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ABSTRACT: Complex network analysis is an attractive tool for capturing the self-organizing principles 

underlying the social, physical or biological communities. Several software are developed for either analyzing or 

generating complex networks, including the visualization utilities. We developed an open source software in 

Microsoft .NET platform for generating networks based on the most common models as Barabasi-Albert, Erdos-

Renyi, Watts-Strogatz including the analyzing utilities defining the network like average separation, degree 

distribution, clustering coefficient etc. In contrast with the well-known software, this software aims to contribute 

the understanding of the underlying mechanisms of complex networks. It also forms a basis to further 

developments that should provide an extensive view to network construction. As an open source software, the 

opportunity of editing the core functions about network dynamics offer a pedagogical approach to learn more 

about self-organizing networks.  
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INTRODUCTION 
 

Complex networks are conceptually used to define the dynamic systems in nature and society. These structures 

are observed in a variety spanning social, biologic, ecologic, transportation, computer, scientific collaboration or 

citation networks (Albert and Barabási, 2002). A network can be described by a set of nodes (vertices) and links 

(edges) which can be displayed by an NxN matrix where N denotes the number of vertices (Newman, 2001).  

Understanding the structure of complex networks is primarily significant for understanding how knowledge, 

disease, culture, viruses etc. spread in the complex systems (Perc, 2010). The evolution of complex systems was 

traditionally assumed to be driven by randomly wiring processes which result a so-called random network. But 

recent studies in the past two decades show that these systems yield some self-organizing principles that are 

different from the random networks (Albert and Barabási, 2002).  

In fact, these organizing principles are the main facts that result the network topology and dynamics, which in 

turn effects how knowledge or viruses diffuse in that network. Thus, capturing these principles is the main goal 

of complex network analysis to form a basis of how network modeling should be done programmatically. The 

wide corpus of scientific papers subjecting complex network analysis by the beginning of this century handles 

this issue, each stating out the generic organizing principles of specific networks in nature and society (Perc, 

2010).  

On behalf of the above mentioned part of the network science namely “complex network analysis”, another area 

of interest grows scoping the modeling counterpart. Employing the output supplied by the first part, modeling 

networks aims to capture the main mechanisms that affect the evolution of the network, providing a broad range 

of experiments with several organizing principles along with tunable parameters (Barabasi et.al, 2002).  

 

 

 

 



International Conference on Education in Mathematics, Science & Technology (ICEMST), April 23 - 26, 2015 Antalya, Turkey 

58 

Generic principles of complex networks  

 

For modeling a network, the generic principles of real networks should be determined as the ingredients of the 

algorithm. The first property that a real network should hold is the “small-world” phenomenon. The most 

popular manifestation of small worlds is the „„six degrees of separation‟‟ concept, uncovered by the social 

psychologist Stanley Milgram (1967), who concluded that there was a path of social connections with a typical 

length of about six between most pairs of people in the United States (Kochen, 1989).  

Small-world property is observed in many real networks like www (Albert et.al, 1999), online social networks 

(Leskovec & Horvitz, 2008), scientific collaboration networks (Barabasi et.al, 2002; Newman, 2001b; Newman, 

2001c; Perc, 2010, Cavusoglu & Turker, 2013, 2014), movie actor networks (Amaral et.al, 2000) etc. Barabasi 

explains being small-world as finding relatively small paths between two randomly chosen nodes, while this 

phenomenon is valid for most of the node pairs in that network. A characteristic measurement of node distances 

is “average separation” that stands for the average value of the distances between all node pairs in a network.  

Another principal ingredient of real world networks is the scale-free property. A large variety of results of real 

network analysis demonstrate that many networks are scale free, that is, their degree distribution follows a power 

law for large k. That means, the probability of having degree k for a network follows the equation . 

This distribution can be validated by drawing the degree distribution in a log-log scale, resulting a straight line 

having negative slope (Clauset et.al, 2009). The generic mechanism underlying this property is “preferential 

attachment” that means that a new node connecting the network, connecting to more popular (i.e. having more 

connections) links displays higher probability than connecting to the less popular ones (Barabasi and Albert, 

1999; Albert et.al, 2002).  

Scale-free property promotes the emergence of a little portion of nodes with high degrees (connections), that can 

be named as supernodes or hubs. In such a network, if a node gets more popular in the beginning of the network 

construction, these “first-mover advantage” causes it to have more and more connections later. This fact is 

known as the Matthew “rich get richer” effect, promoting the occurrence of a small number of popular nodes, 

while the new connecting nodes or some mid-life nodes of the network have smaller degrees of connections. The 

above given relation of power-law degree distribution is a result of this mechanism, that can be observed in most 

of the real networks. 

The third important network parameter that measures network clustering and describes symmetry of interaction 

among trios of actors is the clustering coefficient. It shows the probability of a node‟s neighbors to have 

connections among each other, excluding the links coming from the starting (or center) node. Topologically, it 

shows the density of the triangles in a network, a triangle being formed when two of one‟s neighbors connect 

with each other (Newman, 2004; Çavuşoğlu & Türker, 2013).  

Clustering coefficient gets values in the interval of 0 to 1, where the values close to 1 indicate dense connections 

between neighbors. Averaging this parameter is averaged over the network, average clustering coefficient can be 

found to have an idea about the network‟s interconnectedness. Real networks display high clustering coefficients 

compared to random networks, i.e. your followers in a social network follow each other in a high rate, 

representing a clique of friendships. 

 

Most common network models  

 

Erdos-Renyi (ER) Model 

 

In their classic first article on random graphs, Erdos and Renyi define a random graph with two parameters as N 

(number of nodes) and p (probability of connecting), as N labeled nodes connected by n edges, which are 

randomly chosen from the N(N-1)/2 possible edges. Programmatically, it can be explained as starting with N 

nodes, find the number of links by the formula pN(N-1)/2 and wire the N nodes with n links calculated by the 

above formula, as seen in Fig.1 (Erdos & Renyi, 1959; Albert and Barabasi, 2002).  

 

 
 

Figure 1. Random graphs generated with different p values. The right side plot is the degree distribution 

(Albert and Barabasi, 2002)  
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The expected degree distribution of a random graph is “binomial distribution” which converges to a “Poisson 

distribution” with large N and small p, demonstrating node degrees having closer values to an average degree 

and not deviating more than a few percents from that average value. Since the links are generated randomly, the 

relations between a node‟s neighbors are not strong as real networks, resulting a very small average clustering 

coefficient for the network. on the other hand, long range random links provide short paths between distant 

nodes, resulting a relatively small average separation (distances) between nodes. 

The network parameters mentioned above are not in good consistency with real networks since real networks do 

not display poisson-like degree distributions and have considerably higher clustering coefficients that random 

networks have. The only common-point between random networks and real networks is the short average path 

length between nodes.  

 

Watts-Strogatz (WS) Model 

 

Above mentioned disparity in the topologic properties of random and real networks pioneered the studies of 

more realistic modeling of real networks. In 1998, Watts and Strogatz proposed a model interpolating between a 

regular lattice and a random graph (Watts and Strogatz, 1998; Albert and Barabasi, 2002). Their model starts 

with constructing a regular lattice. Then the only tunable parameter p is used as a probability to decide if an edge 

(link) will be rewired, preserving the source node and altering the target node with a new one in a random 

process. If the p parameter converges to 0, the network stays regular, while it gets a completely random one as p 

converges to 1. For some moderate values of p (for ex. p=0.01), Watts and Strogatz showed that there is a regime 

that the network displays high clustering coefficient and low average distance (separation) as if in the real 

networks. This is the small-world regime of the network, capturing the similarity with the real network by the 

means of clustering coefficient and average separation (Fig.2). 

 
Figure 2. Watts-Strogatz (1998) network structure with varying p values. The right side plot demonstrates 

the deviation of clustering coefficient and average separation with increasing p values. 

 

The limitation of the WS network is the lack of capturing the degree distribution of a real network. It produces a 

network having a similar degree distribution like Erdos-Renyi type network, having the advantage of adding 

small-world property to the structure. 

 

Barabasi-Albert (BA) Model 

 

The model proposed by Barabasi and Albert (1999) was the first in capturing the power-law degree distribution 

observed in most of the real networks. They suggested that the organizing principles of real networks should be 

imitated to maintain the generic scale-free property. Thus, a network grows continuously by the addition of new 

nodes, and the new nodes likely prefer to connect to the nodes of higher degrees (i.e. popular nodes) rather than 

the ones with lower degrees. The former property is known as growing, while the latter property is known as 

preferential attachment. 

They modeled growing property by starting with a small number (m0) of nodes and add a new node with m(m0) 

edges (links) that connect the new node to m different nodes already present in the system, at each time step. 

To define the connectivity function including preferential attachment, Barabasi and Albert used Eq.1 as the 

probability for a new node to connect to node i. As seen in Eq.1, the node having higher degree (connections) 

has a higher attractiveness to have connection with a new node. 

                                                                    (1) 

Successfully capturing the organizing principles of real networks, BA model provides a perfect power-law 

degree distribution together with small-world properties as if in the WS network as in Fig.3 (Albert and 

Barabasi, 1999). In this perspective, it forms a basis for realistic modeling of networks with the opportunities of 

adding some variations for capturing the alternations from perfect power-law observed in real networks. 
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Figure 3. Power-law degree distribution of a Barabasi Albert network model (Barabasi and Albert, 1999). 

 

METHODS 
 

We developed a software that generates networks of ER, WS and BA models (Fig.4). The inspiration of the 

development depend on both supplying a pedagogical view on the understanding of complex networks in the 

post-graduate education, and also to form a basis for the further studies in network modeling giving the 

opportunity of editing the core functions about network dynamics.  

 

Network parameters are the output of the organizing principles that take part in network construction. The 

tendencies of node selection of the current nodes for making new connections are the main fact that drives the 

resulting parameters or distributions of that network. By this view, tuning the input parameters or the opportunity 

of editing the core functions of node selection takes a significant part in the understanding of how networks grow 

and organize.  

 

Another pedagogical output of this software is the visualization of the network constructed, whereas the main 

output parameters like degree distribution, average separation, clustering coefficient etc. are also supplied.  

 

 
Figure 4. The user interface of the software. 

 

The software is developed in the Microsoft .NET platform using C# language and standard form controls. While 

executing the network generation or calculating the output parameters, the most readable code and algorithms 

were used in order to enhance the understanding of complex networks. That is, fast execution is sacrificed in 

some functions in order to increase readability.  

 

To enable further plotting opportunities in Matlab, R, etc., the node degrees are displayed in a datagrid control 

together with the node frequencies that are used to plot degree distribution. This is a necessity not only for 

generating graphics in semi-log or log-log plots, but also curve fitting to test if a degree distribution follows 

exponential, power-law, binomial, Poisson or some mixed variations of these functions. 
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The software is ready-to-use for the systems having .NET Framework 4.0 or later, and can be downloaded via 

http://www.ilkerturker.com/cn/nwmodel/.  

 

RESULTS AND FINDINGS 
 

The three network models mentioned above have different topologies that can be observed in the output 

parameters. Degree distribution plots as seen in Fig.5 are as consistent with the theoretic expectations. Since the 

power-law consistency of BA network in linear plot is not obvious, we exported the degree distribution data to 

Matlab and showed the power-law fitting in log-log scale with the exponent -3.  

 

  
Figure 5. Degree Distribution Plots Of The Three Network Models. (A) ER Model, (B) WS Model, (C) BA 

Model, (D) BA Model Data Plotted In Log-Log Scale In Matlab To Show Power-Law Consistency. 

 

Similar with the degree distributions, the output parameters (average clustering coefficient, average separation 

and average degrees) are consistent with the theoretic expectations as well. 

 

CONCLUSION  
 

Both analysis and modeling of complex networks aim to uncover the underlying mechanisms in the self 

organization processes of complex systems. Getting the analytical feed from the analysis section, the modeling 

section consists of simulations in generating networks with variable principles and parameters. By this point of 

view, our software employing basic and robust network models can be an initial point for the researchers who 

want to make further modeling simulations. The basic output measurements supplied in the software will also 

provide a rapid start to modeling projects, especially in post graduate studies.  

 

RECOMMENDATIONS 
 

The development process of the software will move along by adding new enhancements in the future, and will be 

shared in the same URI supplied above. Researchers who want to construct networks of different algorithms can 

feel free to modify and share the source code.  

 

Especially a challenging area in network modeling is “spreading”. In real world, the network structure plays a 

significant role on spreading of information, epidemics, opinions and has various impacts on the evolution of 

science, sociology, health etc. Introducing a realistic spreading model to our software should provide a broad 

range of experiments on spreading. Also the impact of breaking some kinds of links on spreading is another 

novel subject to investigate. These opportunities are the forward stage of this software open for all researchers. 
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