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Abstract
The existing t-test for testing the significance of the regression coefficient is applied when
cent percent observations of the data are precise, exact and certain. In practice, the
measurement data or data recorded in an uncertain environment do not have all precise
observations. The imprecise data cannot be analyzed using the existing t-test for testing
the significance of the regression coefficient. In this paper, we will present the design of a
t-test for testing the significance of the regression coefficient under neutrosophic statistics.
The proposed t-test for testing the significance of the regression coefficient can be applied
to imprecise data. The effect of the degree of uncertainty on the power of the test will be
studied. The proposed t-test for testing the significance of the regression coefficient will
be applied using the imprecise data. From the analysis, it is concluded that the proposed
t-test for testing the significance of the regression coefficient will be informative, flexible
and adequate to be applied to imprecise data.
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1. Introduction
The regression line describes the relationship between the independent variable and the

dependent variable.After establishing this relation, it is important to test the significance
of the regression coefficient. For estimation and forecasting purposes, it is necessary to
know the significance of the relationship between the independent variable and the depen-
dent variable. For testing the significance of the relationship, the t-test is performed on
the regression coefficient. During the implementation of the t-test for the regression coef-
ficient, the null hypothesis that the regression coefficient has no significant effect vs. the
alternative hypothesis that the regression coefficient has a significant effect in determining
the relationship between the independent variable and dependent variable. Frank [13]
studied the effect of the confounding variables on the coefficient of regression. Bewick et
al. [3] discussed the misuse of the regression and correlations concepts and highlighted the
reasons for the failure of the assumptions. Li and Yuan [16] used the regression analysis to
evaluate the significance of educational variables. Nieminen [20] discussed the application
of the regression using Meta-analysis. More applications can be seen in [12], [14], [17],
[18] and [22]. As mentioned by [9] statistical regression analysis is one of the important
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statistical methods and has been widely applied to different scientific areas. Classical re-
gression analysis models are limited to crisp data. In practice, however, data are usually
imprecise because data are difficult to measure precisely or data are determined subjec-
tively. When dealing with fuzzy data, using classical regression analysis method to test
the regression coefficient would be improper and lead to an incorrect decision. Smaran-
dache [25] provided the neutrosophic statistical analysis to analyze the imprecise data.
Neutrosophic statistics was found to be more efficient than classical statistics, see [10] and
[11]. More applications of neutrosophic logic can be seen in [4–8] and [23]. Smarandache
[24] also proved that neutrosophic statistics is more efficient than classical statistics and
interval-statistics.Neutrosophic statistics give additional information about the measure
of indeterminacy that cannot be obtained from traditional statistics. The applications
of neutrosophic statistics can be seen in [1], [2] and [21]. The existing t-test for testing
the significance of the regression coefficient is applied when crisp data is available. The
existing t-test for testing the significance of the regression coefficient has limitations in
that it can be applied to imprecise data. By exploring the literature and according to the
best of the authors knowledge, there is no work on t-test for testing the significance of
regression coefficient under neutrosophic statistics. To fill this gap, in this paper, we will
design a t-test for testing the significance of the regression coefficient under neutrosophic
statistics. The testing statistic will be provided and applied using the simulated and real
data. It is expected that the proposed t-test for testing the significance of the regression
coefficient under classical statistics will be more efficient than the t-test for testing the
significance of the regression coefficient under classical statistics.

2. Proposed test
Suppose that (x1N , y1N ), (x2N , y2N ), , (xnN , ynN ); (i = 1, 2, . . . , n) be a neutrosophic

pair of random variables and n is a sample size. The neutrosophic forms of pair data is
(xnN = xnL + xnU IxN );
IxN ∈ [IxL , IxU ], (ynN = ynL + ynU IyN ); IyN ∈ [IyL , IyU ]. Note that xnL, ynL are the
lower values and xnU IxN , ynU IyN are the indeterminate part IxN ∈ [IxL , IxU ]andIyN ∈
[I(yL), I(yU )] are the measure of indeterminacy associated with both variables. Based on
the information, the neutrosophic mean for variable xnN is derived as:

x̄N = ((x1L + x1U IxN ) + (x2L + x2U IxN ) + · · · + (xnL + xnU IxN ))
n

(2.1)

= x̄L + x̄U Ix̄N ; Ix̄N ∈ [Ix̄L , Ix̄U ]
Note that the first value x̄L presents the average of the lower values and x̄U Ix̄N is the

indeterminate part and Ix̄N ∈ [Ix̄L , Ix̄U ] is the degree of indeterminacy.
Based on the information, the neutrosophic mean for variable ynN is derived as:

yN = (y1L + y1U IyN ) + (y2L + y2U IyN ) + . . . + (ynL + ynU IyN )
n

(2.2)

= yL + yU IyN
; IyN

ϵ
[
IyL

, IyU

]
Note that the first value yL presents the average of the lower values and yU IyN

is the
indeterminate part and IyN

ϵ
[
IyL

, IyU

]
is the degree of indeterminacy.

The neutrosophic variance for the variable xnN is derived as:

s2
xN =

∑n
i=1 ((xnL + xnU IN ) − (xL + xU IN ))2

n − 1
= s2

xL + s2
xU IN ; IN ϵ [IL, IU ] (2.3)

The neutrosophic variance for the variable ynN is derived as:

s2
yN =

∑n
i=1 ((ynL + ynU IN ) − (yL + yU IN ))2

n − 1
= s2

yL + s2
yU IN ; IN ϵ [IL, IU ] (2.4)
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In Eq. (2.3) and Eq. (2.4), the first values presents the determinate part and the second
values denote indeterminate part and IN ϵ [IL, IU ] is the degree of indeterminacy.

The neutrosophic linear regression for (xnN , ynN ) with neutrosophic intercept AN =
AL + AU IN and neutrosophic rate of change BN = BL + BU IN is defined as

ynN = ((AL + BL (xnL − xL)) + (AU + BU (xnU − xU ) IN )) ; IN ϵ [IL, IU ] (2.5)
Note that the initial expression in Eq. (2.5) represents the regression line within classical

statistics, with the second part indicating the indeterminate component. The proposed
regression line converges to the classical statistics regression line when IL is set to zero.
To find the estimates of AN ϵ [AL, AU ]and BN ϵ [BL, BU ], the neutrosophic sum of squares
of residual is defined by

SN =
n∑

i=1

{(
(YiL − AL − BL (xnL − xL))2

)
+

(
(YiU − AU − BU (xnU − xU ))2

)
IN

}
(2.6)

To find AN ϵ [AL, AU ], the partial derivative with respect to AN ϵ [AL, AU ] is given by

dSN

dAN
=

[
n∑

i=1

{(
(YiL − AL − BL (xnL − xL))2

)
+

(
(YiU − AU − BU (xnU − xU ))2

)
IN

}]
(2.7)

−2
n∑

i=1

(
(YiL − AL − BL (xnL − xL))2

)
− 2

n∑
i=1

(
(YiU − AU − BU (xnU − xU ))2

)
IN = 0

−
n∑

i=1
YiL + nAL + BL

n∑
i=1

(xnL − xL) − IN

n∑
i=1

YiL + nIN AU + BU IN

n∑
i=1

(xnU − xU ) = 0

−
n∑

i=1
YiL − IN

n∑
i=1

YiL + n (AN ) = 0

After simplification, AN ϵ [AL, AU ] is given by
AN = yL + yU IN (2.8)

where AN ϵ [AL, AU ]
To find BN ϵ [BL, BU ], the partial derivative with respect to BN ϵ [BL, BU ] is given by

dSN

dBN
=

[
n∑

i=1

{(
(YiL − AL − BL (xnL − xL))2

)
+

(
(YiU − AU − BU (xnU − xU ))2

)
IN

}]
(2.9)

Let AL = yL, AU = yU , Eq. (2.9) can be rewritten as:
dSN
dBN

=
∑n

i=1

{(
((YiL − yL) − BL (xnL − xL))2

)
+

(
((YiU − yU ) − BU (xnU − xU ))2

)
IN

}
n∑

i=1
(YiL − yL) (xnL − xL) − BL

n∑
i=1

(xnL − xL)2 +
n∑

i=1
(YiU − yU ) (xnU − xU ) IN

−BU

n∑
i=1

(xnU − xU )2 IN = 0

BL

n∑
i=1

(xnL − xL)2 + BU

n∑
i=1

(xnU − xU )2 IN =
n∑

i=1
(YiL − yL) (xnL − xL)

+
n∑

i=1
(YiU − yU ) (xnU − xU ) IN ;

IN ∈ [IL, IU ]

(2.10)
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Let
n∑

i=1
(YiN − yN ) (xnN − xN ) =

n∑
i=1

(YiL − yL) (xnL − xL) (2.11)

+
n∑

i=1
(YiU − yU ) (xnU − xU ) IN ; IN ϵ [IL, IU ]

The solution of
∑n

i=1 (YiN − yN ) (xnN − xN ) for lower value IL and upper value IU is
given by

n∑
i=1

(YiN − yN ) (xnN − xN ) ∈
[

n∑
i=1

(YiL − yL) (xnL − xL) +
n∑

i=1
(YiU − yU ) (xnU − xU ) IL,

n∑
i=1

(YiL − yL) (xnL − xL) +
n∑

i=1
(YiU − yU ) (xnU − xU ) IU

]
(2.12)

Let

BN
∑n

i=1 (xnN − xN )2 = BL

∑n
i=1 (xnL − xL)2 + BU

∑n
i=1 (xnU − xU )2 IN ; IN ϵ [IL, IU ]

The Eq. (2.10) can be written as:

BN
∑n

i=1 (xnN − xN )2 =
∑n

i=1 (YiN − yN ) (xnN − xN )
or

BN =
∑n

i=1 (YiN − yN ) (xnN − xN )∑n
i=1 (xnN − xN )2

=
∑n

i=1 (YiL − yL) (xnL − xL) +
∑n

i=1 (YiU − yU ) (xnU − xU ) IN∑n
i=1 (xnN − xN )2 ; IN ϵ [IL, IU ]

The solution of BN for lower value IL and upper value IU is given by

BN ϵ

[∑n
i=1 (YiL − yL) (xnL − xL) +

∑n
i=1 (YiU − yU ) (xnU − xU ) IL∑n

i=1 (xnL − xL)2 ,

∑n
i=1 (YiL − yL) (xnL − xL) +

∑n
i=1 (YiU − yU ) (xnU − xU ) IU∑n

i=1 (xnU − xU )2

]
The neutrosophic form of BN ϵ [BL, BU ] is given by

BN = (
∑n

i=1 (YiL − yL) (xnL − xL))∑n
i=1 (xnL − xL)2 + (

∑n
i=1 (YiU − yU ) (xnU − xU ))∑n

i=1 (xnU − xU )2 IN (2.13)

After some simplification, BN ϵ [BL, BU ] in Eq. (2.13) can be given by

BN =
∑

xLyL − 1
n

∑
xL

∑
yL∑

x2
L − 1

n (
∑

xL)2 +
∑

xU yU − 1
n

∑
xU

∑
yU∑

x2
U − 1

n (
∑

xU )2 IN (2.14)

To test the significance of the regression coefficient, the neutrosophic test statistic is
given by

tN = bLSxL

SyL.xL

(n − 1)− 1
2 + bU SxU

SyU .xU

(n − 1)− 1
2 IN ; IN ϵ [IL, IU ] (2.15)

where

SyN .xN ϵ

[√∑
{yL−yL−bL(xL−xL)}2

n−2 ,

√∑
{yU −yU −bU (xU −xU )}2

n−2

]
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Note that the neutrosophic test statistic is given in Eq. (2.13) is the generalization of
the test statistic mentioned in [15]. The proposed neutrosophic test reduces to the test
statistic is given in [15] when IN = 0. Note that the neutrosophic test statistic tN follows
the neutrosophic t-test distribution with (n − 2) degree of freedom. Note here that a t2

N
critical value (for n degrees of freedom) is equal to the critical value (for 1 and n degrees
of freedom) of FN -test and, thus, this method can be considered as the one-dimensional
version of the FN-test proposed by [19].

3. Application
Now, the application of the proposed t-test for regression coefficient will be discussed in

this section. The data is about the students’ performance interviews based on the aptitude
tests is selected from [19]. Conscientiousness is a dependent variable and it is denoted by
ynN and aptitude test is represented by xnN . The data is shown in Table 1. The necessary
computations to carry out the proposed test are given as:

The neutrosophic mean for variable xnN and ynN are calculated as:

xN = 3.3 + 3IxN
and yN = 4.7 + 6IyN

The neutrosophic variance for the variable xnN is calculated as:

s2
xN = 4.9 + 4IN

The neutrosophic linear regression for (xnN , ynN ) is given by

ynN = (4.7 + 1.4263 (xnL − 3.3)) + (6 + 1.9722 (xnU − 3) IN )

where BN ϵ [BL, BU ] is calculated using Eq. (2.14) and given by

BN = 1.4263 + 1.9722IN ; IN ϵ[0, 0.2768]

The upper value IU can be computed as:

IU = (1.9722 − 1.4263)/1.9722 = 0.2768.

To test the significance of the regression coefficient, the neutrosophic test statistic is cal-
culated by using Eq. (2.15) and is given by

tN = 0.3406 + 0.6577IN ; IN ϵ[0, 0.4821]

where

SyL.xLϵ[3.0900, 1.9991] and sxN ϵ[2.2136, 2]

The upper value IU can be computed as:

IU = (0.6577 − 0.3406)/0.6577 = 0.4821.

The proposed t-test for the regression coefficient is implemented in the following steps
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Step-1: Null hypothesis H0 : regression coefficient is insignificant vs. alternative hy-
pothesis

H1 : regression coefficient is significant

Step-2: Let the level of significance α=0.05 and the tabulated value is 2.306.

Step-3: Compare tN = 0.3406 + 0.6577IN ; IN ϵ[0, 0.4821] with the tabulated value.

Step-4: Do not reject H0 and it is concluded that the regression coefficient is insignifi-
cant.

Table 1. Conscientiousness and aptitude test data .

[1,3] [2,2] [2,4] [4,4] [1,4] [6,6] [2,4] [10,13] [14,15] [5,5]
[3,3] [2,2] [1,2] [2,3] [2,1] [2,3] [2,2] [5,6] [7,7] [7,1]

4. Simulation study
This section discusses the evaluation of test power using neutrosophic simulated data.

Test power, defined as the probability of rejecting H0 when it is false, is examined across
various sample sizes (ranging from 10 to 60) with neutrosophic data featuring lower and
upper values. Through a simulation study involving 100 neutrosophic samples, compar-
isons are made with tabulated values at α =0.05 and α =0.10. The resulting test power
(1- β) is calculated and presented in Table 2. Table 2 reveals that the proposed t-test for
assessing the significance of the regression coefficient yields power values within indeter-
minate intervals. Lower values represent the power of the existing t-test for this purpose,
while upper values indicate indeterminate power values. Notably, there is a decreasing
trend in test power for the same sample size (n). Furthermore, an increase in α from 0.05
to 0.10 is associated with a higher likelihood of Type I errors, leading to a reduction in
test power. To visually illustrate these findings, neutrosophic power curves are presented
in Figures 1 and 2. Figure 1 depicts the curve for α =0.05, while Figure 2 shows the curve
for α =0.10. It is evident from these figures that the power curve for the existing test
surpasses that of the proposed t-test for the regression coefficient.

Table 2. The values of the power of the test for various n.

α = 0.05 α = 10
n (1 − β) (1 − β)
10 [0.9505, 0.9394] [0.8992, 0.8869]
15 [0.9503, 0.9392] [0.9004, 0.8870]
20 [0.9500, 0.9379] [0.9001, 0.8867]
25 [0.9498, 0.9397] [0.9000, 0.8820]
30 [0.9507, 0.9400] [0.9002, 0.8850]
40 [0.9512, 0.9388] [0.8999, 0.8828]
50 [0.9505, 0.9391] [0.9002, 0.8836]
60 [0.9495, 0.9380] [0.9000, 0.8855]
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Figure 1. Power curves for various sample size when α = 0.05.

Figure 2. Power curves for various sample size when α = 0.10.
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5. Performance comparison
Now, the performance comparisons in terms of the power of the test will be discussed

in this section. The effect of the measure of indeterminacy on the power of the test will
be evaluated. As mentioned earlier, the proposed t-test of the regression coefficient is
a generalization of the t-test of the regression coefficient under classical statistics. The
proposed t-test of regression coefficient reduces to the t-test of regression coefficient under
classical statistics when all observations in the data are determinate. Table 3 and Table
4 depict the values of power of the test for the proposed t-test of regression coefficient
and t-test of regression coefficient under classical statistics (IN = 0). Table 3 shows the
values of power of the test for the t-test of regression coefficient and t-test of regression
coefficient under classical statistics when α=0.05 and n=10. Table 4 shows the values of
power of the test for the t-test of regression coefficient and t-test of regression coefficient
under classical statistics when α=0.10 and n=10. From Table 3, it can be noted that as
the measure of indeterminacy IN increases from 0 to 0.20, the power of the test decreases.
It is important to note that for the same value of sample size, there is a decreasing trend
in the power of the test as the level of significance α increases. The values of the power of
the test for these parameters are also shown in Figures 3-4. From these figures, it can be
noted that the power curve for the existing test is higher than the other values of measure
of indeterminacy. From these figures, it can be concluded that the test of regression under
an uncertain environment loses the power to reject the null hypothesis when it is false.
From the study, it is concluded that decisions-makers should be very careful in applying
the t-test of the regression coefficient. In addition, there is a significant effect on the power
of the test when the level of significance or measure of indeterminacy changes. Therefore,
the proposed test is helpful in making decisions about the testing of the hypothesis in
uncertain situations.

Table 3. the power of the test when α=0.05 and n=10.

Sample number IN = 0.00 IN = 0.02 IN = 0.05 IN = 0.10 IN = 0.15 IN = 0.20
1 0.9488 0.9441 0.937 0.9277 0.916 0.9052
2 0.9463 0.9422 0.9354 0.9236 0.912 0.9003
3 0.9501 0.9462 0.9398 0.9325 0.9198 0.9092
4 0.9476 0.9443 0.937 0.9278 0.9167 0.9064
5 0.9487 0.9451 0.9399 0.9286 0.9159 0.9052
6 0.9523 0.9495 0.9444 0.9314 0.9222 0.9101
7 0.9484 0.9447 0.9398 0.9293 0.9186 0.9064
8 0.9504 0.9458 0.9382 0.9276 0.9158 0.9036
9 0.9524 0.9471 0.9412 0.9324 0.9214 0.9096
10 0.9483 0.9441 0.9377 0.927 0.9151 0.9034

6. Concluding remarks
The t-test for the regression coefficient is applied to test the significance of the regression

coefficient in the presence of imprecise data. The test statistic under classical statistics
is modified in this paper so that it can be applied when imprecise data is obtained from
complex processes or under an uncertain environment. The proposed test was found to
be more efficient than the existing t-test for regression coefficient. It is concluded that the
use of the existing t-test for the regression coefficient under uncertainty may mislead the
decision-makers. Based on the study, it is recommended to use the proposed test in the
imprecise data obtained from education, metrology, business, dam temperature or level
of water and in poetical science. The proposed test for testing the significance of the
regression coefficient for multiple regressions can be extended as future research.
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Table 4. The power of the test when α=0.10 and n=10.

Sample number IN = 0.00 IN = 0.02 IN = 0.05 IN = 0.10 IN = 0.15 IN = 0.20
1 0.8954 0.8899 0.8814 0.8641 0.8485 0.8326
2 0.8994 0.8941 0.8844 0.8689 0.8536 0.8385
3 0.9063 0.9012 0.8907 0.8749 0.8589 0.8426
4 0.8992 0.8928 0.8831 0.8676 0.8542 0.8377
5 0.9008 0.8945 0.8868 0.8698 0.8534 0.8362
6 0.8994 0.8937 0.8846 0.8708 0.8561 0.8413
7 0.8944 0.8889 0.8813 0.8671 0.8512 0.8374
8 0.8989 0.8929 0.8845 0.8701 0.8563 0.8385
9 0.9083 0.9024 0.8923 0.8775 0.8618 0.8452
10 0.9034 0.8966 0.8869 0.8728 0.8573 0.8423

Figure 3. Power curves for various sample size when α = 0.05.

Figure 4. Power curves for various sample size when α = 0.10.
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