

The Eurasia Proceedings of
Educational & Social Sciences (EPESS)

ISSN: 2587-1730

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License,
permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the conference

*Corresponding author: Kamil Yurtkan- e-mail: kyurtkan@ciu.edu.tr

© 2014 Published by ISRES Publishing: www.isres.org

The Eurasia Proceedings of Educational & Social Sciences (EPESS), 2014

Volume 1, Pages 341-345

ICEMST 2014: International Conference on Education in Mathematics, Science & Technology

EVALUATION OF ALGORITHM IMPLEMENTATION ASSESSMENT

METHODS BASED ON A DATA STRUCTURE COURSE

Kamil Yurtkan

Cyprus International University

Cagin Kazimoglu

Cyprus International University

Umut Tekguc

Cyprus International University

ABSTRACT: Implementing algorithms and making abstractions are two integral parts of computer

programming. Algorithm implementation process involves understanding a business problem, designing the

most appropriate solution and abstracting this in a programming environment. Thinking within the syntax of a

programming language and generating algorithms simultaneously are often found challenging by students. More

importantly, majority of students do not necessarily understand the underlying reasons behind the multiple

assessment methods used in the evaluation of algorithm implementation. Some students believe that the

theoretical measurements for algorithm implementation are not directly related to the practical development of

solutions and hence, they do not see the point of theoretical exams particularly in algorithm implementation

process. In this paper, we analyze the methodologies used for the evaluation of algorithm implementation. The

Data Structures and Data Organization course thought at the Faculty of Engineering in Cyprus International

University (CIU) has been selected as a pilot course to perform a rigorous study in order to compare the

theoretical and the practical exam results of students. The aim of the study was to understand whether or not

there was a significant relationship between the theoretical and practical exam results. The raw data of the study

came from 100 students who were randomly selected without considering their previous background or

programming knowledge. The correlation between students’ programming capabilities and their theoretical

knowledge were analyzed in order to state whether or not their performance in theoretical exams are authentic

when compared to their practical exams.

Key words: Algorithm implementation, programming assessment, assessment methodologies, data structures, c

programming.

INTRODUCTION

Majority of institutions in the Cyprus follow a common academic grading system which offers the options of

using quizzes, theoretical exams (e.g. written exams), practical exams (laboratory exams), oral exams and/or

project development as major knowledge assessment methods. The variation of the academic grading system

provides academicians flexibility in measuring students’ knowledge and skills both in theory and in practice.

Despite a rich variation in the academic grading system provides many advantages, it also brings considerable

problems as the balance among the assessment methods might be diverse. As multiple assessment methods are

used to measure students’ ability and knowledge, it is arguable whether or not those students who did well in the

theoretical exams would also do well in the practical exams. Although this is a generic problem in academy, we

have observed that a number of students are suffering particularly in algorithm development courses as they

believe the theoretical part of algorithm development is independent from practical solution development.

Furthermore, various studies discussed these issues and offered new instructional design and assessment

methods in order to measure students’ ability and knowledge in computer algorithms accurately. (Ala-Mutka,

2005; Barros et al., 2003; Chamillard & Braun, 2000; Daly & Waldron, 2004).

In this study, we focus on the evaluation of assessment methods for an algorithm implementation course

particularly the “Data Structures and Data Organization” course taught in the 5
th

 semester of Computer

International Conference on Education in Mathematics, Science & Technology (ICEMST), May 16 - 18 2014, Konya / Turkey

342

Engineering, Information Systems Engineering and Management Information Systems departments of Cyprus

International University (CIU).

The rest of the paper discusses a) a rigorous study and its objective; b) the methods used in the statistical

analyses of the rigorous study; c) distribution of data and d) the statistical results along with their discussion. The

paper concludes with future work based on the statistical results obtained.

A RIGOROUS STUDY and ITS OBJECTIVE

A rigorous study was undertaken to measure the correlation between the assessment methods used in measuring

students’ knowledge in an algorithm implementation course particularly the Data Structure and Data

Organization course thought at CIU. The study had two main purposes. Firstly, it was aimed to investigate

whether or not the practical exams and theoretical exams were genuinely evaluating students’ knowledge at the

same level of accuracy in terms of programming and algorithm implementation. Secondly, it was aimed to

analyze the correlations between the algorithm development projects and the theoretical exams. As a result of

this, it was intended to investigate whether or not the results of the theoretical exams were correlated with the

results of the practical exams.

EXPERIMENTAL BACKGROUND

The study is performed using the IBM software package, SPSS, which is used for statistical analysis particularly

in social studies. In order to perform the statistical analysis, a total of 100 students’ exam/project results were

randomly selected from the Computer Engineering, Information Systems Engineering and Management

Information Systems Departments at CIU. As the students studied in different semesters, there had been some

absence in their results due to a variety of reasons. Hence, only 84 valid responses were gathered in this study.

The performances of the students in the theoretical exams were compared with the practical performances of the

same students. The identities of the randomly selected students were kept confidential in order to provide an

anonymous study.

Table 1. Stack implementation questions contained in midterm exams of the semesters observed.

Semester Stack Implementation Question

Fall 2011 - 2012

Q1) Write a function that takes 3 stacks, p, gr and ls, as arguments and

updates the values of the two stacks gr and ls as follows. The stack gr

contents are the elements of the stack p greater than or equal to 50

(>=50), and the stack ls contents are the elements of the stack p less than

50 (<50).

Fall 2012 - 2013

Q1) Write a C/C++ function that performs search operation in the stack.

If the search key is found, function should return 1, else return 0. Stack

should preserve the contents after the search.

Q2) Write a C/C++ function that takes 2 stacks, p and q, as arguments

and derives the contents of q according to p such that if the element in p is

greater than or equal to 10, the corresponding element in q should be 1,

otherwise 0.

Fall 2013 - 2014

Q1) Write a pseudo code to separate even and odd numbers and push

them to different stacks.

Q2) Write a C/C++ function that takes 2 stacks, p and q, as arguments

and copies the contents of stack p to q.

As shown in Table 1, exam results were obtained from three different semesters which are 2011-2012, 2012-

2013 and 2013-2014 Fall semesters. For each semester, two analyses have been performed. The first test was

performed on stack implementation questions that were matched with a practical lab exam that involved a

similar type of question (Table II). Consequently, the second test was performed between the midterm exam and

the project which was then graded with an oral exam (Table III). The topics of the implementation questions

were the stack implementation which is a well-known topic of data structures. Thus, despite being on different

semesters, all midterm questions were based on the same subject. The theoretical and practical exams were all

graded by pair reviews in order to keep a fair evaluation.

International Conference on Education in Mathematics, Science & Technology (ICEMST), May 16 - 18 2014, Konya / Turkey

343

 Table II demonstrates the questions asked to students in their practical exams as the result students obtained

from these questions were used in the first test (i.e. comparing midterm exam results with practical exam

results).

Table III demonstrates the question asked to students in their project. The results students obtained from this

project were compared to stack implementation question results listed in Table 1. As shown from below, the

project included implementations related to arrays and structures which then were tested with an oral exam. The

questions asked to students in the project were matched with the midterm exam and the result students obtained

from these were used in the second test.

Table 2. Lab Final Exam questions asked to students at the end of the observed semesters.

Semester Lab Final Question

Fall 2011 - 2012

Q) Write the following function to print the content of stack and test with

the given stack implementation.

void printstack (struct stack * ps);

Fall 2012 - 2013

Q) Write the following function to find the size of stack and test with the

given stack implementation.

int sizestack (struct stack * ps);

Fall 2013 - 2014

Q) Write the following function tocount even numbers of stack and test

with the given stack implementation.

int countevenstack (struct stack * ps);

Table 3. Sample project definition.

Sample Project Definition

Write a complete C or C++ program to implement a phonebook structure.

Structure contains id, name, surname and phone number of a person. Your

program should have the following menu. Write necessary functions for the

menu:

1- To add a person to phonebook

2- To delete a person from phonebook

3- To list data in the phonebook

4- To search for a record

5- To update phoneNo of a record

6- To sort according to ID

7- To quit

struct phone_book

 {

 int ID;

 char name[20];

 char surname[20];

 char phoneNo[20];

}phone_list[100];

DISTRIBUTION OF DATA

Figure 1 illustrates the distribution of data gathered from the difference of students’ knowledge between the

practical exam (i.e. lab final exam) and theoretical exam (i.e. stack implementation question). As it can be

observed from the figure, the data came from a non-normally distributed population. The histogram has kurtosis

issues as the observations are way over the normal distribution curve. Additionally, the histogram is skewed to

the right which proves that the distribution of data is asymmetric. As a result, the histogram shows that the data

came from a non-normally distributed population.

International Conference on Education in Mathematics, Science & Technology (ICEMST), May 16 - 18 2014, Konya / Turkey

344

Figure 1. Data histogram showing the distribution.

Despite the fact that a histogram can provide a generic overview regarding the distribution of data, it is not a

standalone reliable tool to measure the distribution of data. That is why, a Q-Q plot was generated in order to

ensure regarding the distribution of data. As it can be observed from the Figure 2, the observations do not

embrace the linear line on the Q-Q plot. The values at both ends are scattered and do not approach to the parallel

line. Additionally, very few observations hug the linear line (i.e. the expected normal curve). This shows that the

data came from a non-normally distributed population and hence, the result of the Q-Q plot supports the findings

of the Histogram.

Figure 2. Quantile – Quantile (Q-Q) Plot.

RESULTS and FINDINGS

As the results show that the data came from a non-normally distributed population, it is required to use the

Spearman’s rank test in order to investigate the correlations between the student knowledge in test 1 (i.e. stack

implementation question and lab final exam) and in test 2 (i.e. the midterm exam and the project

implementation). As shown in Table IV, the Spearman’s rank correlation coefficient regarding the first test was

found to be significant and moderately strong (r=0.636; p<0.001). This means that, the students who performed

well in the midterm exam for the stack implementation questions also did well in the lab final practical exam. As

the correlation is found to be significant, modestly strong and positive, we have strong reasons to believe that the

results of the algorithm implementation in the theoretical exams (i.e. midterm exam) are closely related to the

results in practical exams (i.e. final exam). In other words, those students who solved stack implementation

questions in the midterm exam also solved the same type of questions in the lab final exam.

International Conference on Education in Mathematics, Science & Technology (ICEMST), May 16 - 18 2014, Konya / Turkey

345

Table IV. Correlations between stack implementation questions and lab final exams.

 Lab_Final STACK_Ave

Spearman's rho

Lab_Final

Correlation Coefficient 1.000 .636
**

Sig. (2-tailed) . .000

N 84 84

STACK_Ave

Correlation Coefficient .636
**

 1.000

Sig. (2-tailed) .000 .

N 84 84

**. Correlation is significant at the 0.01 level (2-tailed).

Table V shows the Spearman’s rank correlation coefficient regarding the second test. As shown from the table,

the correlation among the pair was found to be significant and modestly strong (r=0.535; p<0.001). Although

this is not as high as the first tests’ coefficient, the correlation between the midterm exam and project is found to

be significant, positive and moderately strong. This provides strong reasons to believe that those students who

did well in the midterm exam also performed a similar performance in their projects.

Table V. Correlations between midterm exams and projects.

 Midterm Project

Spearman's rho

Midterm

Correlation Coefficient 1.000 .535
**

Sig. (2-tailed) . .000

N 84 84

Project

Correlation Coefficient .535
**

 1.000

Sig. (2-tailed) .000 .

N 84 84

**. Correlation is significant at the 0.01 level (2-tailed).

CONCLUSION

The correlation between students’ programming capabilities and their theoretical knowledge were analyzed on a

data structure course. The results of the statistical analyses showed that there is a positive, significant and

moderately strong correlation among the first test pair (stack implementation questions and lab final exams.) and

the second test pair (midterm exam and project). In both cases, the results are similar, and therefore it is possible

to conclude that the theoretical and the practical exams are related and assessing the same criteria. In other

words, the statistical results provide strong reasons to believe that those students who have a theoretical

understanding of algorithm implementation tend to have a good understanding in producing practical solutions

through using algorithms. As future work, the finding of this study could be investigated further by conducting

the study with a larger sample size. Although the sample size of this study (i.e. 84 valid responses) was enough

to generate accurate results, a larger sample size could provide a more realistic and detailed distribution.

REFERENCES

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments.

Computer Science Education, 15(2), 83-102.

Barros, J. P., Estevens, L., Dias, R., Pais, R., & Soeiro, E. (2003, June). Using lab exams to ensure programming

practice in an introductory prog. course. In ACM SIGCSE Bulletin (Vol. 35, No. 3, pp. 16-20). ACM.

Chamillard, A. T., & Braun, K. A. (2000). Evaluating programming ability in an introductory computer science

course. ACM SIGCSE Bulletin, 32(1), 212-216.

Daly, C., & Waldron, J. (2004, March). Assessing the assessment of programming ability. In ACM SIGCSE

Bulletin (Vol. 36, No. 1, pp. 210-213). ACM.

