
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 13 NO: 2 PAGE: 384-392 YEAR: 2024

DOI:10.17798/bitlisfen.1341929

384

Layer Selection for Subtraction and Concatenation: A Method for

Visual Velocity Estimation of a Mobile Robot

Mustafa Can BINGOL1*

1 Department of Electrical-Electronics Engineering, Burdur Mehmet Akif Ersoy University,

 Burdur 15100, Türkiye

(ORCID: 0000-0001-5448-8281)

Keywords: Deep learning,

Mobile robot, Velocity

estimation.

Abstract

Kinematic information such as position, velocity, and acceleration is critical to

determine the three-dimensional state of the robot in space. In this study, it is aimed

at estimating, visually, the linear and angular velocity of a mobile robot.

Additionally, another aim of this study is to determine the suitability of the

concatenation or subtraction layer in the Convolutional Neural Network (CNN) that

will make this estimate. For these purposes, first, a simulation environment was

created. 9000 pairs of images and the necessary velocity information were collected

from this simulation environment for training. Similarly, 1000 pairs of images and

velocity information were gathered for validation. Four different CNN models were

designed, and these models were trained and tested using these datasets. As a result

of the test, the lowest average error for linear velocity estimation was calculated as

0.93e-3m/s, and the angular velocity estimation was measured as 4.37e-3rad/s. It was

observed that the results were sufficient for linear and angular velocity prediction,

according to the statistical analysis of errors. In addition, it was observed that the

subtraction layer can be used instead of the concatenation layer in the CNN

architectures for hardware-limited systems. As a result, visual velocity estimation of

mobile robots has been achieved with this study, and the framework of CNN models

has been drawn for this problem.

1. Introduction

Robotic systems must be able to measure their

kinematic information, such as position, velocity, and

acceleration. Also, these systems must be able to

control this information according to the desired

behavior in order to move autonomously in an

environment. For example, Aydogmus and Boztas

controlled the linear and angular velocities of a

mobile robot by using the pure pursuit algorithm [1].

In another study, the design and analysis of a whole-

body controller were realized for a velocity-

controlled robot mobile manipulator [2]. The velocity

of an omnidirectional wheeled mobile robot was

controlled using computed voltage control with visual

feedback [3]. In another study, a novel path-planning

*Corresponding author: mcbingol@mehmetakif.edu.tr Received: 12.08.2023, Accepted: 07.06.2024

algorithm for Ackermann mobile robots was been

developed. This algorithm is based on B-spline curves

and the ant colony algorithm [4]. An omnidirectional

mobile robot was real-time navigated in a dynamic

environment by using a velocity obstacle and a hybrid

A* algorithms [5].

Artificial intelligence is frequently used in

many fields, from health to robotics. To illustrate, a

liver tumor diagnosis was realized using deep

learning techniques and CT - MR imaging [6]. In

another study, an industrial robot was converted into

a collaborative robot that did not harm people by

utilizing deep learning techniques [7]. Artificial

intelligence can be subdivided into two categories:

deep learning and machine learning. In this study,

Convolutional Neural Network (CNN) architectures,

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1341929
https://orcid.org/0000-0001-5448-8281
mailto:mcbingol@mehmetakif.edu.tr

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

385

a sub-branch of deep learning, were used. CNN is a

frequently used structure in robotic systems. For

example, delamination was predicted using

multimodal 1D CNN during the drilling process of

carbon fiber-reinforced plastics [8]. Park et al.

developed a novel vision-based autonomous pick and

place method utilizing CNN [9]. A farm robot that

formed fertilizing and cropping was developed using

CNN [10].

In this study, a CNN-based estimation of the

linear and angular velocity of a mobile robot is aimed

at. There are few similar studies to the current study

in the literature. For example, the velocity of

omnidirectional mobile robots was estimated using an

optical mouse [11]. In another study, state estimation

of a mobile robot that was slip-velocity-aware was

realized via invariant Kalman filtering and

disturbance observer [12]. Arteaga–Pérez and Nuño

designed a velocity observer for the consensus in

delayed robot networks [13]. When the studies in the

literature are examined, studies on velocity estimation

of a mobile robot using artificial intelligence methods

are limited.

From the past to the present, many

researchers have worked on the control and

positioning of mobile robots. In fact, the reason why

these problems have not been solved is that the exact

position of mobile robots is not known. In the current

study, in addition to the methods in the literature, the

velocity of a mobile robot was estimated by

interpreting the images taken at different moments in

a CNN-based architecture. In addition, different

models have been tested for the selection of the layer

to connect the input images in this CNN structure. In

this way, it will contribute to the effective use of

electronic hardware on a mobile robot.

The rest of the study consists of 3 sections.

The first of these sections is Material and Method. In

this section, the simulation environment, how the data

is obtained, and the CNN models are discussed.

Another section is findings. In this section, the

training process of CNN models and statistical results

according to the validation dataset are presented. The

last section is the conclusion. This section presents the

general conclusions of the study and future work.

2. Material and Method

2.1. Environment and Data Collection

One of the objectives of this study is to estimate the

linear and angular velocity of a mobile robot based on

visual data. For this purpose, one mobile robot and

one camera that provides visual data are required. The

linear velocity of a mobile robot is the linear

displacement per unit time in the direction of its X-

axis. The angular velocity of a mobile robot is the

angular displacement per unit time in its Z axis. The

linear (𝑣) and angular (𝜔) velocities of a mobile robot

were presented in Equations 1 and 2. In these

equations, 𝑅, 𝐿, 𝜔𝑅, and 𝜔𝐿 symbolise the wheel

radius, the wheelbase of the robot, the angular

velocity of the right wheel, and the angular velocity

of the left wheel, respectively. In this study, the

experimental environment presented in Figure 1 was

formed. This experimental environment was designed

using the Webots R2023 program, which is a robot

simulator.

𝑣 =
𝑅

2
(𝜔𝑅 + 𝜔𝐿) (1)

𝜔 =
𝑅

𝐿
(𝜔𝑅 −𝜔𝐿) (2)

In Figure 1-a, the mobile robot and camera

are symbolized by 1 and 2, respectively. In Figure 1-

b, lamps are visualized with number 3. In this study,

Turtlebot3 Burger was selected as the mobile robot.

Turtlebot3 Burger mobile robot is 138mm x 178mm

x 192mm in size and weighs 1 kg. In addition, its

wheel diameter, linear velocity, and angular velocity

are 66mm, 0.22m/s and 2.84 rad/s, respectively. The

module in the simulator program was used as the

camera. The camera’s resolution, FOV (field of

view), and exposure were selected as 224px x 224px,

0.785, and 1, respectively. In this study, the parquet

pattern commonly used in indoor spaces such as a

daily home was preferred as the ground. The

simulation environment dimensions were chosen as

5m x 5m. Other parameters of the simulation were

selected as default values and presented in Table 1.

Table 1. The simulation parameters.

Parameter Description Value

Gravity 9.81 m/s^2

Basic time step 64 ms

3D display frame per second 60

Physics disable linear velocity threshold 0.01

Physics disable angular velocity threshold 0.01

Drag force scale 30

Drag torque scale 5

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

386

(a) (b)

Figure 1. The experimental environment; a- Isometric view, b- Top view.

(a) (b)

Figure 2. Tracked routes by the robot; a- Training dataset routes, b- Validation dataset route.

After the simulation environment was

designed, the 10 routes presented in Figure 2 were

followed by the robot. These routes were created by

randomly selecting linear and angular velocities

between 0.1 and 0.2 (m/s-rad/s). Nine of these routes

(Figure 2-a) were used for training, and one (Figure

2-b) was used for validating.

The robot followed each route for 1 minute

and 4 seconds. During this tracking, it obtained

images of the ground presented in Figure 3. There is

one simulation time or 64 ms between the image on

the left side of Figure 3 and the image on the right

side. To express it discretely, the left image is at time

t-1 while the right image is at time t.

Two datasets are created by recording the

images presented in Figure 3 with linear and angular

velocities when the routes in Figure 2 are followed by

the robot. The training dataset, one of these two data

sets, contains a total of 9000 images and their

velocities. The validation dataset contains a total of

1000 images and their velocities.

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

387

Figure 3. Ground images at two different times.

After the datasets were created, the images

went through a pre-processing stage. This pre-

processing stage includes reducing the resolution of

the images to 64px x 64px and converting their color

from RGB to gray.

2.2. CNN Models

The purpose of this study is to reveal the difference

between concatenation and subtraction layers in

architectures that can predict the linear and angular

velocities of a mobile robot visually. To this end, 4

different architectures presented in Figure 4 were

trained with data obtained from simulation

environments. Subtraction layers were used in Model

1 and Model 2. Concatenation layers were used in

Model 3 and Model 4. Convolution and maximum

pooling layers were added to the model after input

layers were used to obtain the properties of the input

layer in Model 1 and Model 3. In Model 2 and Model

4, input data was directly extracted or merged without

a feature extraction process.

When the models presented in Figure 4 are

analyzed, it is seen that the input layer sizes are 64 x

64 x 1. Also, the input of each model consists of two

input layers. The inputs of these layers are images

taken at different times. The convolution layer is the

layer where intensive mathematical operations are

performed, and the number of filters and kernel size

are given in brackets, respectively. The stride size of

this layer is 1 x 1, and the padding is selected as valid.

In the maximum pooling layer, the pool size is given

in brackets. In this layer, padding is selected as valid.

The subtraction layer applies the subtraction

process to the incoming data. The concatenate layer

combines the incoming data one after the other. A

flatten layer is used to convert incoming matrices or

tensors into vectors. A dropout layer is added to the

models to solve the over-fitting problem. The hyper-

parameters of the dropout layer are presented in

brackets. The dense layer is the layer where the input

data affects the entire output data. In these layers, the

number of neurons is given in brackets. In addition,

there are batch normalization and activation layers

after the dense layer, except for the output layer. The

batch normalization layer provides the statistical

regulation necessary for the training process to

proceed in a healthier way. The activation layer

provides the learning process by passing the input

data through a certain function. In this study, all

activation functions except the output layer were

chosen as rectified linear units (ReLU). In addition to

these hyper-parameters, Model 1, Model 2, Model 3,

and Model 4 structures consist of 7.3M, 7.3M, 7.7M

and 7.3M learnable parameters, respectively.

3. Results and Discussion

Input data from datasets was pre-processed after the

datasets were obtained from the simulation

environment. After pre-processing, input and output

data were generated to train. The input data were

augmented by changing their brightness by 25% in

the training phase. In this way, the system was able to

produce more robust results for different brightness.

In addition, the output data were normalized by

subtracting the mean and dividing the result by its

standard deviation. In this stage, the designed models

were trained with the Adaptive Moment Estimation

(Adam) algorithm for 50 steps. In the first 5 steps of

this training, the learning rate is 5e-4, and the learning

rate between steps 6-19 is 1e-4. In the remaining

training process, the learning rate was applied as 1e-

5. The training times of the models are 19.687,

16.875, 22.500 and 16.875 minutes, respectively.

Mean Squared Error (MSE) was used as the loss

function during this training. Loss-Epoch plots during

the training period are presented in Figure 5.

Figure 5 shows that the training and

validation processes of the networks did not have any

high bias or high variance problems. During this

training, a mini-batch size of 8 was chosen, and the

input data in one mini-batch of the validation dataset

is presented in Figure 6.

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

388

(a) (b) (c) (d)

Figure 4. CNN architectures; a-Model 1, b-Model 2, c-Model 3, d-Model 4.

(a) (b)

Figure 5. Loss function graphs; a-Train loss, b-Validation loss.

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

389

Sample 1 Sample 2

Sample 3 Sample 4

Sample 5 Sample 6

Sample 7 Sample 8

Figure 6. Mini-batch samples of the validation dataset.

The results generated against the inputs in

Figure 6 are presented in Figure 7. The error amount

of the data presented in Figure 7 is given in Figure 8.

Figure 8 shows the measured error rates for a mini-

batch. As this data is limited, it is insufficient for a

comparison of model performance. For this reason, a

descriptive analysis of the error between predicted

and actual results for the 1000 data points in the

validation dataset is presented in Table 2.

Table 2 shows the mean, standard deviation,

standard error, and minimum and maximum values

of the errors between the linear and angular velocity

estimates and the actual value. The differences

between linear (9.57e-3) and angular velocity

(40.07e-3) errors are due to the units of both

measurements. For example, if degrees/s were used

instead of rad/s or km/h instead of m/s, the difference

between linear and angular velocity would be

different. It was investigated whether these

calculated error values differed between the groups,

and this result is presented in Tables 3 and 4.

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

390

(a) (b)

Figure 7. Velocity predictions for mini-batch samples of the validation dataset; a- Linear velocities, b- Angular

velocities.

(a) (b)

Figure 8. Errors of velocity predictions for mini-batch samples of the validation dataset; a- Linear velocities, b-

Angular velocities.

Table 2. Descriptive analysis of errors.

 Model N Mean Std. Deviation Std. Error Minimum Maximum

|Error V|

(m/s)

1 1000 1.03e-3 0.81e-3 2.56e-5 1.04e-6 9.57e-3

2 1000 1.95e-3 1.85e-3 5.86e-5 2.51e-6 21.87e-3

3 1000 1.01e-3 1.00e-3 3.16e-5 1.25e-6 9.43e-3

4 1000 0.93e-3 0.86e-3 2.72e-5 0.05e-6 7.56e-3

|Error W|

(rad/s)

1 1000 4.66e-3 5.22e-3 16.52e-5 20.94e-6 40.07e-3

2 1000 14.43e-3 13.53e-3 42.79e-5 4.05e-6 88.06e-3

3 1000 4.37e-3 4.84e-3 15.53e-5 4.62e-6 40.50e-3

4 1000 6.92e-3 4.96e-3 15.71e-5 0.61e-6 36.08e-3

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

391

Table 3. Model comparison according to the linear

velocity error.

Group 1 Group 2 p

Model 1

Model 2 p<0.001

Model 3 0.99

Model 4 0.29

Model 2

Model 1 p<0.001

Model 3 p<0.001

Model 4 p<0.001

Model 3

Model 1 0.99

Model 2 p<0.001

Model 4 0.42

Model 4

Model 1 0.29

Model 2 p<0.001

Model 3 0.42

Table 4. Model comparison according to the angular

velocity error.

Group 1 Group 2 p

Model 1

Model 2 p<0.001

Model 3 0.84

Model 4 0.60

Model 2

Model 1 p<0.001

Model 3 p<0.001

Model 4 p<0.001

Model 3

Model 1 0.84

Model 2 p<0.001

Model 4 0.97

Model 4

Model 1 0.60

Model 2 p<0.001

Model 3 0.97

According to Tables 3 and 4, a significant

difference was observed between Model 2 and the

other groups for both linear and angular velocity

(p<0.001). There is no statistically significant

difference between the other groups (p>0.001).

4. Conclusion and Suggestions

In this study, it is aimed at estimating the linear and

angular velocity of a mobile robot as visualized by a

CNN and to compare whether the concatenation or

subtraction layer of different images at different

times will be more effective in this CNN structure.

For these purposes, firstly, a simulation environment

was designed, and training and validation datasets

were obtained from this environment. Then, 4

different CNN architectures were trained on the

training dataset, and these models were tested on the

validation dataset. The statistical results of the tests

are presented in Tables 2, 3, and 4. Based on these

data, the worst result was produced by Model 2. The

results of other models are better than this model. In

addition, no statistical difference was observed

between the other models except Model 2. Based on

this finding, each of the three models can be used.

However, if structures similar to Model 1 using the

subtraction layer are used, a few convolutional layers

should be used first for feature extraction. In

addition, the extraction layer used in Model 1 will be

more suitable for designs made with limited capacity

processors where the input and output data sizes are

the same as the concatenating layer found in Model

3 and Model 4. If there is no hardware constraint in

the designed system, Model 4, which can be more

easily designed compared to other models, can be

used. The other aim of this study is to estimate linear

and angular velocity. When Tables 2, 3, and 4 are

examined, it is clear that the system designed for

linear and angular velocity estimation is quite useful.

In future studies, data will be obtained from

real mobile robots for complex routes, and similar

studies will be repeated. In addition, it will be tried

to make the proposed algorithm usable not only for

mobile robots but also for all robots in general.

Conflict of Interest Statement

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The study is complied with research and publication

ethics.

M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024

392

References

[1] G. Boztaş and Ö. Aydoğmuş, “Implementation of Pure Pursuit Algorithm for Nonholonomic Mobile

Robot using Robot Operating System,” Balkan Journal of Electrical and Computer Engineering, vol.

9, no. 4, pp. 337–341, Oct. 2021, doi: 10.17694/bajece.983350.

[2] M. Li et al., “Design and analysis of a whole-body controller for a velocity controlled robot mobile

manipulator,” Science China Information Sciences, vol. 63, no. 7, Jul. 2020, doi: 10.1007/s11432-019-

2741-6.

[3] A. Saenz, V. Santibañez, E. Bugarin, A. Dzul, H. Ríos, and J. Villalobos-Chin, “Velocity Control of an

Omnidirectional Wheeled Mobile Robot Using Computed Voltage Control with Visual Feedback:

Experimental Results,” Int J Control Autom Syst, vol. 19, no. 2, pp. 1089–1102, Feb. 2021, doi:

10.1007/s12555-019-1057-6.

[4] F. Huo, S. Zhu, H. Dong, and W. Ren, “A new approach to smooth path planning of Ackerman mobile

robot based on improved ACO algorithm and B-spline curve,” Rob Auton Syst, vol. 175, May 2024,

doi: 10.1016/j.robot.2024.104655.

[5] M. U. Shafiq et al., “Real-time navigation of mecanum wheel-based mobile robot in a dynamic

environment,” Heliyon, vol. 10, no. 5, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26829.

[6] B. Lakshmipriya, B. Pottakkat, and G. Ramkumar, “Deep learning techniques in liver tumour diagnosis

using CT and MR imaging - A systematic review,” Artificial Intelligence in Medicine, vol. 141. Elsevier

B.V., Jul. 01, 2023. doi: 10.1016/j.artmed.2023.102557.

[7] M. C. Bingol and O. Aydogmus, “Practical application of a safe human-robot interaction software,”

Industrial Robot, vol. 47, no. 3, pp. 359–368, May 2020, doi: 10.1108/IR-09-2019-0180.

[8] J. G. Choi, D. C. Kim, M. Chung, S. Lim, and H. W. Park, “Multimodal 1D CNN for delamination

prediction in CFRP drilling process with industrial robots,” Comput Ind Eng, vol. 190, Apr. 2024, doi:

10.1016/j.cie.2024.110074.

[9] J. Park, M. B. G. Jun, and H. Yun, “Development of robotic bin picking platform with cluttered objects

using human guidance and convolutional neural network (CNN),” J Manuf Syst, vol. 63, pp. 539–549,

Apr. 2022, doi: 10.1016/j.jmsy.2022.05.011.

[10] C. Cruz Ulloa, A. Krus, A. Barrientos, J. del Cerro, and C. Valero, “Robotic Fertilization in Strip

Cropping using a CNN Vegetables Detection-Characterization Method,” Comput Electron Agric, vol.

193, Feb. 2022, doi: 10.1016/j.compag.2022.106684.

[11] S. Kim and S. Lee, “Robustness analysis of mobile robot velocity estimation using a regular polygonal

array of optical M,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2008. doi:

10.3182/20080706-5-KR-1001.0769.

[12] X. Yu et al., “Fully Proprioceptive Slip-Velocity-Aware State Estimation for Mobile Robots via

Invariant Kalman Filtering and Disturbance Observer,” Sep. 2022, [Online]. Available:

http://arxiv.org/abs/2209.15140

[13] M. A. Arteaga-Pérez and E. Nuño, “Velocity observer design for the consensus in delayed robot

networks,” J Franklin Inst, vol. 355, no. 14, pp. 6810–6829, Sep. 2018, doi:

10.1016/j.jfranklin.2018.07.001.

