
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE 

ISSN: 2147-3129/e-ISSN: 2147-3188 

VOLUME: 13 NO: 2 PAGE: 384-392 YEAR: 2024 

DOI:10.17798/bitlisfen.1341929 

384 
 

Layer Selection for Subtraction and Concatenation: A Method for 

Visual Velocity Estimation of a Mobile Robot 
 

Mustafa Can BINGOL1* 
 

1 Department of Electrical-Electronics Engineering, Burdur Mehmet Akif Ersoy University, 

 Burdur 15100, Türkiye 

 

(ORCID: 0000-0001-5448-8281) 

  

 

Keywords: Deep learning, 

Mobile robot, Velocity 

estimation. 

Abstract 

Kinematic information such as position, velocity, and acceleration is critical to 

determine the three-dimensional state of the robot in space. In this study, it is aimed 

at estimating, visually, the linear and angular velocity of a mobile robot. 

Additionally, another aim of this study is to determine the suitability of the 

concatenation or subtraction layer in the Convolutional Neural Network (CNN) that 

will make this estimate. For these purposes, first, a simulation environment was 

created. 9000 pairs of images and the necessary velocity information were collected 

from this simulation environment for training. Similarly, 1000 pairs of images and 

velocity information were gathered for validation. Four different CNN models were 

designed, and these models were trained and tested using these datasets. As a result 

of the test, the lowest average error for linear velocity estimation was calculated as 

0.93e-3m/s, and the angular velocity estimation was measured as 4.37e-3rad/s. It was 

observed that the results were sufficient for linear and angular velocity prediction, 

according to the statistical analysis of errors. In addition, it was observed that the 

subtraction layer can be used instead of the concatenation layer in the CNN 

architectures for hardware-limited systems. As a result, visual velocity estimation of 

mobile robots has been achieved with this study, and the framework of CNN models 

has been drawn for this problem. 
 

 
1. Introduction 

 

Robotic systems must be able to measure their 

kinematic information, such as position, velocity, and 

acceleration. Also, these systems must be able to 

control this information according to the desired 

behavior in order to move autonomously in an 

environment. For example, Aydogmus and Boztas 

controlled the linear and angular velocities of a 

mobile robot by using the pure pursuit algorithm [1]. 

In another study, the design and analysis of a whole-

body controller were realized for a velocity-

controlled robot mobile manipulator [2]. The velocity 

of an omnidirectional wheeled mobile robot was 

controlled using computed voltage control with visual 

feedback [3]. In another study, a novel path-planning 
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algorithm for Ackermann mobile robots was been 

developed. This algorithm is based on B-spline curves 

and the ant colony algorithm [4]. An omnidirectional 

mobile robot was real-time navigated in a dynamic 

environment by using a velocity obstacle and a hybrid 

A* algorithms [5]. 

Artificial intelligence is frequently used in 

many fields, from health to robotics. To illustrate, a 

liver tumor diagnosis was realized using deep 

learning techniques and CT - MR imaging [6]. In 

another study, an industrial robot was converted into 

a collaborative robot that did not harm people by 

utilizing deep learning techniques [7]. Artificial 

intelligence can be subdivided into two categories: 

deep learning and machine learning. In this study, 

Convolutional Neural Network (CNN) architectures, 

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1341929
https://orcid.org/0000-0001-5448-8281
mailto:mcbingol@mehmetakif.edu.tr


M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024 

385 
 

a sub-branch of deep learning, were used. CNN is a 

frequently used structure in robotic systems. For 

example, delamination was predicted using 

multimodal 1D CNN during the drilling process of 

carbon fiber-reinforced plastics [8]. Park et al. 

developed a novel vision-based autonomous pick and 

place method utilizing CNN [9]. A farm robot that 

formed fertilizing and cropping was developed using 

CNN [10]. 

In this study, a CNN-based estimation of the 

linear and angular velocity of a mobile robot is aimed 

at. There are few similar studies to the current study 

in the literature. For example, the velocity of 

omnidirectional mobile robots was estimated using an 

optical mouse [11]. In another study, state estimation 

of a mobile robot that was slip-velocity-aware was 

realized via invariant Kalman filtering and 

disturbance observer [12]. Arteaga–Pérez and Nuño 

designed a velocity observer for the consensus in 

delayed robot networks [13]. When the studies in the 

literature are examined, studies on velocity estimation 

of a mobile robot using artificial intelligence methods 

are limited.  

From the past to the present, many 

researchers have worked on the control and 

positioning of mobile robots. In fact, the reason why 

these problems have not been solved is that the exact 

position of mobile robots is not known. In the current 

study, in addition to the methods in the literature, the 

velocity of a mobile robot was estimated by 

interpreting the images taken at different moments in 

a CNN-based architecture. In addition, different 

models have been tested for the selection of the layer 

to connect the input images in this CNN structure. In 

this way, it will contribute to the effective use of 

electronic hardware on a mobile robot. 

The rest of the study consists of 3 sections. 

The first of these sections is Material and Method. In 

this section, the simulation environment, how the data 

is obtained, and the CNN models are discussed. 

Another section is findings. In this section, the 

training process of CNN models and statistical results 

according to the validation dataset are presented. The 

last section is the conclusion. This section presents the 

general conclusions of the study and future work. 

 

2. Material and Method 

2.1. Environment and Data Collection 

 
One of the objectives of this study is to estimate the 

linear and angular velocity of a mobile robot based on 

visual data. For this purpose, one mobile robot and 

one camera that provides visual data are required. The 

linear velocity of a mobile robot is the linear 

displacement per unit time in the direction of its X-

axis. The angular velocity of a mobile robot is the 

angular displacement per unit time in its Z axis. The 

linear (𝑣) and angular (𝜔) velocities of a mobile robot 

were presented in Equations 1 and 2. In these 

equations, 𝑅, 𝐿, 𝜔𝑅, and 𝜔𝐿 symbolise the wheel 

radius, the wheelbase of the robot, the angular 

velocity of the right wheel, and the angular velocity 

of the left wheel, respectively.  In this study, the 

experimental environment presented in Figure 1 was 

formed. This experimental environment was designed 

using the Webots R2023 program, which is a robot 

simulator. 

𝑣 =
𝑅

2
(𝜔𝑅 + 𝜔𝐿) (1) 

𝜔 =
𝑅

𝐿
(𝜔𝑅 −𝜔𝐿) (2) 

In Figure 1-a, the mobile robot and camera 

are symbolized by 1 and 2, respectively. In Figure 1-

b, lamps are visualized with number 3. In this study, 

Turtlebot3 Burger was selected as the mobile robot. 

Turtlebot3 Burger mobile robot is 138mm x 178mm 

x 192mm in size and weighs 1 kg. In addition, its 

wheel diameter, linear velocity, and angular velocity 

are 66mm, 0.22m/s and 2.84 rad/s, respectively. The 

module in the simulator program was used as the 

camera. The camera’s resolution, FOV (field of 

view), and exposure were selected as 224px x 224px, 

0.785, and 1, respectively. In this study, the parquet 

pattern commonly used in indoor spaces such as a 

daily home was preferred as the ground. The 

simulation environment dimensions were chosen as 

5m x 5m. Other parameters of the simulation were 

selected as default values and presented in Table 1.  

 
Table 1. The simulation parameters. 

Parameter Description Value 

Gravity 9.81 m/s^2 

Basic time step 64 ms 

3D display frame per second 60 

Physics disable linear velocity threshold 0.01 

Physics disable angular velocity threshold 0.01 

Drag force scale 30 

Drag torque scale 5 
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(a) (b) 

Figure 1. The experimental environment; a- Isometric view, b- Top view. 

(a) (b) 

Figure 2. Tracked routes by the robot; a- Training dataset routes, b- Validation dataset route. 

After the simulation environment was 

designed, the 10 routes presented in Figure 2 were 

followed by the robot. These routes were created by 

randomly selecting linear and angular velocities 

between 0.1 and 0.2 (m/s-rad/s). Nine of these routes 

(Figure 2-a) were used for training, and one (Figure 

2-b) was used for validating.  

The robot followed each route for 1 minute 

and 4 seconds. During this tracking, it obtained 

images of the ground presented in Figure 3. There is 

one simulation time or 64 ms between the image on 

the left side of Figure 3 and the image on the right 

side. To express it discretely, the left image is at time 

t-1 while the right image is at time t.  

Two datasets are created by recording the 

images presented in Figure 3 with linear and angular 

velocities when the routes in Figure 2 are followed by 

the robot. The training dataset, one of these two data 

sets, contains a total of 9000 images and their 

velocities. The validation dataset contains a total of 

1000 images and their velocities.

  



M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024 

387 
 

 

Figure 3. Ground images at two different times. 

After the datasets were created, the images 

went through a pre-processing stage. This pre-

processing stage includes reducing the resolution of 

the images to 64px x 64px and converting their color 

from RGB to gray.  

 

2.2. CNN Models 

 

The purpose of this study is to reveal the difference 

between concatenation and subtraction layers in 

architectures that can predict the linear and angular 

velocities of a mobile robot visually. To this end, 4 

different architectures presented in Figure 4 were 

trained with data obtained from simulation 

environments. Subtraction layers were used in Model 

1 and Model 2. Concatenation layers were used in 

Model 3 and Model 4. Convolution and maximum 

pooling layers were added to the model after input 

layers were used to obtain the properties of the input 

layer in Model 1 and Model 3. In Model 2 and Model 

4, input data was directly extracted or merged without 

a feature extraction process. 

When the models presented in Figure 4 are 

analyzed, it is seen that the input layer sizes are 64 x 

64 x 1. Also, the input of each model consists of two 

input layers. The inputs of these layers are images 

taken at different times. The convolution layer is the 

layer where intensive mathematical operations are 

performed, and the number of filters and kernel size 

are given in brackets, respectively. The stride size of 

this layer is 1 x 1, and the padding is selected as valid. 

In the maximum pooling layer, the pool size is given 

in brackets. In this layer, padding is selected as valid. 

The subtraction layer applies the subtraction 

process to the incoming data. The concatenate layer 

combines the incoming data one after the other. A 

flatten layer is used to convert incoming matrices or 

tensors into vectors. A dropout layer is added to the 

models to solve the over-fitting problem. The hyper-

parameters of the dropout layer are presented in 

brackets. The dense layer is the layer where the input 

data affects the entire output data. In these layers, the 

number of neurons is given in brackets. In addition, 

there are batch normalization and activation layers 

after the dense layer, except for the output layer. The 

batch normalization layer provides the statistical 

regulation necessary for the training process to 

proceed in a healthier way. The activation layer 

provides the learning process by passing the input 

data through a certain function. In this study, all 

activation functions except the output layer were 

chosen as rectified linear units (ReLU). In addition to 

these hyper-parameters, Model 1, Model 2, Model 3, 

and Model 4 structures consist of 7.3M, 7.3M, 7.7M 

and 7.3M learnable parameters, respectively. 

 

3. Results and Discussion 

Input data from datasets was pre-processed after the 

datasets were obtained from the simulation 

environment. After pre-processing, input and output 

data were generated to train. The input data were 

augmented by changing their brightness by 25% in 

the training phase. In this way, the system was able to 

produce more robust results for different brightness. 

In addition, the output data were normalized by 

subtracting the mean and dividing the result by its 

standard deviation. In this stage, the designed models 

were trained with the Adaptive Moment Estimation 

(Adam) algorithm for 50 steps.  In the first 5 steps of 

this training, the learning rate is 5e-4, and the learning 

rate between steps 6-19 is 1e-4. In the remaining 

training process, the learning rate was applied as 1e-

5. The training times of the models are 19.687, 

16.875, 22.500 and 16.875 minutes, respectively. 

Mean Squared Error (MSE) was used as the loss 

function during this training. Loss-Epoch plots during 

the training period are presented in Figure 5. 

Figure 5 shows that the training and 

validation processes of the networks did not have any 

high bias or high variance problems. During this 

training, a mini-batch size of 8 was chosen, and the 

input data in one mini-batch of the validation dataset 

is presented in Figure 6. 

 

 

 

 



M. C. Bingöl / BEU Fen Bilimleri Dergisi 13 (2), 384-392, 2024 

388 
 

(a) (b) (c) (d) 

 
Figure 4. CNN architectures; a-Model 1, b-Model 2, c-Model 3, d-Model 4. 

(a) (b) 

Figure 5. Loss function graphs; a-Train loss, b-Validation loss. 
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Sample 1 Sample 2 

Sample 3 Sample 4 

Sample 5 Sample 6 

Sample 7 Sample 8 

Figure 6. Mini-batch samples of the validation dataset. 

The results generated against the inputs in 

Figure 6 are presented in Figure 7. The error amount 

of the data presented in Figure 7 is given in Figure 8. 

Figure 8 shows the measured error rates for a mini-

batch. As this data is limited, it is insufficient for a 

comparison of model performance. For this reason, a 

descriptive analysis of the error between predicted 

and actual results for the 1000 data points in the 

validation dataset is presented in Table 2. 

Table 2 shows the mean, standard deviation, 

standard error, and minimum and maximum values 

of the errors between the linear and angular velocity 

estimates and the actual value. The differences 

between linear (9.57e-3) and angular velocity 

(40.07e-3) errors are due to the units of both 

measurements. For example, if degrees/s were used 

instead of rad/s or km/h instead of m/s, the difference 

between linear and angular velocity would be 

different. It was investigated whether these 

calculated error values differed between the groups, 

and this result is presented in Tables 3 and 4.
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(a) (b) 

Figure 7. Velocity predictions for mini-batch samples of the validation dataset; a- Linear velocities, b- Angular 

velocities. 

 

(a) (b) 

Figure 8. Errors of velocity predictions for mini-batch samples of the validation dataset; a- Linear velocities, b- 

Angular velocities. 

 

Table 2. Descriptive analysis of errors. 

 Model N Mean Std. Deviation Std. Error Minimum Maximum 

|Error V| 

(m/s) 

1 1000 1.03e-3 0.81e-3 2.56e-5 1.04e-6 9.57e-3 

2 1000 1.95e-3 1.85e-3 5.86e-5 2.51e-6 21.87e-3 

3 1000 1.01e-3 1.00e-3 3.16e-5 1.25e-6 9.43e-3 

4 1000 0.93e-3 0.86e-3 2.72e-5 0.05e-6 7.56e-3 

|Error W| 

(rad/s) 

1 1000 4.66e-3 5.22e-3 16.52e-5 20.94e-6 40.07e-3 

2 1000 14.43e-3 13.53e-3 42.79e-5 4.05e-6 88.06e-3 

3 1000 4.37e-3 4.84e-3 15.53e-5 4.62e-6 40.50e-3 

4 1000 6.92e-3 4.96e-3 15.71e-5 0.61e-6 36.08e-3 
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Table 3. Model comparison according to the linear 

velocity error. 

Group 1 Group 2 p 

Model 1 

Model 2 p<0.001 

Model 3 0.99 

Model 4 0.29 

Model 2 

Model 1 p<0.001 

Model 3 p<0.001 

Model 4 p<0.001 

Model 3 

Model 1 0.99 

Model 2 p<0.001 

Model 4 0.42 

Model 4 

Model 1 0.29 

Model 2 p<0.001 

Model 3 0.42 

Table 4. Model comparison according to the angular 

velocity error. 

Group 1 Group 2 p 

Model 1 

Model 2 p<0.001 

Model 3 0.84 

Model 4 0.60 

 

Model 2 

Model 1 p<0.001 

Model 3 p<0.001 

Model 4 p<0.001 

Model 3 

Model 1 0.84 

Model 2 p<0.001 

Model 4 0.97 

Model 4 

Model 1 0.60 

Model 2 p<0.001 

Model 3 0.97 

According to Tables 3 and 4, a significant 

difference was observed between Model 2 and the 

other groups for both linear and angular velocity 

(p<0.001). There is no statistically significant 

difference between the other groups (p>0.001). 

 

4. Conclusion and Suggestions 

In this study, it is aimed at estimating the linear and 

angular velocity of a mobile robot as visualized by a 

CNN and to compare whether the concatenation or 

subtraction layer of different images at different 

times will be more effective in this CNN structure. 

For these purposes, firstly, a simulation environment 

was designed, and training and validation datasets 

were obtained from this environment. Then, 4 

different CNN architectures were trained on the 

training dataset, and these models were tested on the 

validation dataset. The statistical results of the tests 

are presented in Tables 2, 3, and 4. Based on these 

data, the worst result was produced by Model 2. The 

results of other models are better than this model. In 

addition, no statistical difference was observed 

between the other models except Model 2. Based on 

this finding, each of the three models can be used. 

However, if structures similar to Model 1 using the 

subtraction layer are used, a few convolutional layers 

should be used first for feature extraction. In 

addition, the extraction layer used in Model 1 will be 

more suitable for designs made with limited capacity 

processors where the input and output data sizes are 

the same as the concatenating layer found in Model 

3 and Model 4. If there is no hardware constraint in 

the designed system, Model 4, which can be more 

easily designed compared to other models, can be 

used. The other aim of this study is to estimate linear 

and angular velocity. When Tables 2, 3, and 4 are 

examined, it is clear that the system designed for 

linear and angular velocity estimation is quite useful.  

In future studies, data will be obtained from 

real mobile robots for complex routes, and similar 

studies will be repeated. In addition, it will be tried 

to make the proposed algorithm usable not only for 

mobile robots but also for all robots in general. 
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