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Stability and boundedness of solutions of nonlinear fourth order differential
equations with bounded delay

Erdal Korkmaz *!

ABSTRACT

In this paper, we determine sufficient conditions for the boundedness, uniformly asymtotically stability of
the solutions to a certain fourth-order non-autonomous differential equations with bounded delay by
considering second method of Lyapunov. The results obtain essentially improve, include and complement
the consequences in the current literature.
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Dordiincii mertebeden sinirh gecikmeli nonlineer diferansiyel denklemlerin
coziimlerinin kararhilig: ve sinirhihigi
(074

Bu makalede Lyapunov’un ikinci metodu kullanilarak dordiincii mertebeden otonom olmayan degisken
gecikmeli diferansiyel denklemlerin ¢oziimlerinin diizgiin asimptotik kararliligi ve smirliligi icin yeterli
sartlar1 veririz. Elde edilen sonugclar literatiirdeki sonuglar1 tamamlar, kapsar ve gelistirir.
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1. INTRODUCTION

Differential equations with higher-order have been
widely used in mechanics, vibration theory,
electromechanical systems of physics and
engineering. Solutions of the boundedness and
stability problem assocaited to differential
equation in fourth-order is one of the most
prominent issue and it has been found hihgly
remarkable for many authors. Very interesting
results related to the solutions have been obtained.
Particularly, majority of these results were
obtained using the second method to the
Lyapunov, which is thought as the most result-
oriented and secured methods (see, Lyapunov [13]
and Yoshizawa [28]). However, [4,5,16] include
such a useful content about the qualitative
behaviors of differential equations without or with
delay. To gain much better perspective on the
boundedness and stability, see the papers of Ezeilo
[6,7], Hara [8], Harrow [9,10], Tung
[22,23,24,25,26], Remili et al. [15,17,18], Wu and
Xiong [27] and others and theirs references. As
motive from references, we obtain some new
consequences on the uniformly asymtotically
stability and boundedness of the solutions by
means of the Lyapunov's functional approach. Our
results differ from that obtained in the literature
(see, [1]-[28] and the references therein). By this
way, this paper enrich to the current literature and
contribute future studies by presenting useful
information for the solutions of higher-order
functional differential equation’s qualitative
behaviors. In view of all the mentioned
information, it can be checked the novelty and
originality of the current paper.

In this paper, we seek sufficient condition to obtain
the uniformly asymptotically stability of the
solutions for pt,x, x",x", x")=0 and
boundedness of solutions to the fourth order
nonlinear differential equation with bounded
veriable delay

(g(x(@)x"(0))" + a(@)(k(x(0))x"(2))

+b(t)(q(x(0)x' (1)) +c(t) £ (x())x'() (1)
+d(Oh(x(t—r@))) = p(t,x,x',x",x").

For convenience, we let

0.(t)= 200 iy g (1= KED)
0=y 2O 00 F Y

and
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0.0 TGO g o SEO)
W= O g
We write (1) in the system form
x'=y,
ol
gx)
z'=w,
w= —a(t)@ w (2)
g(x)
+ (a(r)k(x)el 0 -b0 L2 (g0, (r)}
g(x)

—(BO)G> ()0,(0) + () f (%) ly — d(O)h(x)

t
+d(t) [ B o)y mdn+ plt,x,y,2,w),
(= (t)
where r(z) is a bounded delay, 0<r(:)<Q,
r't)<A, 0<A<l, A and Q some positive
constants, ) which will be determined later, the
functions a,b,c,d are continuously differentiable
functions and the functions f, %, g,q,k and p are
continuous functions depending only on the
arguments shown. Also derivatives
g'(x),g"(x),k'(x),q'(x), f'(x) and A'(x) existand
are continuous. The continuity of the functions
a,b,c,d,g,g'.g" k,k', q.q',f ,p and h
guarantees the existence of the solutions of
equation (1). If the right-hand side of the system
(2) satisfies a  Lipchitz  condition in
x(2), y(t), z(t),w(t) and x(¢—r(¢)) and exists of
solutions of system (2), then it is unique solution
of system (2).
Assuming
dy,by,¢o,dy, 10> 80-90- Ko a1, 0y, ¢4y, 11,81,
q,,k,,m,M, and ¢ are constants then, following
assumptions hold:

(A1) O<a,<a(t)<a;
0<b, <b(t)<bh;0<c,<c(t)<c;
0<d,<d(t)<d, for t=0.

(A2) 0<fy<f(x)<fis
0<g,<g(x)<g;0<k, <k(x)<k;
0<qg,<q(x)<gq, forxe R and

0<m <min{f0’k09g0’1}a
M >max{f1,gl,k1,l}.

1318



E.Korkmaz /Stability and boundedness of solutions of nonlinear fourth order differential equations with bounded delay

(A3) M) >8>0 for x =0, h(0)=0

(A4) |p(t,x, v,z, w)| < |e(t)|.
2. PRELIMINARIES

We also consider the functional differential
equation

x=f(t,x), x,(0)=x(t+6), —r<6<0, t>0. (3)

where f : IxC,, — R" is a continuous mapping,
f(t,0)=0,C, ={¢e(C[-r,0L,R"): |f|<H},
and for H, < H, there exists L(H,) >0, with
|f(t,¢)|< L(H,) when |¢] < H,.

Theorem 2.1. Let V(¢,4): IxC,, >R be a
continuous functional satisfying a local Lipchitz
condition, ¥ (¢,0) = 0, and wedges W, such that :

D W (e <v.s)<w,(¢).
2) Vi (t.9) < -W(|g))-

Then, it implies that the equation (3) is uniformly
asymptotically stable for the zero solution (Burton

[4D)-
3. MAIN RESULTS

Lemma 3.1. Let £(0) =
and ot)—h'(x)=0,
25()H (x) > I’ (x),
(Hara [8])

Theorem 3.1. Besides to the fundamental
assumptions imposed on the functions a,b,c,d,
g.k,q, f and h let we suppose that there exists

0, xh(x)>0 (x=0)
(0(t) > 0), then

where  H(x)= [ h(s)ds

non-negative constants /,,35,,0,,0,,7,,7,,7; and
1, so that the following statements are hold:

hy

L ao;’lt)o < h (x) < 2M , |gv(x)| < 774 for

xeR.

1.

ii. byq, > max{v,,v, } where

ahydM> | M (¢ +5
L ="+ (‘2°)+a0a1m(M—1)
com agm
_ 2dhyay (1 _L)Z 2coM
2 7 cp(M-1) \m M a,

2a,dyhgM 4 G (M*+2)mM
com® dihy

+
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)dt<771.
|£'()])ds <.

i [(a@) + o)+
iv. (g )|k +
V. I(:O|e(f)| dt <n;.

Then any solution x(z) equation (1) are bounded
and trival solution of equation (1) for
p(t,x,x',x",x")=0 1is uniformly asymtotically
stability, if

O < 2(1-4) min g,m ’ ga,m ,
d,h, a+p2-A)+1 Ma(l-2)

mz(bo%

Mm®
Proof We take a Lyapunov functional for the
usage of basic tool for the proof,

—v,)—eM*(a, +c1mM)}

;/(v)dv

W=W(tx,yzw=e" v, (4)
where
y(@) =|a' ()] +|p'@)| +|c' ()| +]d'(0)|
+16, ()| + 16, ()| + |6, (1)) +

and
2V = 28d(H)H (x) + c(1)g(x) f (x)y*
N NER o g
Fabl) 7 a5
E )yz+ [pb(1)q(x) — ahyd (1)]y*

+2fa(t)

-p 2 +aw’ + 2d(t)g(x)h(x)y
g(X)

+2ad (Oh(x)z + 2ac(t) £ (x) yz

+2,b’yw+2zw+0'j '[y(;/)dj/ds

t+s

with H(x) = [} h(s)ds, a=4n

dyh .
p=-"+¢g, and 7 are non-negative constants to
com

be described later. We can rewrite it in the form
2V as
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ld +z+pf ! y}
a(t)k(x) g(x)

(Oh(x) ’
et )L)f() yr az}

2V = a(t)k(x){

d(t)h(x)T

() f(x){(g@f) Uy c(6) f (%)

+2&d (t)H (x)
0 t )
+GL(;)LY Yy (y)dyds+ L+ L, + L

where

() h'(s)} ds,
c() f(x)

—a’e(t) f(x)

L, = 2d(1) jo h(s){i‘i: =

q(x) 1
{ " Ve

-@k

[ﬂb(f)q(X) ahyd(t) - Ba(t)—

1
k
+a(t) (X)(g ®

k(x)
2’ ()
e f (g () - 3g(x) + 2)1y

1 5 1
+{a - a(t)k(x)} w” + 2,6’(1 g(x)Jyw.

dh *(byg —
& <min M Gl mz(o% v,) (5)
aym com M~ (a, + mMc,)

Let

then

M<a<2M dihy <p< 2dh ©)

9
a,m a,m  c,m com

Considering conditions (A1)-(A3), (i)-(ii) and
inequalities (5), (6) we have
}ds >

gt

b d\h
L,>a Doy [ Gty NG| M, c,m
M com m \ a,m

L, > 4d(t)
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>a

M —-1)

(boqo _diha, ceM? aom(

2
M com a,m

—i(a1 + clmM))z2
m

> -2 (m(byg, —v,)- eM(a, + c,mM))z> >0,

Mm
and
a M
Ly > ﬂ(boqo _Eh()dl - pa, %
oMM +2) (M)
J/j a,m
+2,B(1—Lij
g(x)
M M
2 ﬂ(bo% Sy R —2aq, ik 3
a, com
_cocl(M2 +2)mM » M -1 W
dh, a,m

1
28| 1-——
' ﬂ( g(x)ij
2dhya, (1 1Y , (M-1),
2ﬂcO(M—l)(m ij +[ a,m JW

1
28/ 1—- S
’ ﬂ( g(x)ij

and by calculating the discriminant, we obtain

o, LY 2dh (1 1Y
A‘ﬂ(l g(x)j P (m Mj

L, >0.

From the above inequalities, there exists non-
negative constant D, so that

2V > Dy(y* +z° +w’ + H(x)). (7)

Considering Lemma 3.1, (A3) and (i), we find a
positive constant D, such that

2V >D(x*+y* +z° +w) (8)
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In this way V is positive definite. In
consideration of (A1)-(A3), we can have a positive

constant U, such that

V<U(x*+y* +z27 +w).

9)

Considering the condition (iv), we write

(& a0 |g'(w)| + |k’ (u)|
6.(s) d. e

2

N jaz<t>|q (u)| /! (u)|

(1) (u)

I =y,
< Wj—oc Qg (u)|+

o (1)

)du  (10)

1 ey, ,
el I AUV )T

where a,(t) = min{x(()),x(t)} and
a, (1) = max{x(0),x(¢)}. From inequalities (5), (9)
and (10), it follows that

W>=D,(x*+y>+z" +w)
alnet)

Also, it is easy to see that there is a positive
constant U , such that

(11)

where D, =-e

- b
2

W<U,(x*+y° +z° +w) (12)

forall x,y,z,w and all #>0.
Now our goal is to show that Wois negative
definite function. For the function V taking

derivative with respect to ¢ yields to obtain
following statement along any solution

(x(t), y(t),z(¢), w(t)) of the system (2)

2V ) = 2ec(t) f(x)y* +L, + L+ L, + L,
+ L+ Ly +2(fy+z+aw)p(t,x,y,z,w)

where

d\h
L= —2[#C(Z)f (x)—d (t)g(X)h’(X)Jy2
com

J yZ’

h
—2ad 0
(t)(g(x)
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f(x)
g(x)

- lj w?,
)h'(X(ﬂ))y(ﬂ)d n
+2Bd@yO[ K<)y
240 [ W)y

ron’ () -o(-r'on|

—ac(t)

— pa(?)

L= _z(bmq(x)

g(x)
L= —2(05

a(t)k(x)
L, = 2ad(t)w | (

(%) j
22 (x)

g(x)

y*(m)dn

L, = 0,(a(t)k(x)z> — ab(t)q(x)z’
+o(0) f(x)g* (x)y* + Be?
+2d(1) g’ (x)h(x)y + 2aa(t)k(x)zw)
—b(1)6,g(x)az* +2ag(x)zw + fg(x)y?
+ 2g(x)yz)— cz(t)tﬁ’zg(x)(z2 + 2azw)
+0,(c()g’ (0)y* +2ac(d)g” (x)yz),

L, = d'(ORAH(x) - ahyy* +2g(x)h(x)y + 2ath(x)z]
' (Og(0) £ (x)y* +2af (x)yz]

+b’(r){ 4 2+ﬂq<x)y}
g(x)
k(x) , k(x)
+2
i (t){g(x) ﬂg(x)y}

By regarding conditions (Al), (A2), (i), (ii) and
inequalty (6), (7) we have the following

L,< —2d(t)g(x){ "y —h'(X)}y2
g(x)

yz

' I a ’
x:| (y-i—%Z

< a_2 d(t)[h—o - h'(x)} z?
2m m

h
—2ad(t) —~—h'
o (t){g(x) (x)_

h
< 2d 0
(”m{g(x)

In that case,
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{éﬁ+%“¥ a(aﬁﬂ
com m 4m

< byq, M’ . _dhyaM
M am’ : com

M5, M(a1 ﬂ 2
——2—e—| 2L+¢
a,m m\ m

< _Lz[mz(bo% _Ul)_é‘Mz(al +clm)]z2 <0,
Mm

and

L

IN

| P L | W pR LW )
M M

aymo,

By taking A, = max {%"— 7 ,ZM}, we get

L, < dlhlr(t)(ocw2 + ﬂy2 + zz) + crr(t)y2
+[d,h(a+B+1)—o(1- ’1)”;_,(,) 2 (s)ds

If we choose o = (112) (a+p+1), we get

_ dihr(0)
a0l
F(a+ fQ2-2)+ 1)y +221

7_

Thus, there exists a positive constant D, such that
—2ec(t) f(x)y* + L, + Ly + L, + L,
< 2D, (y* +z° +w).

From (7), and the Cauchy Schwartz inequality, we
obtain

L, < |6 (a()k(x)z* + ab(t)g(x)=?
+c(t) f(x)g* (x)y* + f2°
+ d(t)g2 (x)(h2 (x)+ y2 )+ Ota(t)k(x)(z2 +w? ))
46,|(c(Ng’ )y + acg> ()(* +2°))
+ a(t)|l92| g(x)(z2 +a(z’ + wz))
+b(1)|6,| g(x)az® + ag(x)(z* +w?)
+ fg(0)y* + g0y +27)
< Al(j@l|+|02| +|6;] +|l94|)(y2 +z0 4w +H(x))
< 2200+ 10| +[61]+]o.)).

0

where
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A, = max{d hyM ,b,M (a +aM + M + M),

B+M(a, +ab, +aa,),M*(d, +ac, +c,M)}
Using condition (i) and Lemma 3.1, we can write

|L9| < 0y2

+ g (x)+ y*) + alh?(x) + 2°)]

(2 +22)

lx) e ﬂyz}

+b'(0) q(X){a

+|a’(t)|@[z2 +ﬂ(y2 + zz)]
g(x)
< 2, @' @) +[b' ) +]c' @] +|a@' @] (v* + 22
+w 4+ H(x))
2
< 2D—2Ha'(t)| +[p(8) +|e' )| +[d" @)V,

0

such that
A, =max 28+ hy(1+2),ahy + M (a + M +1),
Mg+ f+1)).

By taking . = D%)max{ll ,A,}, we have

V(z) < —D3(y2 +z? +W2)
+(ﬂy+z+aw)p(t,x,y,z,w)

13
+l(ja'(t)|+ ' (1)
n

0, +]6,])7.

From (A4), (iii), (iv), (10), (11), (13) and the
Cauchy Schwartz inequality, we get

: . 1 L[y (s)ds
W = (V(z)——y(t)Vje ol

n
< (—D3(y2 +2z° +w2)+(,[)’y+z

_it S S
e )p(t, x, v, 2, w))e

< (] W) p(t,x, 2, )| (14)
< D, (y]+ 2]+ wl)e(2)
< D4(3+y2 +z7 + w2)|e(t)|

(3 +— j|e(t)|

< 3D,Je(n)] + =+ s W|e(t)| (15)

2

+a
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where D, = max{a, ,B,l}. Integrating (15) from 0

to ¢ and using the condition (v) and the Gronwall
inequality, we have

W < (0,(0), 1(0), 2(0),w(0)) + 3D,
+%J.0t W (s,x(s), ¥(5), 2(s), w(s) |e(s)| ds

t
%;J.O‘e(s)‘ ds

< (W(0,x(0), (0), 2(0), w(0)) + 3D,77, )e

< (w(0,x(0), »(0), 2(0), w(0))+ 3D,7,) o (16)
=K, <o

Because of inequalities (11) and (16), we write

(x2 +y? +Zz+w2)SDLWSK2, (17)

2

where K, = %. Clearly (17) imlies that

0| < VK, o] <K,
20| < JK,, [w(t) < K, forallz >0

Thus, by using conditions (A2), (i) and (17) with
the system (2) we have

()] < VK, [0 0] < VK

0] <[y 0] = |- 0] < - K,
g(x) 8o

g'(x)|
T y®)|z()
Lo

Siw/K2 +77—42K2 forallt > 0.

0 8o

(18)

"m L
h(msaﬂwmh

In this case x(7),x'(z),x"(¢) and x'"(¢) are
bounded.

By taking p(¢,x,y,z,w) =0 in the inequality (14)
obtained

. . 1 i (s)ds
Wa = EVO)—;J/U)V} b

_iff (5)ds
<-D,(y*+z7+w')e oo
< —u(y® +z7 +wh),

m+n2

where u=D,e " . It can also be observed that

the only solution of system (2) for which
W@ (t,x,y,z,w)=0 1S the solution

x=y=z=w=0. In this way, trival solution of
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equation (1) is uniformly asymptotically stable and
are bounded solutions of equation (1).
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