Araştırma Makalesi / Research Article
 DOI: https://doi.org/10.35414/akufemubid. 1343172
 AKU J. Sci. Eng. 24 (2024) 011301 (23-33)

On Bishop Frames of Any Regular Curve in Euclidean 3-Space

3-Boyutlu Öklid Uzayında Regüler Bir Eğrinin Bishop Çatıları Üzerine

Sümeyye GÜR MAZLUM
Gümüşhane University, Kelkit Aydın Doğan Vocational School, Department of Computer Technology, Gümüşhane. Turkiye

Abstract

Relationships between type-1 Bishop and Frenet, type-2 Bishop and Frenet, alternative and Frenet, N -Bishop and alternative frames of any regular curve in Euclidean 3-space are known. In this study, relationships between N-Bishop and Frenet frames and relationships between type-1 Bishop, type-2 Bishop and NBishop frames of any regular curve in Euclidean 3-space are given. In addition, pole vectors (unit vectors in the direction of Darboux vectors) belonging to these frames are computed. Last, pole and Darboux vectors belonging to these frames are compared with each other.

Anahtar Kelimeler Type-1 Bishop Frame;Type-2 Bishop Frame; Alternative Frame; N-Bishop Frame; Frenet Frame; Darboux Vector

Öz

3-boyutlu Öklid uzayında herhangi bir regüler eğrinin tip-1 Bishop ve Frenet, tip-2 Bishop ve Frenet, alternatif ve Frenet, N -Bishop ve alternatif çatıları arasındaki ilişkiler bilinmektedir. Bu çalışmada, 3-boyutlu Öklid uzayında herhangi bir regüler eğrinin N-Bishop ve Frenet çatıları arasındaki ilişkiler ve tip-1 Bishop, tip-2 Bishop ve N-Bishop çatıları arasındaki ilişkiler verilmiştir. Ayrıca bu çatılara ait pol vektörleri (Darboux vektörü yönündeki birim vektörler) hesaplanmıştır. Son olarak pol ve Darboux vektörleri birbirleriyle karşılaştırılmıştır.

Keywords Tip-1 Bishop Çatısı; Tip-2 Bishop Çatısı; Alternatif Çatı; NBishop Çatısı; Frenet Çatısı;Darboux Vektörü

1.Introduction

Frenet frame, a tool used to determine the characteristic features of a curve, was defined by J. F. Frenet in 1847. This frame is also known as SerretFrenet frame, as J. A. Serret also defined the same frame in his thesis independently of Frenet in 1851. Frenet frame consists of tangent T, principal normal N and binormal B vectors of a curve, (Hacısalihoğlu 1983). Different frames can be defined on the curve, depending on the character, geometrical properties or location of any curve. One of them is Bishop frame (or parallel transport frame) defined by Bishop (1975). This frame is a relatively parallel frame obtained by rotating around T, of Frenet frame by a certain angle. The Bishop frame is more advantageous than the Frenet frame, which works even when the second derivative of the curve is zero. Subsequently, numerous studies related to curves and surfaces have been conducted using this frame, and new variants of this frame (type-2 Bishop and N -Bishop) have even been defined, (Bükcü and Karacan 2009, Kelleci et al. 2019, Kılıçoğlu and Hacısalihoğlu 2013, Masal and Azak
2019). Therefore, Bishop frame is also referred to as type-1 Bishop frame in some studies. The type-2 Bishop frame was advertised by Yilmaz and Turgut (2010) with the same logic as type-1 Bishop, that is, by rotating around B of Frenet frame by a certain angle. In addition, an alternative frame to Frenet frame was defined by Scofield (1995). This frame, which consists of N and unit Darboux vector W of a curve, and a third vector C attained by vector product of two vectors, is called alternative frame. Keskin and Yaylı (2017) obtained a new frame by rotating around N of alternative frame by a certain angle and called it N Bishop frame. As can be understood from their definitions, tangential vector fields of type-1 Bishop and Frenet frames, binormal vector fields of type-2 Bishop and Frenet frames, and principal normal vector fields of N -Bishop and Frenet frames are common. There are many studies on this new types of Bishop and alternative frame (Alıç and Yılmaz 2021, Çakmak and Şahin 2022, Damar et al. 2017, Kızıltuğ et al. 2013, Masal and Azak 2015, Ourab et al. 2018, Samancı and Sevinç 2022, Şenyurt 2018, Şenyurt et al. 2023, Yılmaz
and Has 2022, Şenyurt and Kaya 2018.). In these studies, the relationships between Frenet and various Bishop frames of a curve are given. In addition, just as the Darboux vector belonging to the Frenet frame a curve were defined, the Darboux vectors belonging to the Bishop frames were also defined in the studies (Bükcü and Karacan 2008, Yılmaz and Savcı 2017, Uzunoğlu et al. 2016, Samancı and İncesu 2020).

2. Preliminaries

2.1. Frenet Frame of Any Regular Curve in E^{3}

Frenet frame $\{T, N, B\}$ of any regular curve γ in E^{3} is

$$
T=\frac{\gamma^{\prime}}{\left\|\gamma^{\prime}\right\|}, \quad N=B \wedge T, \quad B=\frac{\gamma^{\prime} \wedge \gamma^{\prime \prime}}{\left\|\gamma^{\prime} \wedge \gamma^{\prime \prime}\right\|},
$$

curvature κ and torsion τ are

$$
\kappa=\frac{\left\|\gamma^{\prime} \wedge \gamma^{\prime \prime}\right\|}{\left\|\gamma^{\prime}\right\|^{3}}, \quad \tau=\frac{\left\langle\gamma^{\prime}, \gamma^{\prime \prime} \wedge \gamma^{\prime \prime \prime}\right\rangle}{\left\|\gamma^{\prime} \wedge \gamma^{\prime \prime}\right\|^{2}}
$$

The matrix representation of Frenet derivative formulas of γ is
$\left[\begin{array}{l}T^{\prime} \\ N^{\prime} \\ B^{\prime}\end{array}\right]=\left[\begin{array}{ccc}0 & \left\|\gamma^{\prime}\right\| \kappa & 0 \\ -\left\|\gamma^{\prime}\right\| \kappa & 0 & \left\|\gamma^{\prime}\right\| \tau \\ 0 & -\left\|\gamma^{\prime}\right\| \tau & 0\end{array}\right]\left[\begin{array}{l}T \\ N \\ B\end{array}\right]$.

Darboux and pole vector (unit vector in the direction of Darboux vector) belonging to Frenet frame are

$$
\left\{\begin{array}{l}
F=\left\|\gamma^{\prime}\right\|(\tau T+\kappa B) \tag{2}\\
W=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B .
\end{array}\right.
$$

2.2 Type-1 Bishop Frame of Any Regular Curve in E^{3}

Type-1 Bishop Frame (or Bishop frame) is attained by rotating Frenet frame $\{T, N, B\}$ around tangent vector T, by an angle θ and so it is a relatively parallel adapted frame in with Frenet frame. Let $\left\{T, N_{1}, B_{1}\right\}$ be the Bishop frame of any regular curve γ. Here T, is tangent vector of Frenet frame of γ, N_{1} is any unit vector perpendicular to T, by obtained rotating N by angle θ and $B_{1}=T \wedge N_{1}$ is a unit
vector perpendicular to both T and N_{1}, Figure 1, (Bishop 1975).

Figure 1. Frenet and Bishop frames

There are the following matrix relationships between Frenet and Bishop frames:

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
T \\
N_{1} \\
B_{1}
\end{array}\right]} \tag{3}\\
\text { or } \\
{\left[\begin{array}{c}
T \\
N_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]}
\end{array}\right.
$$

where

$$
\begin{equation*}
\theta=\int\left\|\gamma^{\prime}\right\| \tau \tag{4}
\end{equation*}
$$

From (1), (3) and (4),

$$
\begin{aligned}
T^{\prime} & =\left\|\gamma^{\prime}\right\| \kappa\left(\cos \theta N_{1}+\sin \theta B_{1}\right) \\
& =\left\|\gamma^{\prime}\right\| \kappa_{1} N_{1}+\left\|\gamma^{\prime}\right\| \tau_{1} B_{1}
\end{aligned}
$$

$$
N_{1}^{\prime}=-\theta^{\prime} \sin \theta N+\cos \theta N^{\prime}-\theta^{\prime} \cos \theta B-\sin \theta B^{\prime}
$$

$$
=-\left\|\gamma^{\prime}\right\| \kappa \cos \theta T
$$

$$
=-\left\|\gamma^{\prime}\right\| \kappa_{1} T
$$

$$
\begin{aligned}
B_{1}^{\prime} & =\theta^{\prime} \cos \theta N+\sin \theta N^{\prime}-\theta^{\prime} \sin \theta B+\cos \theta B^{\prime} \\
& =-\left\|\gamma^{\prime}\right\| \kappa \sin \theta T \\
& =-\left\|\gamma^{\prime}\right\| \tau_{1} T
\end{aligned}
$$

are obtained, where
$\kappa_{1}=\kappa \cos \theta, \quad \tau_{1}=\kappa \sin \theta$
are curvatures of type-1 Bishop frame. Thus, the matrix representation of Bishop derivative formulas is
$\left[\begin{array}{c}T^{\prime} \\ N_{1}^{\prime} \\ B_{1}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}0 & \left\|\gamma^{\prime}\right\| \kappa_{1} & \left\|\gamma^{\prime}\right\| \tau_{1} \\ -\left\|\gamma^{\prime}\right\| \kappa_{1} & 0 & 0 \\ -\left\|\gamma^{\prime}\right\| \tau_{1} & 0 & 0\end{array}\right]\left[\begin{array}{c}T \\ N_{1} \\ B_{1}\end{array}\right]$
Darboux vector belonging to Bishop frame is (Bükcü and Karacan, 2008)
$F_{1}=T \wedge T^{\prime}=\left\|\gamma^{\prime}\right\|\left(-\tau_{1} N_{1}+\kappa_{1} B_{1}\right)$,
where
$T^{\prime}=F_{1} \wedge T, \quad N_{1}^{\prime}=F_{1} \wedge N_{1}, \quad B_{1}^{\prime}=F_{1} \wedge B_{1}$.

2.3. Type-2 Bishop Frame of Any Regular Curve in E^{3}

Type-2 Bishop frame, similar to type-1 Bishop frame, is obtained by rotating Frenet frame $\{T, N, B\}$ around binormal vector B by an angle ϕ. Let $\left\{N_{2}, B_{2}, B\right\}$ be type-2 Bishop frame of any regular curve γ. Here B is binormal vector of Frenet frame of γ, N_{2} is any unit vector perpendicular to B by obtained rotating N by angle ϕ and $B_{2}=B \wedge N_{2}$ is a unit vector perpendicular to both B and N_{2}, Figure 2, (Yilmaz and Turgut 2010).

Figure 2. Frenet and type-2 Bishop frames

There are the following matrix relations between Frenet and type-2 Bishop frames:
$\left\{\begin{array}{l}{\left[\begin{array}{l}T \\ N \\ B\end{array}\right]=\left[\begin{array}{ccc}\sin \phi & -\cos \phi & 0 \\ \cos \phi & \sin \phi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}N_{2} \\ B_{2} \\ B\end{array}\right]} \\ \text { or } \\ {\left[\begin{array}{c}N_{2} \\ B_{2} \\ B\end{array}\right]=\left[\begin{array}{ccc}\sin \phi & \cos \phi & 0 \\ -\cos \phi & \sin \phi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}T \\ N \\ B\end{array}\right]}\end{array}\right.$
where
$\phi=\int\left\|\gamma^{\prime}\right\| \kappa$.
From (1), (8) and (9),

$$
\begin{aligned}
N_{2}^{\prime} & =\phi^{\prime} \cos \phi T+\sin \phi T^{\prime}-\phi^{\prime} \sin \phi N+\cos \phi N^{\prime} \\
& =\left\|\gamma^{\prime}\right\| \tau \cos \phi B \\
& =-\left\|\gamma^{\prime}\right\| \kappa_{2} B \\
B_{2}^{\prime} & =\phi^{\prime} \sin \phi T-\cos \phi T^{\prime}+\phi^{\prime} \cos \phi N+\sin \phi N^{\prime} \\
& =\left\|\gamma^{\prime}\right\| \tau \sin \phi B \\
& =-\left\|\gamma^{\prime}\right\| \tau_{2} B \\
B^{\prime} & =-\left\|\gamma^{\prime}\right\| \tau\left(\cos \phi N_{2}+\sin \phi B_{2}\right) \\
& =\left\|\gamma^{\prime}\right\| \kappa_{2} N_{2}+\left\|\gamma^{\prime}\right\| \tau_{2} B_{2}
\end{aligned}
$$

are obtained, where
$\kappa_{2}=-\tau \cos \phi, \quad \tau_{2}=-\tau \sin \phi$
are curvatures of type-2 Bishop. Thus, the matrix representation of type-2 Bishop derivative formulas is
$\left[\begin{array}{c}N_{2}{ }^{\prime} \\ B_{2}^{\prime} \\ B^{\prime}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & -\left\|\gamma^{\prime}\right\| \kappa_{2} \\ 0 & 0 & -\left\|\gamma^{\prime}\right\| \tau_{2} \\ \left\|\gamma^{\prime}\right\| \kappa_{2} & \left\|\gamma^{\prime}\right\| \tau_{2} & 0\end{array}\right]\left[\begin{array}{c}N_{2} \\ B_{2} \\ B\end{array}\right]$.
(11)

Darboux vector belonging to type-2 Bishop frame is (Yılmaz and Savcı 2017)
$F_{2}=B \wedge B^{\prime}=\left\|\gamma^{\prime}\right\|\left(-\tau_{2} N_{2}+\kappa_{2} B_{2}\right)$,
where
$N_{2}{ }^{\prime}=F_{2} \wedge N_{2}, \quad B_{2}{ }^{\prime}=F_{2} \wedge B_{2}, \quad B^{\prime}=F_{2} \wedge B$.

2.4. Alternative Frame of Any Regular Curve in \boldsymbol{E}^{3}

Alternative frame is a new frame obtained from Frenet vectors of any regular curve. Let $\{N, C, W\}$ be alternative frame of any regular curve γ. Here N is principal normal vector of Frenet frame of γ, $C=\frac{N^{\prime}}{\left\|N^{\prime}\right\|}=\frac{-\kappa T+\tau B}{\sqrt{\kappa^{2}+\tau^{2}}}$ is a unit vector obtained from the first derivative of principal normal vector N and $W=N \wedge C=\frac{\tau T+\kappa B}{\sqrt{\kappa^{2}+\tau^{2}}}$ is a unit vector (unit Darboux vector belonging to Frenet frame) perpendicular to both N and W, Figure 3, (Scofield, 1995).

Figure 3. Frenet and alternative frames

From (1), there are the following matrix relationships between Frenet and alternative frames:

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]=\left[\begin{array}{lll}
0 & -\bar{\kappa} & \bar{\tau} \\
1 & 0 & 0 \\
0 & \bar{\tau} & \bar{\kappa}
\end{array}\right]\left[\begin{array}{l}
N \\
C \\
W
\end{array}\right]} \tag{13}\\
\text { or } \\
{\left[\begin{array}{l}
N \\
C \\
W
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\bar{\kappa} & 0 & \bar{\tau} \\
\bar{\tau} & 0 & \bar{\kappa}
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]}
\end{array}\right.
$$

where

$$
\begin{equation*}
\bar{\kappa}=\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}}, \quad \bar{\tau}=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} \tag{14}
\end{equation*}
$$

From (1), (13) and (14),

$$
N^{\prime}=\left\|\gamma^{\prime}\right\| f C
$$

$$
\begin{aligned}
C^{\prime} & =-\frac{\kappa^{\prime} f-\kappa f^{\prime}}{f^{2}} T-\frac{\kappa}{f} T^{\prime}+\frac{\tau^{\prime} f-\tau f^{\prime}}{f^{2}} B+\frac{\tau}{f} B^{\prime} \\
& =\frac{\tau\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)}{f^{3}} T-\left\|\gamma^{\prime}\right\| f N+\frac{\kappa\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)}{f^{3}} B \\
& =g W-\left\|\gamma^{\prime}\right\| f N
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\frac{\tau^{\prime} f-\tau f^{\prime}}{f^{2}} T+\frac{\tau}{f} T^{\prime}+\frac{\kappa^{\prime} f-\kappa f^{\prime}}{f^{2}} B+\frac{\kappa}{f} B^{\prime} \\
& =\frac{\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right)}{f^{2}} C \\
& =-g C
\end{aligned}
$$

are obtained, where

$$
\begin{equation*}
f=\sqrt{\kappa^{2}+\tau^{2}}, \quad g=\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{f^{2}} \tag{15}
\end{equation*}
$$

are curvatures of alternative frame. Thus, the matrix representation of derivative formulas of alternative frame is
$\left[\begin{array}{l}N^{\prime} \\ C^{\prime} \\ W^{\prime}\end{array}\right]=\left[\begin{array}{ccc}0 & \left\|\gamma^{\prime}\right\| f & 0 \\ -\left\|\gamma^{\prime}\right\| f & 0 & g \\ 0 & -g & 0\end{array}\right]\left[\begin{array}{l}N \\ C \\ W\end{array}\right]$.
Darboux vector belonging to alternative frame is (Uzunoğlu et al. 2016)
$\bar{F}=C \wedge C^{\prime}=g N+\left\|\gamma^{\prime}\right\| f W$,
where

$$
N^{\prime}=\bar{F} \wedge N, \quad C^{\prime}=\bar{F} \wedge C, \quad W^{\prime}=\bar{F} \wedge W
$$

2.5. N-Bishop Frame of Any Regular Curve in E^{3}

N-Bishop frame, similar to type-1 Bishop frame, is obtained by rotating alternative frame $\{N, C, W\}$ around principal normal vector N by an angle φ. Let $\left\{N, N_{3}, B_{3}\right\}$ be N-Bishop frame of any regular curve γ. Here N is principal normal vector of Frenet frame of γ, N_{3} is a unit vector perpendicular to N by obtained rotating C by angle φ and $B_{3}=N \wedge N_{3}$ is
a unit vector perpendicular to both N and N_{3}, Figure 4, (Keskin and Yaylı 2017).

Figure 4. Frenet and N -Bishop frames
There are the following matrix relationships between the Frenet and N -Bishop frames:

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
N \\
C \\
W
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & \sin \varphi \\
0 & -\sin \varphi & \cos \varphi
\end{array}\right]\left[\begin{array}{l}
N \\
N_{3} \\
B_{3}
\end{array}\right]} \\
\text { or } \tag{18}\\
{\left[\begin{array}{l}
N \\
N_{3} \\
B_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right]\left[\begin{array}{l}
N \\
C \\
W
\end{array}\right]}
\end{array}\right.
$$

where

$$
\begin{equation*}
\varphi=\int g . \tag{19}
\end{equation*}
$$

From (1), (18) and (19),

$$
\begin{aligned}
N^{\prime} & =\left\|\gamma^{\prime}\right\| f C \\
N_{3}^{\prime} & =-\varphi^{\prime} \sin \varphi C+\cos \varphi C^{\prime}-\varphi^{\prime} \cos \varphi W-\sin \varphi W^{\prime} \\
& =-\left\|\gamma^{\prime}\right\| f \cos \varphi N \\
& =-\left\|\gamma^{\prime}\right\| \kappa_{3} N \\
B_{3}^{\prime} & =\varphi^{\prime} \cos \varphi C+\sin \varphi C^{\prime}-\varphi^{\prime} \sin \varphi W+\cos \varphi W^{\prime} \\
& =-\left\|\gamma^{\prime}\right\| f \sin \varphi N \\
& =-\left\|\gamma^{\prime}\right\| \tau_{3} N
\end{aligned}
$$

are obtained, where
$\kappa_{3}=f \cos \varphi, \quad \tau_{3}=f \sin \varphi$
are curvatures of N -Bishop. Thus, the matrix representation of N -Bishop derivative formulas is

$$
\left[\begin{array}{c}
N^{\prime} \\
N_{3}^{\prime} \\
B_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \left\|\gamma^{\prime}\right\| \kappa_{3} & \left\|\gamma^{\prime}\right\| \tau_{3} \\
-\left\|\gamma^{\prime}\right\| \kappa_{3} & 0 & 0 \\
-\left\|\gamma^{\prime}\right\| \tau_{3} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
N \\
N_{3} \\
B_{3}
\end{array}\right] .
$$

(21)

Darboux vector belonging to N -Bishop frame is (Samancı and İncesu 2020)

$$
\begin{equation*}
F_{3}=N \wedge N^{\prime}=\left\|\gamma^{\prime}\right\|\left(-\tau_{3} N_{3}+\kappa_{3} B_{3}\right) \tag{22}
\end{equation*}
$$

where
$N^{\prime}=F_{3} \wedge N, \quad N_{3}^{\prime}=F_{3} \wedge N_{3}, \quad B_{3}^{\prime}=F_{3} \wedge B_{3}$.

3. On Bishop Frames of Any Regular Curve in $\boldsymbol{E}^{\mathbf{3}}$

3.1. Relationships Between Bishop Frames of Any Regular Curve in \boldsymbol{E}^{3}

First, let's get the matrix relation between Frenet and N -Bishop frames.

Theorem 3.1. There are the following matrix relationships between Frenet frame $\{T, N, B\}$ and N -Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of any curve γ in E^{3} :
$\left\{\begin{array}{l}{\left[\begin{array}{l}N \\ N_{3} \\ B_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ -X & 0 & Y \\ Y & 0 & X\end{array}\right]\left[\begin{array}{l}T \\ N \\ B\end{array}\right]} \\ \text { or } \\ {\left[\begin{array}{l}T \\ N \\ B\end{array}\right]=\left[\begin{array}{lll}0 & -X & Y \\ 1 & 0 & 0 \\ 0 & Y & X\end{array}\right]\left[\begin{array}{l}N \\ N_{3} \\ B_{3}\end{array}\right]}\end{array}\right.$
where
$X=\frac{\kappa}{f} \cos \varphi+\frac{\tau}{f} \sin \varphi, \quad Y=-\frac{\kappa}{f} \sin \varphi+\frac{\tau}{f} \cos \varphi$,
$\varphi=\int g$.
Proof: N_{3} is written as a linear combination of T, N, B as follows:
$N_{3}=a_{0} T+b_{0} N+c_{0} B$,
where a_{0}, b_{0}, c_{0} are coefficients. If the inner product with T, N, B is applied to both sides of (24),

$$
a_{0}=\left\langle T, N_{3}\right\rangle, \quad b_{0}=\left\langle N, N_{3}\right\rangle, \quad c_{0}=\left\langle B, N_{3}\right\rangle
$$

are gotten. From (18),

$$
\left\{\begin{aligned}
a_{0} & =\left\langle T, \cos \varphi\left(-\frac{\kappa}{f} T+\frac{\tau}{f} B\right)-\sin \varphi\left(\frac{\tau}{f} T+\frac{\kappa}{f} B\right)\right\rangle \\
& =-X, \\
b_{0} & =\left\langle N, \cos \varphi\left(-\frac{\kappa}{f} T+\frac{\tau}{f} B\right)-\sin \varphi\left(\frac{\tau}{f} T+\frac{\kappa}{f} B\right)\right\rangle \\
& =0, \\
c_{0} & =\left\langle B, \cos \varphi\left(-\frac{\kappa}{f} T+\frac{\tau}{f} B\right)-\sin \varphi\left(\frac{\tau}{f} T+\frac{\kappa}{f} B\right)\right\rangle \\
& =Y .
\end{aligned}\right.
$$

(25)

If (25) is substituted in (24),
$N_{3}=-X T+Y B$
is obtained. And similarly,
$B_{3}=Y T+X B$
is gotten. On the other hand, T is written as a linear combination of N, N_{3}, B_{3} as follows:
$T=d_{0} N+e_{0} N_{3}+f_{0} B_{3}$,
where d_{0}, e_{0}, f_{0} are coefficients. If the inner product with N, N_{3}, B_{3} is applied to both sides of (26),

$$
d_{0}=\langle N, T\rangle, \quad e_{0}=\left\langle N_{3}, T\right\rangle, \quad f_{0}=\left\langle B_{3}, T\right\rangle
$$

are gotten. So,
$\left\{\begin{array}{l}d_{0}=0, \\ e_{0}=\langle-X T+Y B, T\rangle=-X, \\ f_{0}=\langle-X T+Y B, B\rangle=Y,\end{array}\right.$
If (27) is substituted in (26),
$T=-X N_{3}+Y B_{3}$
is obtained. And similarly,

$$
B=Y N_{3}+X B_{3}
$$

is gotten. Thus, the proof is completed.

Theorem 3.2. There are the following matrix relationships between type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ and type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ of any curve γ in E^{3} :
$\left[\begin{array}{c}N_{2} \\ B_{2} \\ B\end{array}\right]=\left[\begin{array}{ccc}\sin \phi & \cos \phi \cos \theta & \cos \phi \sin \theta \\ -\cos \phi & \sin \phi \cos \theta & \sin \phi \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{c}T \\ N_{1} \\ B_{1}\end{array}\right]$
or
$\left[\begin{array}{c}T \\ N_{1} \\ B_{1}\end{array}\right]=\left[\begin{array}{ccc}\sin \phi & -\cos \phi & 0 \\ \cos \phi \cos \theta & \sin \phi \cos \theta & -\sin \theta \\ \cos \phi \sin \theta & \sin \phi \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{c}N_{2} \\ B_{2} \\ B\end{array}\right]$,
where $\theta=\int\left\|\gamma^{\prime}\right\| \tau, \quad \phi=\int\left\|\gamma^{\prime}\right\| \kappa$.
Proof: From (3),
$B=-\sin \theta N_{1}+\cos \theta B_{1}$.
N_{2} is written as a linear combination of T, N_{1}, B_{1} as follows:
$N_{2}=a_{1} T+b_{1} N_{1}+c_{1} B_{1}$,
where a_{1}, b_{1}, c_{1} are coefficients. If the inner product with T, N_{1}, B_{1} is applied to both sides of (28),
$a_{1}=\left\langle T, N_{2}\right\rangle, \quad b_{1}=\left\langle N_{1}, N_{2}\right\rangle, \quad c_{1}=\left\langle B_{1}, N_{2}\right\rangle$
are gotten. From (3) and (8),
$\left\{\begin{aligned} a_{1} & =\langle T, \sin \phi T+\cos \phi N\rangle \\ & =\sin \phi, \\ b_{1} & =\langle\cos \theta N-\sin \theta B, \sin \phi T+\cos \phi N\rangle \\ & =\cos \theta \cos \phi, \\ c_{1} & =\langle\sin \theta N+\cos \theta B, \sin \phi T+\cos \phi N\rangle \\ & =\sin \theta \cos \phi .\end{aligned}\right.$
(29)

If (29) is substituted in (28),
$N_{2}=\sin \phi T+\cos \theta \cos \phi N_{1}+\sin \theta \cos \phi B_{1}$
is obtained. And similarly,
$B_{2}=-\cos \phi T+\cos \theta \sin \phi N_{1}+\sin \theta \sin \phi B_{1}$
is gotten. On the other hand, from (8)
$T=\sin \phi N_{2}-\cos \phi B_{2}$.
N_{1} is written as a linear combination of N_{2}, B_{2}, B as follows:
$N_{1}=d_{1} N_{2}+e_{1} B_{2}+f_{1} B$,
where d_{1}, e_{1}, f_{1} are coefficients. If the inner product with N_{2}, B_{2}, B is applied to both sides of (30),
$d_{1}=\left\langle N_{2}, N_{1}\right\rangle, \quad e_{1}=\left\langle B_{2}, N_{1}\right\rangle, \quad f_{1}=\left\langle B, N_{1}\right\rangle$
are gotten. From (3) and (8),

$$
\left\{\begin{align*}
d_{1} & =\cos \theta \cos \phi, \tag{31}\\
e_{1} & =\langle-\cos \phi T+\sin \phi N, \cos \theta N-\sin \theta B\rangle \\
& =\cos \theta \sin \phi, \\
f_{1} & =\langle B, \cos \theta N-\sin \theta B\rangle=-\sin \theta .
\end{align*}\right.
$$

If (31) is substituted in (30),
$N_{1}=\cos \theta \cos \phi N_{2}+\cos \theta \sin \phi B_{2}-\sin \theta B$
is obtained. And similarly,
$B_{1}=\sin \theta \cos \phi N_{2}+\sin \theta \sin \phi B_{2}+\cos \theta B$
is gotten. Thus, the proof is completed.

Theorem 3.3. There are the following matrix relationships between type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ and N -Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of any curve γ in E^{3} :
$\left[\begin{array}{c}N \\ N_{3} \\ B_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & \cos \theta & \sin \theta \\ -X & -Y \sin \theta & Y \cos \theta \\ Y & -X \sin \theta & X \cos \theta\end{array}\right]\left[\begin{array}{c}T \\ N_{1} \\ B_{1}\end{array}\right]$
or
$\left[\begin{array}{c}T \\ N_{1} \\ B_{1}\end{array}\right]=\left[\begin{array}{ccc}0 & -X & Y \\ \cos \theta & -Y \sin \theta & -X \sin \theta \\ \sin \theta & Y \cos \theta & X \cos \theta\end{array}\right]\left[\begin{array}{c}N \\ N_{3} \\ B_{3}\end{array}\right]$
where
$X=\frac{\kappa}{f} \cos \varphi+\frac{\tau}{f} \sin \varphi, Y=-\frac{\kappa}{f} \sin \varphi+\frac{\tau}{f} \cos \varphi$,
$\theta=\int\left\|\gamma^{\prime}\right\| \tau, \quad \varphi=\int g$.

Proof: From (3),
$N=\cos \theta N_{1}+\sin \theta B_{1}$.
N_{3} is written as a linear combination of T, N_{1}, B_{1} as follows:
$N_{3}=a_{2} T+b_{2} N_{1}+c_{2} B_{1}$,
where a_{2}, b_{2}, c_{2} are coefficients. If the inner product with T, N_{1}, B_{1} is applied to both sides of (32), respectively
$a_{2}=\left\langle T, N_{3}\right\rangle, \quad b_{2}=\left\langle N_{1}, N_{3}\right\rangle, \quad c_{2}=\left\langle B_{1}, N_{3}\right\rangle$
are gotten. From (3) and (23),
$\left\{\begin{array}{l}a_{2}=\langle T,-X T+Y B\rangle=-X, \\ b_{2}=\langle\cos \theta N-\sin \theta B,-X T+Y B\rangle=-Y \sin \theta, \\ c_{2}=\langle\sin \theta N+\cos \theta B,-X T+Y B\rangle=Y \cos \theta .\end{array}\right.$
(33)

If (33) is substituted in (32),
$N_{3}=-X T-Y \sin \theta N_{1}+Y \cos \theta B_{1}$
is obtained. Similarly,
$B_{3}=Y T-X \sin \theta N_{1}+X \cos \theta B_{1}$
is gotten. On the other hand, N_{1} is written as a linear combination of N, N_{3}, B_{3} as follows:
$N_{1}=d_{2} N+e_{2} N_{3}+f_{2} B_{3}$,
where d_{2}, e_{2}, f_{2} are coefficients. If the inner product with N, N_{3}, B_{3} is applied to both sides of (34),
$d_{2}=\left\langle N, N_{1}\right\rangle, \quad e_{2}=\left\langle N_{3}, N_{1}\right\rangle, \quad f_{2}=\left\langle B_{3}, N_{1}\right\rangle$
are gotten. From (3) and (23),

$$
\left\{\begin{align*}
d_{2} & =\langle N, \cos \theta N-\sin \theta B\rangle=\cos \theta, \tag{35}\\
e_{2} & =\left\langle-X T-Y \sin \theta N_{1}+Y \cos \theta B_{1}, N_{1}\right\rangle \\
& =-Y \sin \theta, \\
f_{2} & =\left\langle Y T-X \sin \theta N_{1}+X \cos \theta B_{1}, N_{1}\right\rangle \\
& =-X \sin \theta .
\end{align*}\right.
$$

If (35) is substituted in (34),
$N_{1}=\cos \theta N-Y \sin \theta N_{3}-X \sin \theta B_{3}$
is obtained. And similarly,
$B_{1}=\sin \theta N+Y \cos \theta N_{3}+X \cos \theta B_{3}$,
$T=-X N_{3}+Y B_{3}$
are gotten. Thus, the proof is completed.

Theorem 3.4. There are the following matrix relationships between type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ and N-Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of any curve γ in E^{3} :
$\left[\begin{array}{c}N \\ N_{3} \\ B_{3}\end{array}\right]=\left[\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -X \sin \phi & X \cos \phi & Y \\ Y \sin \phi & -Y \cos \phi & X\end{array}\right]\left[\begin{array}{c}N_{2} \\ B_{2} \\ B\end{array}\right]$
or
$\left[\begin{array}{c}N_{2} \\ B_{2} \\ B\end{array}\right]=\left[\begin{array}{ccc}\cos \phi & -X \sin \phi & Y \sin \phi \\ \sin \phi & X \cos \phi & -Y \cos \phi \\ 0 & Y & X\end{array}\right]\left[\begin{array}{c}N \\ N_{3} \\ B_{3}\end{array}\right]$
where
$X=\frac{\kappa}{f} \cos \varphi+\frac{\tau}{f} \sin \varphi, Y=-\frac{\kappa}{f} \sin \varphi+\frac{\tau}{f} \cos \varphi$,
$\phi=\int\left\|\gamma^{\prime}\right\| \kappa, \varphi=\int g$.
Proof: From (8),
$N=\cos \phi N_{2}+\sin \phi B_{2}$.
N_{3} is written as a linear combination of N_{2}, B_{2}, B as follows:
$N_{3}=a_{3} N_{2}+b_{3} B_{2}+c_{3} B$,
where a_{3}, b_{3}, c_{3} are coefficients. If the inner product with N_{2}, B_{2}, B is applied to both sides of (36), respectively
$a_{3}=\left\langle N_{2}, N_{3}\right\rangle, \quad b_{3}=\left\langle B_{2}, N_{3}\right\rangle, \quad c_{3}=\left\langle B, N_{3}\right\rangle$
are gotten. From (8) and (23),

$$
\left\{\begin{align*}
a_{3} & =\langle\sin \phi T+\cos \phi N,-X T+Y B\rangle \tag{37}\\
& =-X \sin \phi \\
b_{3} & =\langle-\cos \phi T+\sin \phi N,-X T+Y B\rangle \\
& =X \cos \phi \\
c_{3} & =\langle B,-X T+Y B\rangle=Y
\end{align*}\right.
$$

$F_{1}=F-\left\|\gamma^{\prime}\right\| \tau T$.
Proof: If (3) and (5) is substituted in (7),
$F_{1}=\left\|\gamma^{\prime}\right\| \kappa B$
is obtained. From (2), the proof is completed.

Theorem 3.6. There is the following equation between Darboux vector F belonging to Frenet frame and Darboux vector F_{2} belonging to type-2 Bishop frame of any curve γ in E^{3} :
$F_{2}=F-\left\|\gamma^{\prime}\right\| \kappa B$.
Proof: If (8) and (10) is substituted in (12),
$F_{2}=\left\|\gamma^{\prime}\right\| \tau T$
is obtained. From (2), the proof is completed.

Theorem 3.7. There is the following equation between Darboux vector F belonging to Frenet frame and Darboux vector \bar{F} belonging to alternative frame of any curve γ in E^{3} :
$\bar{F}=F+g C$.
Proof: since $W=\frac{\tau T+\kappa B}{\sqrt{\kappa^{2}+\tau^{2}}}$, from (2) and (15),
$F=\left\|\gamma^{\prime}\right\| f W$
is gotten. (42) is substituted in (17), the proof is completed.

Theorem 3.8. There is the following equation between Darboux vector F belonging to Frenet frame and Darboux vector F_{3} belonging to N-Bishop frame of any curve γ in $E^{3}:$
$F_{3}=F$.

Proof: If (18) and (20) is substituted in (22),
$F_{3}=\left\|\gamma^{\prime}\right\| f W$
is obtained. From (42), the proof is completed.

Corollary 3.1. There is the following equation between Darboux vectors F, F_{1}, F_{2} and F_{3} belonging to Frenet, type-1 Bishop, type-2 Bishop and N-Bishop frame of any curve γ in E^{3}, respectively:
$F=F_{3}=F_{1}+F_{2}$.
Proof: From (40), (41) and (43), the proof is completed.

3.3. Their Relationships and Pole Vectors Belonging

 to Bishop Frames of Any Regular Curve in E^{3}Theorem 3.9. Pole vector W_{1} belonging to type-1 Bishop frame of any curve γ in E^{3} :
$W_{1}=-\sin \theta N_{1}+\cos \theta B_{1}$.
Proof: If (5) is substituted in (7),
$W_{1}=\frac{F_{1}}{\left\|F_{1}\right\|}=-\frac{\tau_{1}}{\kappa} N_{1}+\frac{\kappa_{1}}{\kappa} B_{1}$
is obtained. So, the proof is completed.

Corollary 3.2. There is the following equation between binormal vector B and pole vector W_{1} belonging to type-1 Bishop frame of any curve γ in E^{3} :
$W_{1}=B$.
Proof: From (3) and (44), it is clear.

Theorem 3.10. Pole vector W_{2} belonging to type-2 Bishop frame of any curve γ in E^{3} :

$$
\begin{equation*}
W_{2}=\sin \phi N_{2}-\cos \phi B_{2} \tag{45}
\end{equation*}
$$

Proof: If (10) is substituted in (12),

$$
W_{2}=\frac{F_{2}}{\left\|F_{2}\right\|}=-\frac{\tau_{2}}{\tau} N_{2}+\frac{\kappa_{2}}{\tau} B_{2}
$$

is obtained. So, the proof is completed.

Corollary 3.3. There is the following equation between tangent vector T and pole vector W_{2} belonging to type-2 Bishop frame of any curve γ in E^{3} :
$W_{2}=T$.
Proof: From (8) and (45), it is clear.

Theorem 3.11. Pole vector \bar{W} belonging to alternative frame of any curve γ in E^{3} :
$\bar{W}=\frac{g}{\sqrt{g^{2}+\left\|\gamma^{\prime}\right\|^{2} f^{2}}} N+\frac{\left\|\gamma^{\prime}\right\| f}{\sqrt{g^{2}+\left\|\gamma^{\prime}\right\|^{2} f^{2}}} W$.
Proof: From (17), the proof is completed.

Theorem 3.12. Pole vector W_{3} belonging to N-Bishop frame of any curve γ in E^{3} :
$W_{3}=-\sin \varphi N_{3}+\cos \varphi B_{3}$.
Proof: If (20) is substituted in (22),

$$
W_{3}=\frac{F_{3}}{\left\|F_{3}\right\|}=-\frac{\tau_{3}}{f} N_{3}+\frac{\kappa_{3}}{f} B_{3}
$$

is obtained. So, the proof is completed.
Corollary 3.4. There is the following equation between pole vector W and pole vector W_{3} belonging to type-1 Bishop frame of any curve γ in E^{3} :
$W_{3}=W$.
Proof: From (2), (18) and (46), it is clear.

Corollary 3.5. There is the following equation between pole vectors W, W_{1}, W_{2} and W_{3} belonging to Frenet, type-1 Bishop, type-2 Bishop, N-Bishop frames of any curve γ in E^{3}, respectively:
$W=W_{3}=\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} W_{1}+\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} W_{2}$.
Proof: From (2), (44), (45) and (46), it is clear.

4. Conclusion

In this study, the relationships between various Bishop frames and their Darboux vectors are discussed and new results are obtained. These results will be evaluated in the studies that have been done or will be done on Bishop frames. In addition, these results can be examined in various spaces such as Galilean space, Lorentz space, Dual Lorentz space.

Declaration of Ethical Standards

The authors declare that they comply with all ethical standards.

Credit Authorship Contribution Statement

Author 1: Conceptualization, Methodology/Study design, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing-original draft, Writing-review and editing, Visualization, Supervision

Declaration of Competing Interest

The authors have no conflicts of interest to declare regarding the content of this article.

Data Availability

All data generated or analyzed during this study are included in this published article.

Acknowledgment

The author would like to thank the reviewers for evaluating and enriching this paper with their ideas, and the journal editors for their interest and effort.

References

Alıç, Ş. and Yılmaz, B., 2021. Smarandache Curves According to Alternative Frame in E^{3}. Journal of Universal Mathematics, 4, 140-156. https://www.doi.org.tr/10.33773/jum. 956862

Bishop, R.L., 1975. There is more than one way to frame a curve. The American Mathematical Monthly, 82, 246-251.
https://doi.org/10.1080/00029890.1975.11993807
Bükcü, B., and Karacan, M.K., 2008. Special Bishop motion and Bishop Darboux rotation axis of the space curve. Journal of Dynamical Systems and Geometric Theories, 6, 27-34. https://doi.org/10.1080/1726037X.2008.10698542

Bükcü, B. and Karacan, M.K., 2009. The slant helices according to Bishop frame. International Journal of Computational and Mathematical Sciences, 3, 6770.

Çakmak A. and Şahin, V., 2022. Characterizations of Adjoint Curves According to Alternative Moving Frame. Fundamental Journal of Mathematics and Applications, 5, 42-50. https://doi.org/10.33401/fujma. 1001730

Damar, E., Yüksel, N. and Vanlı, A.T., 2017. The ruled surfaces according to type-2 Bishop frame in E^{3}. International Mathematical Forum, 12, 133-143. https://doi.org/10.12988/imf.2017.610131

Hacısalihoğlu, H.H., 1983. Diferansiyel Geometri. İnönü Üniversitesi Yayınları.

Kelleci, A., Bektaş, M. and Ergüt, M., 2019. The Hasimoto surface according to bishop frame. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 9, 13-22.

Keskin, O. and Yaylı, Y., 2017. An application of N Bishop frame to spherical images for direction curves. International Journal of Geometric Methods in Modern Physics, 14, 1750162.
https://doi.org/10.1142/S0219887817501626
Kılıçoğlu, Ş. and Hacısalihoğlu, H.H., (2013). On the ruled surfaces whose frame is the Bishop frame in the Euclidean 3 -space. International Electronic Journal of Geometry, 6, 110-117.

Kızıltuğ, S., Kaya, S. and Tarakcı, O., 2013. The slant helices according to type-2 Bishop frame in Euclidean 3-space. International Journal of Pure and Applied Mathematics, 2, 211-222. http://dx.doi.org/10.12732/ijpam.v85i2.3

Masal, M. and Azak, A.Z., 2015. The Ruled Surfaces According to Type-2 Bishop Frame in the Euclidean 3-Space E^{3}. Mathematical Sciences and Applications E-Notes, 3, 74-83. https://doi.org/10.36753/mathenot. 421334

Masal, M. and Azak, A., 2019. Ruled surfaces according to Bishop frame in the Euclidean 3-spaces. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 89, 415-424.

Ouarab, S., Ouazzani, A. and Izıd, M., 2018. Ruled surfaces with alternative moving frame in Euclidean 3-space. International Journal of Mathematical Sciences and Engineering Applications, 12, 43-58.

Samancl, H.K. and İncesu, M., 2020. Investigating a quadratic Bezier curve due to NCW and N-Bishop frames. Turkish Journal of Mathematics and Computer Science, 12, 120-127. https://doi.org/10.47000/tjmcs. 704794

Samancı, H.K. and Sevinç, M., 2022. N-Bishop Çatısına Göre Regle Yüzeylerin Bazı Karakterizasyonları. Karadeniz Fen Bilimleri Dergisi, 12, 113-134. https://doi.org/10.31466/kfbd. 937683

Scofield, P.D., 1995. Curves of constant precessions. The American mathematical monthly, 102, 531537.

Şenyurt, S., 2018. D-Smarandache Curves According to the Sabban Frame of the Spherical Indicatrix Curve. Turkish Journal of Mathematics and Computer Science, 9, 39-49.

Şenyurt, S. and Kaya, G., 2018. NC and NW Smarandache Curves According to Alternative Frame. Turkish Journal of Mathematics and Computer Science, 10, 269-274.

Şenyurt, S., Mazlum, S.G., Canlı, D. and Can, E., 2023. Some special Smarandache ruled surfaces according to alternative frame in E^{3}. Maejo International Journal of Science and Technology, 17, 138-153.

Uzunoğlu, B., Gök, i. and Yaylı, Y., 2016. A New approach on curves of constant precession. Applied Mathematics and Computation, 275, 317323.
https://doi.org/10.1016/j.amc.2015.11.083
Yilmaz, S. and Turgut, M., 2010. A new version of Bishop frame and an application to spherical images. Journal of Mathematical Analysis and Applications, 371, 764-776.
https://doi.org/10.1016/j.jmaa.2010.06.0127
Yilmaz, B. and Has, A., 2022. Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame. Optik, 260, 169067.
https://doi.org/10.1016/j.ijleo.2022.169067
Yılmaz, S. and Savcı, Ü.Z., 2017. A New Version Darboux Vector and Characterization Some Special Curves According to Type-2 Bishop Frame in R^{3}. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87, 355-362.
https://doi.org/10.1007/s40010-017-0373-6

