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Stability and boundedness of solutions of nonlinear fourth order differential 
equations with bounded delay 

Erdal Korkmaz *1 

ABSTRACT 

In this paper, we determine sufficient conditions for the boundedness, uniformly asymtotically stability of 
the solutions to a certain fourth-order non-autonomous differential equations with bounded delay by 
considering second method of Lyapunov. The results obtain essentially improve, include and complement 
the consequences in the current literature. 

Keywords: Stability, Boundedness, Lyapunov functional, Delay differential equations, Fourth order. 

Dördüncü mertebeden sınırlı gecikmeli nonlineer diferansiyel denklemlerin 
çözümlerinin kararlılığı ve sınırlılığı 

ÖZ 

Bu makalede Lyapunov’un ikinci metodu kullanılarak dördüncü mertebeden otonom olmayan değişken 
gecikmeli diferansiyel denklemlerin çözümlerinin düzgün asimptotik kararlılığı ve sınırlılığı için yeterli 
şartları veririz. Elde edilen sonuçlar literatürdeki sonuçları tamamlar, kapsar ve geliştirir. 

Anahtar Kelimeler: Kararlılık, Sınırlılık, Lyapunov fonksiyonu, Gecikmeli diferansiyel denklemler, 
Dördüncü mertebe. 
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1. INTRODUCTION 

Differential equations with higher-order have been 
widely used in mechanics, vibration theory, 
electromechanical systems of physics and 
engineering. Solutions of the boundedness and 
stability problem assocaited to differential 
equation in fourth-order is one of the most 
prominent issue and it has been found hihgly 
remarkable for many authors. Very interesting 
results related to the solutions have been obtained. 
Particularly, majority of these results were 
obtained using the second method to the 
Lyapunov, which is thought as the most result-
oriented and secured methods (see, Lyapunov [13] 
and Yoshizawa [28]). However, [4,5,16] include 
such a useful content about the qualitative 
behaviors of differential equations without or with 
delay. To gain much better perspective on the 
boundedness and stability, see the papers of Ezeilo 
[6,7], Hara [8], Harrow [9,10], Tunç 
[22,23,24,25,26], Remili et al. [15,17,18], Wu and 
Xiong [27] and others and theirs references. As 
motive from references, we obtain some new 
consequences on the uniformly asymtotically 
stability and boundedness of the solutions by 
means of the Lyapunov's functional approach. Our 
results differ from that obtained in the literature 
(see, [1]-[28] and the references therein). By this 
way, this paper enrich to the current literature and 
contribute future studies by presenting useful 
information for the solutions of higher-order 
functional differential equation’s qualitative 
behaviors. In view of all the mentioned 
information, it can be checked the novelty and 
originality of the current paper. 

In this paper, we seek sufficient condition to obtain 
the uniformly asymptotically stability of the 
solutions for  0),,,,( ≡′′′′′′ xxxxtp   and 

boundedness of solutions to the fourth order 
nonlinear differential equation with bounded 
veriable delay  
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We write (1) in the system form 
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where )(tr  is a bounded delay,  Ω≤≤ )(0 tr , 

λ≤′ )(tr , ,10 << λ  λ  and Ω  some positive 

constants, Ω  which will be determined later, the 
functions dcba ,,,  are continuously differentiable 

functions and the functions kqghf ,,,,  and p  are 

continuous functions depending only on the 
arguments shown. Also derivatives 

)(),(),(),(),( xfxqxkxgxg ′′′′′′  and )(xh′  exist and 

are continuous. The continuity of the functions  
,,,,,,,,, kkgggdcba ′′′′ fqq ,, ′ p,  and  h   

guarantees the existence of the solutions of 
equation (1). If the right-hand side of the system 
(2) satisfies a Lipchitz condition in  

)(),(),(),( twtztytx  and ))(( trtx −  and exists of 

solutions of system (2), then it is unique solution 
of system (2). 

Assuming 
,,,,,,,,,,,,,, 11111100000000 gfdcbakqgfdcba

,,,, 11 Mmkq  and δ  are constants then, following 

assumptions hold: 

(A1) ;)(0 10 ataa ≤≤<

;)(0 10 btbb ≤≤< ;)(0 10 ctcc ≤≤<    

10 )(0 dtdd ≤≤<  for .0≥t   

(A2)  ;)(0 10 fxff ≤≤<    

;)(0;)(0 1010 kxkkgxgg ≤≤<≤≤<    

10 )(0 qxqq ≤≤<  for Rx∈  and 

{ },1,,,min0 000 gkfm <<  

{ }.1,,,max 111 kgfM >   
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(A3)  0)( >≥ δx
xh  for ,0≠x  .0)0( =h   

(A4)  .)(),,,,( tewzyxtp ≤  

2. PRELIMINARIES  

We also consider the functional differential 
equation 

.0  ,0  ),()( ),,(
.

≥≤≤−+== trtxxxtfx tt θθθ  (3) 

where n
HIxCf R: →  is a continuous mapping, 

,0)0,( =tf },:)R],0,[({: HrCC n
H ≤−∈= φφ  

and for  ,1 HH <  there exists ,0)( 1 >HL  with 

)(),( 1HLtf <φ  when .1H<φ   

Theorem 2.1. Let  R:),( →HIxCtV φ  be a 

continuous functional satisfying a local Lipchitz 
condition, 0)0,( =tV , and wedges iW  such that : 

1)  ).(),()( 21 φφφ WtVW ≤≤   

2) ).(),( 3)3( φφ WtV −≤′  

Then, it implies that the equation (3) is uniformly 
asymptotically stable for the zero solution (Burton 
[4]). 

3. MAIN RESULTS 

Lemma 3.1. Let  ,0)0( =h    0)( >xxh    )0( ≠x   

and 0)()( ≥′− xhtδ , ),0)(( >tδ  then  

),()()(2 2 xhxHt ≥δ   where  dsshxH x )()( 0∫=  

(Hara [8]) 

Theorem 3.1. Besides to the fundamental 
assumptions imposed on the functions  ,,,, dcba

fqkg ,,,  and h  let we suppose that there exists 

non-negative constants 3212100 ,,,,,, ηηηυυδh  and 
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hd   and  η   are non-negative constants to 

be described later. We can rewrite it in the form  
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From the above inequalities, there exists non-
negative constant  0D   so that 
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Considering Lemma 3.1, (A3) and (i), we find a 
positive constant  1D   such that  

            )(2 2222
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