, ,0) in our calculations. It
is also singular whenever T lies in the plane spanned by kx and ky. In those cases we may change our projection vectors [23,24].

Let α(s) be a curve that is parameterized by arc length s [24]. Differentiating (2) with respect to s, the variation equations
of the quasi-frame are given by the following form

T′

N′
q

B′
q

C′
q

=


0 k1 k2 0

−k1 0 k3 0
−k2 −k3 0 k4

0 0 −k4 0




T
Nq
Bq
Cq

 .
The q-curvatures are also

k1 =

〈
T′,Nq

〉
∥α ′∥ , k2 =

〈
T′,Bq

〉
∥α ′∥ ,

k3 =

〈
N′

q,Bq
〉

∥α ′∥ and k4 =

〈
B′

q,Cq
〉

∥α ′∥ .

(3)

Let M, be a regular surface given with the parameterization ϕ(s,v) in E4 such that where ϕ : U ⊂ E2 → E4. The tangent
space of M at an arbitrary point is spanned by the vectors ϕs and ϕv. The coefficients of the first fundamental form of M are
defined as

E = ⟨ϕs,ϕs⟩,F = ⟨ϕs,ϕv⟩,G = ⟨ϕv,ϕv⟩ (4)

and

W 2 = EG−F2, (5)

where ⟨,⟩ is the Euclidean inner product [32, 34].
If α(s) is a curve and X(s) is a generator vector, then the ruled surface ϕ(s,u) has the following parameter representation:

M : ϕ(s,u) = α(s)+uX(s), (6)

that is, the ruled surface is a surface generated by the motion of a straight line X along α . The striction point on the ruled
surface is the foot of the common perpendicular line successive rulings on the main ruling. The set of the striction points of the
ruled surface generates its striction curve [37]. It is given as

β (s) = α(s)− ⟨αs,Xs⟩
⟨Xs,Xs⟩

X(s). (7)
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Theorem 1. (see [32,34]) Let M be a ruled surface given with parametrization (6) in E4. Then the Gaussian curvature of M at
point p is

K =− 1
W

(
⟨ϕsu,ϕsu⟩−

1
E
⟨ϕsu,ϕs⟩2

)
. (8)

Theorem 2. (see [32, 34]) Let M be a ruled surface given with parametrization (6) in E4. Then the mean curvature of M at
point p is

4∥H∥= 1
W 2

(
⟨ϕss,ϕss⟩−

1
E
⟨ϕss,ϕs⟩2 +

1
G
⟨ϕsu,ϕs⟩[2⟨ϕss,ϕu⟩+ ⟨ϕsu,ϕs⟩]−

2
EG

⟨ϕss,ϕs⟩⟨ϕsu,ϕs⟩⟨ϕs,ϕu⟩
)
. (9)

Theorem 3. (see [10, 30]) The ruled surface is developable if and only if K = 0.

Theorem 4. (see [10, 30]) The ruled surface is minimal if and only if H = 0.

3. The ruled surfaces generated by quasi vectors in E4

If α(s) is a curve and X(s) is a generator vector, then the ruled surface ϕ(s,u) has the following parameter representation:

M : ϕ(s,u) = α(s)+uX(s),

that is, the ruled surface is a surface generated by the motion of a straight line X along α .
Let {T,Nq,Bq,Cq} be a quasi-frame in E4. In the expression ϕ(s,u) = α(s)+uX(s), if X(s) = T or X(s) = Nq, the ruled

surface becomes

M1 → φ(s,u) = α(s)+uT(s),

or

M2 → φ(s,u) = α(s)+uNq(s).

The ruled surface generated by unit first quasi-binormal vector X(s) = Bq is

M3 → ϕ(s,u) = α(s)+uBq(s).

The ruled surface generated by unit second quasi-binormal vector X(s) = Cq is

M4 → ϕ(s,u) = α(s)+uCq(s).

The components E,F and G of the first fundamental form of the ruled surfaces M1, M2,M3 and M4 generated by the
quasi-vectors T,Nq,Bq and Cq are obtained from (4) and (5) in the form of

M1 : E = 1+u2(k2
1 + k2

2), F = 1, G = 1, W = u2(k2
1 + k2

2), (10)

M2 : E = 1−2uk1 +u2(k2
1 + k2

3), F = 0, G = 1, W = 1−2uk1 +u2(k2
1 + k2

3), (11)

M3 : E = 1−2uk2 +u2(k2
2 + k2

3 + k2
4), F = 0, G = 1, W = 1−2uk2 +u2(k2

2 + k2
3 + k2

4) (12)

and

M4 : E = 1+u2k2
4, F = 0, G = 1, W = 1+u2k2

4, (13)

respectively.
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Theorem 5. The striction curves of four ruled surfaces generated by quasi-vectors along the curve α(s) are given by the
following matrix


βT(s)−α(s)
βNq(s)−α(s)
βBq(s)−α(s)
βCq(s)−α(s)

=


0 0 0 0
0 k1

k2
1+k2

3
0 0

0 0 k2
k2

2+k2
3+k2

4
0

0 0 0 0




T(s)
Nq(s)
Bq(s)
Cq(s)

 .

Proof. Let the striction curve of the ruled surface M1 be βT(s), with respect to the equation (7)

βT(s) = α(s)−
⟨T(s), ∂

∂ s
T(s)⟩

⟨ ∂

∂ s
T(s),

∂

∂ s
T(s)⟩

T(s)

the striction curve of the ruled surface M1 is its directix curve α(s), that is

βT(s) = α(s).

Similarly, the striction curves of the ruled surface M1, M2, M3 and M4 are given the following this equations:
βNq(s) = α(s)+

k1

k2
1 + k2

3
Nq(s),

βBq(s) = α(s)+
k2

k2
2 + k2

3 + k2
4

Bq(s),

βCq(s) = α(s).

The proof is completed when these equations are written in the matrix form. ■

The following theorems and corollaries can be found easily using equations (8), (10), (11), (12) and (13) with partial
derivatives of the ruled surfaces M1,M2, M3 and M4.

Theorem 6. The Gaussian curvatures of surfaces M1,M2, M3 and M4 are

KM1 = − 1
u2(1+u2(k2

1 + k2
2))

,

KM2 = −
k2

3

(1−2uk1 +u2(k2
1 + k2

3))
2 ,

KM3 = −
k2

3 + k2
4

(1−2uk2 +u2(k2
2 + k2

3 + k2
4))

2 ,

KM4 = − k2
4

(1+u2k2
4)

2 ,

respectively.

Corollary 7. The ruled surface M1 is non developable.

Corollary 8. The ruled surface M2 is developable if and only if k3 = 0.

Corollary 9. The ruled surface M3 is developable if and only if k3 = k4 = 0.

Corollary 10. The ruled surface M4 is developable if and only if k4 = 0.

The following theorems and corollaries can be found easily using equations (9), (10), (11), (12) and (13) with partial
derivatives of the ruled surfaces M1,M2, M3 and M4.
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Theorem 11. The mean curvatures of the ruled surfaces M1,M2, M3 and M4 are

HM1 =
k2

1 +u2k2
2k2

3 + k2
2 +u2k2

1k2
3 +u2k2

2k2
4

4u4(k2
1 + k2

2)
2 ,

HM2 =
k2

2 −2uk1k2
2 +u2(k2

1k2
2 + k2

2k2
3 + k2

3k2
4)

4(1−2uk1 +u2(k2
1 + k2

3))
2 ,

HM3 =
k2

1(1−2uk2 +u2(k2
2 + k2

3))

4(1−2uk2 +u2(k2
2 + k2

3 + k2
4))

2 ,

HM4 =
k2

1 +2uk1k3k4 + k2
2 +u2k2

4(k
2
2 + k2

3)

(1+u2k2
4)

2 ,

respectively.

Corollary 12. The ruled surface M2 is minimal if and only if k2 = u = 0.

Corollary 13. The ruled surface M3 is minimal if and only if k1 = 0.

Corollary 14. A relation between KM1 and HM1 is as follows

HM1

KM1

=−
(k2

1 +u2k2
2k2

3 + k2
2 +u2k2

1k2
3 +u2k2

2k2
4)(1+u2(k2

1 + k2
2))

4u2(k2
1 + k2

2)
2 .

Corollary 15. A relation between KM2 and HM2 is as follows

HM2

KM2

=−
k2

2 −2uk1k2
2 +u2(k2

1k2
2 + k2

2k2
3 + k2

3k2
4)

4k2
3

.

Corollary 16. A relation between KM3 and HM3 is as follows

HM3

KM3

=−
k2

1(u
2k2

3 +1−2uk2 +u2k2
2)

4(k2
3 + k2

4)
.

Corollary 17. A relation between KM4 and HM4 is as follows

HM4

KM4

=
u2k2

2k2
4 + k2

1 +2uk1k3k4 +u2k2
3k2

4 + k2
2

4k2
4

.

Example 18. Let, in E4, α(s) be the curve parameterized by

α(s) =
(
−scoss+ sins,ssins+ coss,−scos2s+

1
2

sin2s,ssin2s+
1
2

cos2s
)
.

The Frenet vectors are calculated by

T =
1√
5
(sins,coss,2sin2s,2cos2s) ,

N1 =
1√
17

(coss,−sins,4cos2s,−4sin2s),

N3 =
1√
17

(−4coss,4sins,cos2s,−sin2s),

N2 =
1√
5
(−2sins,−2coss,sin2s,cos2s).

The Frenet curvatures from the equations (1) are

κ(s) =
17

5
√

17
, τ(s) =− 6

5
√

17
and η(s) =

10√
85

.
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Furthermore, for kx = (1,0,0,0) and ky = (0,1,0,0), the quasi-frame vectors are obtained as

Tq =
1√
5
(sins,coss,2sin2s,2cos2s),

Nq = (0,0,cos2s,−sin2s),

Cq =
(−3scoss+2sins,3ssins+2coss,−sin2s,−cos2s)

√
5+9s2

,

Bq =
(−6ssins+5coss,−6scoss+5sins,3ssin2s,3scos2s)

√
25+45s2

.

The quasi-curvatures are found as

k1(s) =
4√
5

, k2(s) =− 1
s
√

5+9s2
, k3(s) =− 6s√

25+45s2
and k4(s) =− 18s2 −5

(5+9s2)
√

5

from the equation (3).
If we use the equation given by

ϕ(s,u) = α(s)+uBq(s)

for the ruled surface generated by the first quasi-binormal vector field Bq, the ruled surface M4 in 4-dimensional Euclidean
space is given by the parametrization

ϕ(s,u) =

(
−scoss+ sins− u(6ssins+5coss)√

25+45s2
,ssins+ coss+

u(−6scoss+5sins)√
25+45s2

,

−scos2s+
1
2

sin2s+
3susin2s√
25+45s2

, ssin2s+
1
2

cos2s+
3sucos2s√
25+45s2

)
.

Hence, the equation of the striction curve of the ruled surface M4 is

βBq(s) =

(
−scoss+ sins+

5(5+9s2)(6ssins+5coss)
(648s4 +45s2 +50)

√
5

,ssins+ coss− 5(5+9s2)(−6scoss+5sins)
(648s4 +45s2 +50)

√
5

,

−scos2s+
1
2

sin2s− 15s(5+9s2)sin2s
(648s4 +45s2 +50)

√
5
, ssin2s+

1
2

cos2s− 15s(5+9s2)cos2s
(648s4 +45s2 +50)

√
5

)
.

The parametrization of the ruled surface in xyz projection space is

ϕ(s,u) =

(
−scoss+ sins− u(6ssins+5coss)√

25+45s2
,ssins+ coss+

u(−6scoss+5sins)√
25+45s2

,

−scos2s+
1
2

sin2s+
3susin2s√
25+45s2

)
and the striction curve is

βBq(s) =

(
−scoss+ sins+

5(5+9s2)(6ssins+5coss)
(648s4 +45s2 +50)

√
5

,ssins+ coss− 5(5+9s2)(−6scoss+5sins)
(648s4 +45s2 +50)

√
5

,

−scos2s+
1
2

sin2s− 15s(5+9s2)sin2s
(648s4 +45s2 +50)

√
5

)
.

The graph of the ruled surface in xyz projection space and the striction curve on it is given in Fig. 2. (a).
The parametrization of the ruled surface in xyt projection space is

ϕ(s,u) =

(
−scoss+ sins− u(6ssins+5coss)√

25+45s2
,ssins+ coss+

u(−6scoss+5sins)√
25+45s2

,

ssin2s+
1
2

cos2s+
3sucos2s√
25+45s2

)
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and the striction curve is

βBq(s) =

(
−scoss+ sins+

5(5+9s2)(6ssins+5coss)
(648s4 +45s2 +50)

√
5

,ssins+ coss− 5(5+9s2)(−6scoss+5sins)
(648s4 +45s2 +50)

√
5

,

ssin2s+
1
2

cos2s− 15s(5+9s2)cos2s
(648s4 +45s2 +50)

√
5

)
.

The graph of the ruled surface in xyt projection space and the striction curve on it is given in Fig. 2. (b).

Fig. 2. (a) the surface in xyz space (b) the surface in xyt space and striction curves

The parametrization of the ruled surface in xzt projection space is

ϕ(s,u) =

(
−scoss+ sins− u(6ssins+5coss)√

25+45s2
,−scos2s+

1
2

sin2s+
3susin2s√
25+45s2

,

ssin2s+
1
2

cos2s+
3sucos2s√
25+45s2

)
and the striction curve is

βBq(s) =

(
−scoss+ sins+

5(5+9s2)(6ssins+5coss)
(648s4 +45s2 +50)

√
5

,−scos2s+
1
2

sin2s− 15s(5+9s2)sin2s
(648s4 +45s2 +50)

√
5
,

ssin2s+
1
2

cos2s− 15s(5+9s2)cos2s
(648s4 +45s2 +50)

√
5

)
.

The graph of the ruled surface in xzt projection space and the striction curve on it is given in Fig. 3. (a).
The parametrization of the ruled surface in yzt projection space is

ϕ(s,u) =

(
ssins+ coss+

u(−6scoss+5sins)√
25+45s2

,−scos2s+
1
2

sin2s+
3susin2s√
25+45s2

,

ssin2s+
1
2

cos2s+
3sucos2s√
25+45s2

)
and the striction curve is

βBq(s) =

(
ssins+ coss− 5(5+9s2)(−6scoss+5sins)

(648s4 +45s2 +50)
√

5
,−scos2s+

1
2

sin2s− 15s(5+9s2)sin2s
(648s4 +45s2 +50)

√
5
,

ssin2s+
1
2

cos2s− 15s(5+9s2)cos2s
(648s4 +45s2 +50)

√
5

)
.

The graph of the ruled surface in yzt projection space and the striction curve on it is given in Fig. 3. (b).
Additionally, the striction curve of the ruled surface M1 generated by unit tangent vector T in E4 is

βT(s) =
(
−scoss+ sins,ssins+ coss,−scos2s+

1
2

sin2s,ssin2s+
1
2

cos2s
)
.

The striction curve of the ruled surface M2 generated by the quasi-normal vector Nq in E4 is

βNq(s) =
(
−scoss+ sins,ssins+ coss,−scos2s+

1
2

sin2s+
1√
5

cos2s,ssin2s+
1
2

cos2s− 1√
5

sin2s
)
.
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Fig. 3. (a) the surface in xzt space (b) the surface in yzt space and striction curves

The striction curve of the ruled surface M3 generated by the second quasi-binormal vector Cq in E4 is

βCq(s) =

(
−scoss+ sins− 3s(5+9s2)(−3scoss+2sins)

(81s4 +9s2 +25)
√

5
,ssins+ coss− 3s(5+9s2)(3ssins+2coss)

(81s4 +9s2 +25)
√

5
,

−scos2s+
1
2

sin2s+
3s(5+9s2)sin2s

(81s4 +9s2 +25)
√

5
, ssin2s+

1
2

cos2s+
3s(5+9s2)cos2s

(81s4 +9s2 +25)
√

5

)
.

On the other hand, the parametric expression of the ruled surface M1 generated by the unit tangent vector field T in
4-dimensional Euclidean space is

ϕ(s,u)=

(
−scoss+

(
1−

u
√

5

)
sins,ssins+

(
1+

u
√

5

)
coss,−scos2s+

(
1
2
+

2u
√

5

)
sin2s,ssin2s+

(
1
2
+

2u
√

5

)
cos2s

)
.

Thus, the first fundamental form coefficients of the surface M1 are

E = 5s2 +
17u2

5
, F =

√
5s, G = 1 and W =

17u2

5
.

Hence, the Gaussian curvature and mean curvature of the ruled surface M1 are found as

KM1 =
25s2

u2(25s2 +17u2)

and

HM1 =
5(4515s2u2 +2125s2 −850

√
5s2u−578

√
5u3 −425u2 +2087u4)+3u4

1156u4(25s2 +17u2)

and

HM1

KM1

=
5(4515s2u2 +2125s2 −850

√
5s2u−578

√
5u3 −425u2 +2087u4)+3u4

28900u2s2 .

All the figures in this study were created by using Maple programme.

4. Conclusions
In this study, we examine the ruled surfaces generated by the quasi-vectors using parametrization (6). We calculate the striction
curves, the Gaussian curvatures, and the mean curvatures of these ruled surfaces, and establish their respective relationships. To
validate and exemplify the significant findings, we provide an illustrative example plotted in projection spaces. For future works,
we will investigate how to extend these other ambient spaces with different dimensions and using other quasi-frame vectors.
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