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Introduction 
Plant diseases cause significant losses in the yield and 
quality of cultivated crops reducing food security [1]. 
Globally, yield losses due to plant diseases can reach up to 
20-30 percent [2],[3], depending on the type of plant and 
pathogen involved.  However, these losses can be mitigated 
through early intervention and the use of advanced disease 
detection techniques. Traditionally, diseases have been 
identified using visual assessments and field surveys. 
Although these methods are commonly employed, they are 
expensive, time-consuming and more suitable for small-
scale areas. Early intervention in disease management can 
also help reduce the inaccurate and excessive application 
of pesticides, offering environmental and economic 
benefits [4]. Consequently, research on this topic is of 
utmost importance [4],[5]. 

In recent years, the combination of remote sensing 
techniques and machine learning methods has become 
increasingly prevalent for disease detection. Remote 
sensing techniques offer several advantages, including 
quicker disease diagnoses and reduced labor requirements, 
particularly when dealing with large areas [1]. 
Spectroradiometry and satellite imagery are among the 

remote sensing methods that have successfully been used 
for the early detection of various plant diseases [6], [7]. 

Thermal imaging has emerged as a popular non-destructive 
and user-friendly technique for detecting plant diseases, 
applicable in both laboratory and field settings. It operates 
by capturing radiance in the infrared spectrum (7-12 
micrometers) and translating it into visible images, 
enabling the detection and measurement of temperature 
variations in objects. The application of thermal imaging 
has been extensively studied in diverse fields, including 
agriculture [8]. 

Thermal imaging technology detects temperature changes 
in plants caused by disease or pest infestation, indicating 
the presence of stress in the affected region [9]. These 
temperature fluctuations, which can be captured effectively 
using thermal imaging, are a result of internal chemical 
changes in infected plants and cannot be observed using 
visual imaging methods [10]. Analyzing these thermal 
changes provides valuable insights for early disease 
prediction and offers a promising approach for disease 
management. 

Various studies have reported the use of thermal imaging 
technology for pre-symptomatic identification of diseases 
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ABSTRACT 

 Plant diseases can lead to significant yield losses and economic damages, but these losses can be mitigated 
through early disease diagnosis. In recent times, remote sensing techniques have been widely used for 
early disease detection even before visible symptoms appear. This study focused on the potential of early 
detection of Fusarium Root and Crown Rot in Tomato Plants, which causes substantial yield losses in 
tomato plants, under controlled conditions using thermal images. In this research, thermal images were 
obtained from both disease-inoculated and disease-free control plants throughout the plant growth period 
under controlled conditions. These images underwent preprocessing in a computer environment, and 
various feature parameters related to temperature changes in both groups (such as minimum, maximum, 
standard deviation, and skewness) were extracted. These extracted features were then used as inputs for 
different machine learning techniques, including K-Nearest Neighbors (KNN), Logistic Regression (LR), 
and Naive Bayes (NB), to classify healthy and diseased plants. Overall, the disease-inoculated plants 
exhibited higher average temperatures compared to the healthy control plants. The performance of the 
compared machine learning techniques in distinguishing between healthy and diseased plants was found 
to be in the order of KNN, NB, and LR, with success rates of 72%, 68%, and 60%, respectively. This study 
demonstrated the potential of using combined thermal images with different machine learning techniques 
for early diagnosis of Fusarium Root and Crown Rot in Tomato Plants. The results show promising 
prospects for utilizing thermal imaging in the early detection of plant diseases, leading to better 
management and reduction of yield losses and economic impacts. 
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[1], [9], [11], [12].  In their study, Raza et al. [11] 
developed a machine learning system to remotely detect 
plants infected with the tomato powdery mildew fungus. 
They combined thermal and visible light image data with 
depth information to improve detection accuracy. The 
researchers extracted a novel feature set from the image 
data using local and global statistics, which proved 
effective in capturing relevant information about the plants 
and their infection status. By integrating these features with 
depth information, they achieved a significant 
improvement in accuracy. Moreover, their feature set not 
only identified plants intentionally inoculated with the 
fungus but also detected plants that acquired the disease 
through natural transmission during the experiment. 
Overall, their findings demonstrated the potential of this 
combined approach for accurately detecting diseased 
plants and identifying both initially infected and naturally 
transmitted infections. 

Tomatoes are a globally cultivated vegetable, with 
production exceeding 187 million tons and covering an 
area of over 5 million hectares. Türkiye ranks as the third-
largest tomato producer globally, with a production of 
13,204,015 tons and an area of 181,879 hectares in 2020 
[13]. Tomato cultivation takes place in open fields as well 
as controlled environments like greenhouses. However, 
tomato crops are vulnerable to root rot and soil fungal 
diseases, leading to significant losses. Common fungal 
pathogens affecting tomatoes include Fusarium spp., 
Rhizoctonia solani, and Sclerotium rolfsii. Among them, 
Fusarium species, particularly Fusarium solani and 
Fusarium oxysporum, are responsible for a substantial 
proportion of plant diseases. Vascular wilt, a disease 
affecting tomatoes, is caused by a pathogen that enters the 
plant through roots or wounds and colonizes the vascular 
tissue, resulting in wilting. Root and crown rot diseases, 
characterized by wilting, yellowing, and drying of the 
plant, occur during the plant's growth period in the field 
[14]. 

 Fusarium wilt can cause widespread epidemics, leading to 
significant yield reductions, sometimes up to 100%. 
Hyphae of the pathogens are activated by plant root 
secretions, allowing them to penetrate the roots and disrupt 
metabolism of the plant and sap circulation. As a result, the 
plant experiences reduced photosynthetic activity, wilting, 
and eventual death, impairing its ability to absorb and 
transport water and nutrients. 

Remote sensing techniques, including spectral methods, 
have been extensively studied for the early detection of 
Fusarium root and crown rot diseases in tomatoes. 
However, the application of thermal imaging in the 
detection of root diseases in tomatoes is relatively limited. 
Specifically, in the case of tomato plants, there is a lack of 
studies focusing on the use of thermal imaging for 
detecting Fusarium spp. or other root diseases.  

The goal of this study was to determine the effectiveness 
of thermal imaging in distinguishing between diseased and 
healthy tomato seedlings that were inoculated with a 
specific pathogen. The study aimed to assess the potential 

of thermal imaging as a method for identifying and 
monitoring disease progression in tomato plants during 
their development stages. 

Materials and methods 

Climate room trial 

Tomato (Lycopersicum esculentum L.) seedlings used in 
this study were grown in a climate room in the Plant Health 
Laboratory of GAP Agricultural Research Institute 
(GAPTAEM) at Sanliurfa province, Türkiye. H-2274 
tomato variety sensitive to Fusarium spp. was used in this 
study.  All the physical conditions of the climate room such 
as temperature (26◦C), humidity (60%) and lighting (16 
hours of light, 8 hours of darkness) were controlled at 
constant level.  In the pots, a 1:1 mixture of peat and perlite 
was employed [15]. 

Tomato plants have been infected with Fusarium spp. 
disease. After the Fusarium disease was inoculated at the 
rate of 104 cfu/gr on tomato plants [14], the presence of the 
pathogen was tried to be detected with a thermal camera. 
The diseased tomato plants were screened by comparing 
with the healthy plants without any treatment. In this way, 
two different groups of tomato plants were obtained; these 
are diseased and inoculated with F. solani and F. 
oxysporum (Fusarium +), and healthy and uninoculated 
with Fusarium spp. (Fusarium -). Each group consisted of 
four pots and each pot was formed from 4 tomato 
seedlings. From each pot five leaves were randomly 
selected for thermal camera measurements. 

The data used in the study are the reflection values taken 
from the tomato leaves by the thermal camera. To 
symbolize classes; (F) described tomato plants inoculated 
with Fusarium and (H) described as healthy tomato plants 
refers that the situation is present or not present. 

Experimental setup and inoculation of tomato plants 

The root, crown rot and wilt fungi disease isolates used in 
the study were obtained from the Southeastern Anatolia 
Project (GAP) tomato fields and tested for their 
pathogenicity. Isolates with high levels of pathogenicity 
(F. solani 70 % and F. oxysporum 80 %) were used in 
testing. (Fig. 1.). 

Artificial inoculation was performed by introducing fungal 
agar discs (2 mm in size) into autoclaved oat culture mixed 
with potato dextrose agar (PDA). The mixture was then 
allowed to grow for 2–3 weeks in an incubator. 
Subsequently, a 25 g/m2 artificial culture of the fungal 
isolates was added to 2 kg pots containing a peat and perlite 
mixture in a 1:1 ratio by volume. Tomato seedlings, which 
were cultivated in controlled greenhouses at GAPTAEM 
Koruklu Research Station, were transplanted into the pots 
when they reached the 3–4 leaf stage, which was 
approximately 40–45 days after germination. Each fungus 
(F. solani and F. oxysporum-FORL) and the control group 
(non-inoculated plants) were subjected to separate 
experiments. The experiment followed a randomized plot 
design with 4 replications, and each replication contained 
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3 plants. Scala values used to evaluate the disease were 0-
3, sensitive, moderate and resistant. The entire setup was 
kept in the Climate Chamber of the Plant Health 
Department of GAPTAEM (GAP Agricultural Research 

Institute Directorate) under controlled conditions, 
maintaining a temperature range of 24 °C – 25 °C and a 
humidity level of 60% throughout the  

Figure 1. In the left picture-c; Furthest right pot is Healthy 
Control Plants with uninoculated F. solani (F -), the other 
pots from right 2. 3. and 4. pots are Diseased Plants 
inoculated with F. solani (F +). In the right picture-d; The 
right tomato seedling is Diseased Plant inoculated with F. 
oxysporum (F+) and the left tomato seedling is Control-F. 
oxysporum (F-). 

growing season. To monitor the progression of the 
experiment, thermal images were taken every week for 6 
weeks, starting from the date the seedlings were planted in 
the pots. 

  Table 1. Thermal imagining sampling times and the 
number of samples taken 

Date Control Diseased 
20.12.2019 11 Sample 12 Sample 
27.12.2019 12 Sample 12 Sample 
02.01.2020 12 Sample 12 Sample 
09.01.2020 12 Sample 12 Sample 
17.01.2020 12 Sample 12 Sample 
23.01.2020 12 Sample 12 Sample 

 

Thermal camera 

The thermal camera serves as a diagnostic tool utilized 
across different industries to detect and measure abnormal 
temperatures or cold areas in specific regions. It comprises 
lenses and sensors designed to capture the thermal energy 
emitted by objects. Unlike other temperature-measuring 
devices, the thermal camera does not require direct contact 
with the equipment being assessed. Instead, it operates as 
an imaging system that analyzes infrared energy patterns. 
The camera translates this invisible infrared energy into 
visual representations, displaying the general structure of 
the image, along with colors and shapes corresponding to 
the infrared energy distribution. As a result, the thermal 
camera can identify issues that may not be visible to the 
naked eye, providing valuable insights into hidden 
problems and potential malfunctions [1], [16].   

In this study, the TESTO 885 model thermal camera was 
used. The camera has a detector size of 320*240 pixels. 

The thermal information obtained is enhanced using 
SuperResolution technology, bringing it to a size of 
640*480 pixels. The camera allows measurements with a 
temperature resolution of 0.03°C. Thermal imaging is 
recorded at a 30-degree angle. Additionally, the camera 
captures RGB images, but the resolution and field of view 
for RGB images are higher. To utilize the images taken by 
the camera in the software, the camera's proprietary 
software, IRSOFT, was used to open and obtain both the 
thermal and RGB images on the computer (Fig.2.). 

Image Fusion of Thermal and RGB Images 

The thermal camera used simultaneously captures thermal 
images and records RGB images. However, there are 
differences in the field of view, size, and resolution 
between the recorded thermal and RGB images. This 
dissimilarity complicates their combined usability during 
image analysis. To overcome this problem, an image 
alignment or registration process, known as Image 
Registration, is performed. With this process, the objects in 
the two images are brought to the same position or aligned. 
The image registration is carried out using a point matching 
method, specifically the SIFT (Scale-Invariant Feature 
Transform) algorithm. This algorithm ensures scale-
invariant feature transformation, enabling the matching of 
features between the thermal and RGB images. After the 
thermal and RGB images are successfully aligned, the 
resulting image is cropped to match the size of the thermal 
image. 

 

 



DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 611-619 
 

614 
 

  Figure 2. Thermal imagining 

Plant Regions Segmentation and Obtaining Thermal 
Image Data of Plant Regions 

Flow Diagram given in Fig.3 shows the steps in early 
distinguishing of root rot disease in tomatoes.  

In thermal images, all temperature information in a specific 
area is obtained on a pixel-by-pixel basis. Therefore, 
processing the entire thermal image can lead to erroneous 
results. To address this, the plant region is detected based 
on RGB images, and other areas are cleared from 
consideration. This process involves color-based 
segmentation, where the RGB image is transformed into 
the HSI (Hue-Saturation_Intensity) color space using the 
expressions given in Equations given below. The resulting 
Hue data contains color information. For plant region 
detection, the Hue value within the range of 45 to 75 is 
selected. This range is used to identify green and related 
tones typically associated with plants. Using this color 
data, plant regions are separated from the rest of the image. 
The identified plant regions are then matched with the 
aligned thermal image. This process ensures that only the 
plant regions are obtained in the thermal image. It's 
important to note that the appearance of these regions may 
vary based on factors such as the leaf surface of the 
captured plant and the distance of imaging. These 
differences need to be considered while analyzing the 
thermal image of the plant regions. 

 
 

Figure 3. Flow Diagram demonstrating methodologies in 
early distinguishing of root rot disease in tomatoes 

Initially, it is needed to begin the process of converting the 
RGB color space image to the HSI space by normalizing 
the RGB values (Equations 1 -3); 

𝑟𝑟 =
𝑅𝑅

𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵
,𝑔𝑔 =

𝐺𝐺
𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵

, 𝑏𝑏 =
𝐵𝐵

𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵
 (1) 

 

ℎ = 𝑐𝑐𝑐𝑐𝑐𝑐−1 � 0.5.[(𝑟𝑟−𝑏𝑏)+(𝑟𝑟−𝑏𝑏)]

[(𝑟𝑟−𝑔𝑔)2+(𝑟𝑟−𝑏𝑏)(𝑔𝑔−𝑏𝑏)]1 2�
� h€[0,π] for b≤ g (2) 

 

ℎ = 2π − 𝑐𝑐𝑐𝑐𝑐𝑐−1 � 0.5.[(𝑟𝑟−𝑔𝑔)+(𝑟𝑟−𝑏𝑏)]
[(𝑟𝑟−𝑔𝑔)2+(𝑟𝑟−𝑏𝑏)(𝑔𝑔−𝑏𝑏)]1 2�

� h€[0,2π] for 
b > g 

(3) 

 
s=1-3. Min (r,g,b)   s € [0,1] 
 
i=(R+G+B)/(3•255)  i € [0,1] 
 

the h, s, and i values within the ranges [0, 360], [0, 100], 
and [0, 255], respectively, are calculated using the formulas: 
H = hx180/π, S = sx100, and I = ix255. 

Extracting Features from The Thermal Data of The 
ROI (Region of Interest) 

The thermal data of the identified plant regions serves as 
input data for the classification process. Statistical features 
are computed from the thermal image, including pixel 
count, maximum, minimum, mean, standard deviation, 
kurtosis, skewness, and moment values. By doing so, 8 
feature attributes (Number of pixel, Min, Max, Mean, 
Standart deviation, Skewness, Kurtois, Moment) are 
obtained from the thermal image. 

In our dataset, there are a total of 143 samples. 75% of 
these samples (108 samples) are used for training, while 
the remaining 25% (35 samples) are used for testing. The 
machine learning algorithms (Naive Bayes, Logistic 
Regression, and KNN) are trained using the 108 training 
samples, and then testing is performed on the 35 test 
samples. The obtained features are used to predict diseases 
using the mentioned algorithms.  

The K-Nearest Neighbors (K-NN) algorithm looks at the k 
closest neighbors to determine the class or value of a data 
point. These neighbors are determined using a specific 
similarity metric. The parameter k represents the number 
of selected neighbors. In classification problems, the 
majority class of the neighbors is used for prediction, while 
in regression problems, the average value of the k nearest 
neighbors is used as the predicted value. K-NN is a simple 
algorithm that does not build a model during training, but 
its computational cost may increase with large datasets or 
a high number of features. Logistic regression is a 
statistical model used for classification problems. By 
learning the weights of independent variables in a dataset, 
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it predicts the probability of a data point belonging to a 
specific class. It employs a sigmoid function to constrain 
these probabilities to the [0, 1] range. Usually, probabilities 
above a specified threshold are assigned to one class, and 
those below it are assigned to another. Its simplicity, speed, 
and interpretability make it a preferred choice, especially 
for binary classification problems. Naive Bayes is a 
machine learning algorithm based on Bayes' Theorem and 
is particularly employed in applications like text 
classification. Essentially, it operates by assuming 
independence between features, which is often referred to 
as the "naive" assumption. During the training phase, 
probabilities for each class are determined, and during the 
testing phase, the probability of belonging to a specific 
class is calculated using Bayes' Theorem. The class with 
the highest probability is then selected as the prediction. 

Results and Discussion 

The early diagnosis of plant diseases is crucial to mitigate 
economic losses caused by these diseases. In this context, 

remote sensing techniques have become increasingly 
popular. Particularly, the use of thermal images combined 
with machine learning techniques for the early diagnosis of 
diseases has been found beneficial in controlled 
greenhouse conditions as well as field conditions [17]. 

In this study, thermal images of tomato plants with root 
disease inoculation and healthy tomato plants without 
disease inoculation were obtained under controlled 
conditions. The research aimed to explore the potential of 
using thermal images for early diagnosis of the disease. By 
comparing thermal images between the diseased and 
healthy plants, the study investigated the possibility of 
utilizing thermal imaging as a tool for early detection of the 
disease. Additionally, three different machine learning 
classification techniques were compared in this study for 
the classification of healthy and diseased plants based on 
thermal images. 

Thermal images were obtained to compare temperature 
changes between healthy and pathogen-inoculated diseased 
plants. Thermal images were captured for both healthy and  
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Figure 4. Pictures showing thermal and RGB images and their fusion 
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            Table 2. The features extracted from thermal images of some plant samples. 
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1 18,50 20,90 20591,00 0,44 68295,00 -21943,00 -0,19 1 0 HEALTHY 

8 20,90 21,90 21603,00 0,21 24835,00 -11559,00 -0,01 2 2 DISEASED 
11 21,00 21,90 21632,00 0,19 24828,00 -11559,00 -0,01 2 0 HEALTHY 

18 23,10 24,50 24084,00 0,29 24835,00 -11559,00 -0,03 3 2 DISEASED 
29 22,10 23,70 23224,00 0,33 24835,00 -11559,00 -0,04 5 1 DISEASED 

39 23,60 24,70 24373,00 0,23 24835,00 -11559,00 -0,01 6 1 DISEASED 

diseased plants, and their temperature variations were 
compared. The table 2 presents some selected plants' 
statistical results regarding temperature changes. It can be 
observed that, generally, the average temperature values of 
diseased plants are higher compared to healthy plants. 

Diseased plants may have higher temperatures when 
observed through thermal imagery due to several reasons 
that includes increased metabolic activity or inflammation 
response. Diseased plants often experience stress, which 
can lead to an increase in metabolic activity. The pathogen 
enters the plant through stomata, leading to alterations in 
the metabolic processes of plant tissues. This includes 
changes in respiration, photosynthesis, and transpiration 
within the plant. This heightened metabolic rate can 
generate more heat, causing the plant to have a higher 
temperature when compared to healthy plants [18].  Plants 
can activate defense mechanisms when they are under 
attack by pests or pathogens. These responses may include 
the release of signaling molecules or chemicals that can 
induce local inflammation-like reactions. These responses 
might elevate the temperature in the affected areas. 

At a height of 50 cm from the canopy, using thermal 
images obtained from a thermal camera, researchers 
observed a decrease in leaf surface temperatures in 
diseased plants compared to healthy ones. However, in this 
study, there was an increase in temperature. The decrease 
in leaf surface temperature in diseased plants was attributed 
to the masking effect caused by fungal disease, which 
covers the leaf surface with spores [1]. Similarly, Awad et 
al. [19] found that in wheat plants artificially inoculated 
with pathogens under greenhouse conditions, there was a 
temperature decrease shortly after (around one hour later) 
the disease transmission. They attributed this temperature 
decrease to a similar cause. The high density of spores had 
a masking effect on the leaf surface, leading to a reduction 
in leaf surface temperatures in infected plants. On the other 
hand, researchers studying downy mildew in grapevines 
under field conditions observed an increase in leaf 
temperatures long before visible symptoms became 
apparent, using thermal images obtained with an infrared 
camera [18].

Table 3. The Accuracy assessment of distinguishing healthy and unhealthy plants based on thermal images using different 
machine learning techniques. 

ACTUAL/ 
CLASSIFIED 

HEALTHY/ 
HEALTHY 

HEALTHY / 
UNHEALTHY 

UNHEALTHY 
/ HEALTHY 

UNHEALTHY/ 
UNHEALTHY ACCURACY ERROR 

RATE  TP FP FN TN 
KNN 14 4 6 11 0,72 0,28 

Naive Bayes 10 8 3 14 0,68 0,32 
Logistic 

Regression 11 7 7 10 0,6 0,4 

 

 

To evaluate the dependability of the classification 
approach, the accuracy of the classified images can be 
gauged using an overall accuracy metric. To calculate the 
overall accuracy, it involves dividing the number of 
correctly classified plants by the total number of plants [1]. 

Table 3 presents the error matrix for the classification 
outcomes using three different methods; KNN, Naive 
Bayes and Logistic regression. Among the four distinct 
classification methods, the KNN (k-Nearest Neighbors) 
technique yielded the highest classification accuracy, 
reaching 72%.  
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The Table 3 shows that disease detection can be achieved 
with 72% accuracy. Moreover, similar results were 
obtained with other methods. 

Omran [1] achieved an overall success rate of 72 % in early 
distinguishing peanut leaf disease with varying degrees of 
disease using thermal imagery. The temperature difference 
observed between healthy and infected plants allowed the 
researchers to effectively differentiate between the two 
groups. The variations in leaf surface temperatures 
provided a clear distinction, enabling them to identify and 
discriminate healthy plants from those infected with the 
disease.  

Synthetic data was generated using the SMOTE method. In 
this way the amount of data is doubled. The same results 
were obtained by applying statistical methods and machine 
learning methods. Since the results obtained were not 
different from the previous ones, it was seen that no 
advantage was gained by increasing the data. 

In the study conducted by Singh et al. [17], they modeled 
the severity of wilting in chickpeas using RGB and thermal 
images, comparing different machine learning techniques. 
The researchers divided the dataset into two groups: the 
training set and the test set. The Cubist model 
outperformed other common machine learning models 
such as MARS, PLS, SVM and RF producing more 
successful results in comparison (with R2 value higher than 
0.8). 

 

Conclusion 

The results obtained from this study demonstrated the 
potential of using thermal images and machine learning 
techniques to diagnose Fusarium root and crown rot 
disease in tomatoes at an early stage under controlled 
conditions. Overall, the ability to distinguish between 
healthy and diseased plants at an early stage was found to 
be 72%. Among the compared classification techniques, 
the most successful one was K-Nearest Neighbors (KNN). 
However, the validity of the method needs to be tested by 
applying the results under field conditions. Additionally, 
further investigations are required to examine the 
applicability of integrating thermal cameras into unmanned 
aerial vehicles (drones) and testing the method on different 
plant species in various field conditions. Early diagnosis of 
plant diseases in this manner can prevent further spread of 
diseases, leading to reduced economic losses and a 
decrease in the use of chemicals, thereby contributing to 
environmental pollution reduction. In conclusion, the 
combination of thermal imaging and machine learning 
techniques holds promise for the early diagnosis of 
Fusarium root and crown rot disease in tomatoes. The 
potential implementation of this approach in real-world 
field conditions and on other plant types warrants further 
exploration for effective disease management and 
sustainable agriculture practices. 
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