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1. INTRODUCTION

Quantum calculus is contemporary name for investigation of calculus without limits. Quantum calculus or g—calculus
began with the studies of Jackson in 1909 and 1910 [19,20]. But, this kind of calculus had already been worked out by
Euler and Jacobi much earlier. Carmichael gave theory of linear g—difference equations in 1912 [3, 14] . Trjitzinsky
studied analytic theory of linear g—difference equations [26] in 1933. In recent times, it attracts a lot of attention in
mathematics that models quantum computing. g—calculus appeared as a link between mathematics and physics. It has
a lot of applications in many areas such as number theory, combinatorics, orthogonal polynomials, hyper-geometric
functions, quantum, mechanics and relativity theories. In a large number of essential aspects of quantum calculus are
covered by a book written by Kac and Cheung [21]. In 2004, Bangerezako examined variational g—calculus [10] .
Bohner and Hudson considered Euler-type BvP’s in quantum calculus in 2007 [12]. Ahmad solved BvP’s for non-
linear 3.rd-order g—difference equations in 2011 [4]. In the same year, Cieslifiski [15] improved g—exponential and
g—trigonometric functions. Ahmad et. al. gave a study of 2.nd-order g—difference equations with boundary condi-
tions [5]. Yu and Wang proved existence of solutions for nonlinear second-order g—difference equations with first-order
g—derivatives [29]. Alp and Sarikaya defined features of quantum integral which is called g—integral [9].

Quantum calculus has many fundamental aspects. It has been demonstrated that quantum calculus is a subfield of
more comprehensive mathematical field of time scale calculus. This calculus provide a structure to examine dynamic
equations on both discrete and continuous domains [11, 13,28]. g—calculus is a special case of time scale calculus.
Calculation of derivatives and integrals on the time scale and therefore the solution of differential equations is quite
difficult. For this reason, the results obtained by examining the g—analysis, which has many applications in many fields,
are extremely important.

qx—analysis, on the other hand, is a much more general form of quantum analysis. Actually, Now let’s talk about
the historical development of this analysis. In 2003, Rajkovic [22] firstly defined the g,—integral and later, Tariboon
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and Ntouyas [24] initiated the study of quantum calculus on finite intervals and defined g;—derivative and g;—integral
of any function in 2013. They defined g;—derivative of a function f : [#;,%+;] — R and its essential properties
such as derivative of a sum, a product or a quotient of two functions. Furthermore, they defined g;—integral and
demonstrated its fundamental properties [25]. Similarly, Sudsutad [23] defined the g,—derivative in 2015. Essentially,
both derivative definitions and both integral definitions in [22-24] are the same. In 2015, Diaz and Teruel defined
generalized Gamma and Beta Functions on g;— analysis [18]. Ahmad et. al. gave new concepts on impulsive IVPs and
BVPs for g;—analysis in 2016 [7]. In the same year, Ahmad et. al. considered nonlocal BVPs for impulsive fractional
qi—difference equations [6].

Very important work has been done in the classical case and g—analysis on the Laplace transform. Initial value
problems are then solved by the Laplace transform [1,2, 8, 16]. For example, Bohner and Guseinov devined #— and
q— Laplace transformations in 2010 [11]. Ucar and Albayrak studied g—Laplace integral operators and applications in
2012 [27].

In this study, we introduce Laplace transform on gy—integral. In our literature review, it was seen that the Laplace
transform was not defined in the gy—analysis and its properties were not examined. Here, we give some preliminaries
that are necessary for understanding the Laplace transform on gi—integral. In section of main results, we newly
present Laplace transform on g;—integral (or gx—Laplace transform), g;—binomial coefficients, some main definitions-
theorems and some examples that are required to calculate g;—Laplace of some essential functions.

2. PRELIMINARIES

Here, let us recall some basic concepts of g—calculus, quantum calculus on finite intervals or g;— calculus and some
related notions as usual Laplace and g—Laplace Transforms. Let us now state the definitions and theorems necessary
to grasp the subject. The main part of our study depends on the understanding of this part.

Definition 2.1 ( [17]). For s € C with Re(s) > 0, Gamma function is defined by
[(s)= f et ldr. 2.1
0
By (2.1),
I'(s+1)=sI(s), IF'r+1)=n! (neN).

Definition 2.2 ( [17]). For ¢ > 0, Laplace transform of f(t) is defined by

0o a

L{f(0)=F(s)= | e f()dt = lim fe’“f(t)dt. 2.2)
0 0
One can say that (2.2) converges if the limit exists, and otherwise it diverges.

Definition 2.3 ([19,20]). Let g € (0, 1) and f(x) be an arbitrary function. The g—differential of f is defined by
dgf(x) = flgx) - f(x),
dyx = (g — Dx,
and g—derivative of f on a subset of R is

_def ) _ flgx) - f(x)
D, f (x) = ix ~ G-Dx x#0, (2.3)

qu 0 = )lcl_I)l’(l) qu (x),

where gx and x should be on the domain of f and D, is g—difference operator.

It is easy to see that, if f (x) is differentiable, it yields that
df (x)

lim Dyf () = =7= = f .

The higher order g—derivatives are given by
Dif () =DyDy' f(), neN.
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Definition 2.4 ( [19,20]). g—analogue of n € N is defined by
q' -1
q-1
Theorem 2.5 ([19,20]). Let f, g be q— differentiable functions. Then, D, is a linear operator. In other words, for any
constants a and f3

[nl, = =¢" '+ +1

g {af () +Bg (D} = aDy {f (D} + BDy {g (D} .
Remark 2.6 ([21]). Let f, g be g— differentiable functions. In this case, the following statements are true.
Dy{f g0} = f(qt) Dyg (1) + g (1) Dy f (1)
=[O Dyg (1) + g (q) Dy f (1),
FO) 8O Df (1) = £ (1) Dyg (1)
{%} - g(gn g '
Definition 2.7 ( [16]). g—analogues of classical exponential function e* is defined by

2 ¥
X
€= Z 1,
j=0
o ) 2.4
L x/
EX = qJ(J—l)/2 .
1 ; [/1,!
g—exponential functions satisfy the following relations:
Xp—X _ X, —X _ X _ X 0 _
quq —quq =1, E‘I_eé’ Eq—l.
Moreover, for E;" = i , we have
lim E.* = lim — = 0.
X—00 X—00 eq

Definition 2.8 ( [16]). g—analogues of classical trigonometric functions are

ix _ ,—ix ix _ p-ix
. _% "% s Ej-E,
sing x = ————, Singx = ————,
2i 2i
—ix ix —ix
eq +e, B Ef+E,
COSy X = T, Cosyx = —
Hyperbolic g—cosine, hyperbolic g—sine functions are defined by
ax + e—ax ax __ e—ax
coshy ax = ! and sinh, ax = 1

Definition 2.9 ( [21]). Jackson integral or g—integral of f (x) is defined by
ff(x)dqx =(1- q)xi ¢'f ('x).
j=0
Remark 2.10 ( [21]). From the above definition, we can easily derives a more general formula as
f F()Dgg (x)dyx =(1 - g) x i 7'f (/%) Dyg (¢'x)
j=0

g(a'x) - g(a™'x)
(1-qq'x

=(1-g)x ) g'f(¢')
j=0
or '

[ =3 s el sl
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Definition 2.11 ( [19-21]). Let 0 < a < b. The definite g—integral is defined as

b
f Fdgx=(01-9b) ¢'f(¢'b) @5)
0 =0
and
b b a
ff(x) dgx = ff(x) dgx — ff(x) dgx.
a 0 0
By (2.3) and (2.5), we get

X

fqu(t)dqf =f() - f(Q0).
0

Now, let’s express the basic concepts of our study, gx—derivative and g;—integral and their properties.

Definition 2.12 ( [24,25]). Assume that f : J; — R is a continuous function, and J; = [fx,%+1] C R, t € J; and
0 < g < 1. Then, the expression
1) — t 1- 1,
Dqkf(t)=f() S (gt + (1 = q) k), .
(I-g(t—-1) (2.6)
DQkf(tk) :thr? Dqkf(t) ’
—

is called gi—derivative of f at ¢.

Underline the fact that if 4 = 0 and g = g in (2.6), then D, f = D, f, where D, is g—derivative of f(¢) defined in
(2.3).

Definition 2.13 ( [24]). g;—analogue of n is defined by

Example 2.14 ( [24]). In g;—calculus, Dy, (t — )" = [n],, (t - 7)"'. As a matter of fact, f(r) = (t — 1)", t € Jy, where
Ji = [t tis1] C R, then

(=) = (gt + (1 —g) i — )"
Pt (0= (- g0 1)

- 1)" g (- 1)
(1= qi) (¢ — 1)
=[n], t—1)"".
Theorem 2.15 ( [24]). Assume that f, g : J. — R are qi—differentiable. Then:
(i) f + g : Jr = Ris qy—differentiable with
Dy (f (1) + () = Dy f () + Dg,g (1),
(ii) For any constant o, af : Jp — R is qi—differentiable with
qu< (af (t)) = aDqkf(t) s
(iii) fg : Jr = R is qx—differentiable with
Dy, (f8) @) =f (1) Dg g (1) + g (qit + (1 = qi) 1) Dy, f (1)
=g () Dy f (1) + f (qut + (1 = qi) 1) Dg, g (1),
(iv)If g (1) g (git + (1 — qp) 1) # O, then JEC is qr—differentiable with

D (J_”)(t) _ 80Dy f (D) ~ f(1) Dy g (1)
*\g gWggt+(1—got)
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Definition 2.16 ( [24]). Assume that f : J; — R is a continuous function. Then, g;—integral of f is defined by
! [oe)
f FO)dys = =g —1) > qif (gt + (1 - g)n) @7)
p n=0

for ¢t € J;. Furthermore, if a € (#, t), then definite g;—integral is defined by

ff(S)qus=ff(S)qus—ff(S)qus

=(1-q)(t- tk)Zqu(EIZf +(1-q7)n)

n=0
—(1—qk)(a—rk>2qkf (gra+(1-q})n).

It should be noted that if #z = 0 and g; = ¢, then (2.7) reduces to g—integral of f (¢), defined by

ff(s)d s=(1 —q)th 1",

n=0
forr € [0, ).
Theorem 2.17 ([24]). Fort € Jy, following formulas hold:
t

(i) Dy, f f(9)dys = f(0);

(id) f Dy f ()dys = f (1)

(i) f Dy f () dy,s = f (1) = f (a) for a € (i, 1);
(iv)f[f<s)+g(s> ld, s—ff(s)qus+fg<s>
(v) f (@f)(s)dys = f f(9)dys

t t
(i) [ £ (s) Dy (s)dys = (f2) () = [ g(qus + (1 = qo) 1) Dy, f (5)dy,s
where f, g : Jr = R are continuous functions, o € R.

In the next section, the g—Laplace transform will be defined and its properties will be given. The Laplace transform
we will obtain is the general form of the following g—Laplace transform.

Definition 2.18 ([16,19,20]). g—Laplace transform of f function is defined by
F6) =1, @)= [ E,asn f0dt >0,
0
Then,
Ly(af (@) +Bg (1) = aLy (f (1) + BLy (g (1),
where a and 8 are constants.
Definition 2.19 ( [16, 19,20]). The g—extension of gamma function is defined by
T, = f X E, (=gx)dyx (1> 1).

0
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Thus,
L,+1)=[1],T4®, Iy(n+1)=[n],

3. MaIN REsuLrs

In the present section, we will define g, —Laplace transform, g;—binomial coefficients. Furthermore, some properties
that are essential for comprehending g;— Laplace transform will be expressed. Finally, we will calculate g;—Laplace
transform of some common functions. First, let’s calculate the g;— derivatives of g;— analogous of exponential func-
tions that we will use in our main proofs.

Lemma 3.1. Fors >0, t,t, € Jy,

—s(t-ty) _ —qrs(t=t)
D‘lquk K= —SEqk .

Proof. By using gy—derivative and (2.4), we get:

D gt — i b (= S(t—tk))"]

9k qx |
n= ‘Ik :

oo q 2 (_l)n i
= Z "—Dqk (t— 1)
n=1 !

T s -

-
TR

n(n+1)

i (_1)n+1 qkT Sn+1 ([ _ tk)n

n=0 [n]qk
n(n 1)
(-1y"
- szo —[n]jkk. (G (=1 9"

— _ o Ust=1)
sk, .

Lemma 3.2. Fors > 0,t,t € Jy,
Dqu;kqu(z—zk) —g SE qk (1= tk)'

Proof.

k !
n=0 [n]IIk'

- el (=5 (= 1)
Dquqkaqk(l %) =D, (Z q,°

o n(n—1 n n
—Z g (=1 s"qiDy, (1 — 1)
[n]%!
o0 qz(n )] (_l)n anz = tk)n—l
[n—11,,!

n=1

n(n+1)

i 2 ( 1);1+1 n+1 n+1 (l‘ tk)n

=0 [y, !
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n(n—1)
2n n .n n
B g, q" (1" s" (- 1)
——QkSZ ]!

—q; s(t—1)

=~ 4k SE‘Ik

Definition 3.3. g;—Laplace transformation of f is defined by

e

F(s) = Ly, (f (1) = f FOES ™, 1.
0
Then,
Ly (@f (6) +Bg (1) = aLy (f (1)) +BLy, (f (),

where a and 8 are constants.

Definition 3.4. g;—binomial coefficients are defined by

[ n :| _ [n]q,"
k|, Lk, =k,

where [n]g ! = [n]g, [n = 1]y [n = 2], ...[2][1], [0],!= T and [n], = tZE

Lemma 3.5. g;—Laplace transform of f (t) = 1 is
1
L, (1)=F(s) = ;E;Zk. 3.1

Proof. From the definition of g;—Laplace transform, it follows that

[oe] (3

F(s)=Ly (1) = f E;# W, 1= Tim | E;%™Wd, 1.

a—oo

0 0
By Lemma 3.2,

a a a

D E—S(T—fk) 1
—qrs(t—tr) _ k=g _ —s(t—tr)
fEflkk dekt_f kot__EfDQquks dekt

)
0 0 0

_ 1 —s(t—ty) ¢ _ 1 —s(a—ty) Sty
__E(Eqk ) __E(EIM _Eqk)'

0
Taking limit when @ — oo, we get

im (< (B = £21)) = =3 (0= £3) = $E4-

a—o0 Ky

If we take g = g and #; = 0, then (3.1) reduce to L,(1) = % that is defined in [16].

Theorem 3.6. For n € R withn > -1, qx—Laplace transform f (t) = (t — t;)" is

" (nlg,

Ly (t=1)") = . .

()" Ejt +

Ly (- 10"). (3.2)

Proof. From definiton of g;—Laplace transform, it follows that
a (o)
qu (t=t)") = (ll_)nolo f(t —1)" E;AQkS(t—tk)qut — f(t —1)" E;Aqks(t—tk)qut'
0 0

By Lemma 3.2 and Theorem 2.17,
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a @ D E—s(t—tk)
f (t— )" E;0 1 = f (t— )" ——— _q; dyt
0 0

@
1
=== f(t—tk)” Dy E;*dy 1

0
a

= s(qrt+(1=qi)te—t)
. fDqk (t—t)"E; " R

0

1 n —srtk
=== (A ))

:_l((t_t)n —s(t— tk)
N

fDqk (t—t)"E —tIkS(l lA)d y

1 ((a’—t )n s(a ) —(~t )n Estk f(t_t )n 1 E qkS(f fk)d .
Taking limit when @ — oo, we get

Ly (1= 1)") = lim f (t— 1) B2 d, 1

a—00

a
1 1 nly, st
= lim l—- (@ = 1) + BT+ = ()" (1) Egf + % f (t— )" B, W, 1

( l)n (t )11 EYZA [ ]qk f(l )n ] qks(t fk)d t

( l)n n s [I’l] : n—
()" Egt + =Ly, (0= 10"").
O
Theorem 3.7. Let n € N, then q,—Laplace transform f (t) = (t — ;)" is
n—1
n ( 1)” ! n—i . s [ ] S
Ly (t=10") = Y =5 @) [ : ] (i1, ) B + nfq E (3.3)
i=0 9k
Proof. By using (3.2), it follows that
n (_l)n n s [n] n—
Ly ((t—1)") = W) Eg + —* Ly, (=ny)

ln []k _ln_l Y [_1]k -
( ) )" EW S” {% ()" E;Zk + %qu ((f —1)" 2)}

- 1)" ]y, (=1)"!
S S

() [~ 1y
S

()" ES* + ()" ES + Ly (6= 1))

( l)l‘l

n—1
( )n ESIA [ ]qk (_1)
N N

i [n]le [n— l]qk {(_l)n_z
S S

n—1 psty
()" Ey,

N

[n-2], _
e B2 o)
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1 n 1 n—1 n n— 1 _1 n-2
( ) ( )n E;ik [ ]qk ( ) ( )n IE;?{ + [ ]Qk [ ]qk ( ) (l‘ )n 2E5tk
s s s
[n] [n—1l,, [n- 2]
i Sl/k - qk Gk qu ((l‘ _ tk)n—S)
1" [ ] 1 1
( ) (t )Vl E_;tk qk ( ) (t )n lEAlk
[n]th [n = Tlg, (_1)n ’ n-2 ros [ nlg,! s
— . p @) ESt + ... o E
-1
(G dPNY I IR ) W
el (oLl (Ii1g )15 + nﬁ E
= 4k
m|
If we take g = g and #; = 0, then (3.3) reduce to L, (") = [;fiq,! that is defined in [16].
Theorem 3.8. gi—Laplace transform of f (t) = ea(’ W
SRR N
a( ) N s
Ly, (et e Z ES N t—El  s>a (34)
Jj=0 n= '
Proof. From definition of g;—Laplace transform, it follows that
L, ( e;ﬁt_tk)) f Z(t—tk) E;qus(t—tk) qu ¢
0
Z 1! f(t_ 0" Eq_qum_tk)qut
[n
n=0 9k "
0
[e] an
= Ly (2= 1)")
ZO [y
N a (_])n n s [n]q (_])n ] n—1 s [n ]‘I K
=2, [n]qu( y "B = T B ek
n=0
1 (o)
=< D B G ) —ZEW (=1 !
§ n=0 ] q"
1 < a 1
tot— Yy Ef—— + E
s" nZ:() % nl,! s—a *
n-1 o0 _i _i
1 o @ (D" ()" |
= 41 ZEqZk 1 t oz Eg.
=8 = [n],,! s—a
O

If we take g = g and #; = 0, then (3.4) reduce to L,(e, (at)) = s > a that is defined in [16].

sa’

a(t Ik)

Theorem 3.9. g,—Laplace transform of f(t) =

- 00

n(n—1) n(n=1)
Z qu (=1 (o)™ ES + = Z—;;ka, 5>0 .

j:() n=0 [n]Qk n=0

L (Ea(t lk)
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Proof. From definition of g;—Laplace transform, it follows that

(t—t0)\ _ (t—ty) =i S(t—1;)
L, (ES™) = | ESE, dyt

o D g (f — 1)
E(tll(t*tk) Z qk ) ( k) d ¢
n=0

(]! "

= a” @ —qrs(t—1tx) n

— qk Eqk (t_ tk) dy,t
[n]g,!

n=0 k 0

© no=) (_ ) ) [n]q (—l)n_l - ]
_ p l’lEka_'__]‘— ¢ nlE.Stk

Z:o [n]quqk ( R

_ n-2
Sl =y GO Nyt [n]g, m)
. s s n+l

i n(n b (- 1) s a’ n(n v [n] (- 1)” 1 el s
Z — W Ey Z LW E
()

N

a" @ [n]qk [”l - 1]61k (_l)n—Z

2 st
q ()"~ EQ}
L [n]y ! s s
> at ["]qk! S|
+... + Z —[n] | e Eqk‘qk 2
n=0
Z a* u(nz 1) ( ])n( )n Eka 1 a n(n;l) ( 1)”—1 ( )n—l ESlk
=— 1 — < — 1
[n]qk qk 52 [n]qk!qk k 4k
1 ki a n(n-1) - - , i . n(n2 D
A5 g e S
n=0 k- n=0
n—1 oo
1 a" n(no n(n 1)
= L U e Z—
Jj=0 § n=0 [n]qk'
O
Theorem 3.10. g;—Laplace transform of qi—cosine, qi—sine, q,—Cosine, q,—Sine functions are
n-l il 2 3n— 2n—
1 a (=) (m)™ s
L, icos, a(t—t)| = . gl + ESk , (3.5)
(Ik{ 4k } = si+l ; 9k [zn]qk_ 9k 52 +a2
n—1 0 3n+l1—j 2n+1-j
i ! W @ @ a
L, {smqk a(t— tk)} =2 Z Egt PR E.} S 3.6)
j=0 n=0 9k
Eié(f—fk) + E_Via(t_tk)
Ly {Cosqka (t— tk)} =L { & 5 &
n—1 1 aan"(zn—l) (_1)3n—j (tk)Zn—j E;Z(

_ k
- Lt Z [2n],,!

1 - S n(zn— n a n
+;ZEq£qu(2 (-1 (;) ,
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L, {S inga(t— tk)} =Ly, {

ia(t—ty)
Eth

—ia(t—ty)
B E‘Ik ‘
2i

i a2n+lqz(2n+1) (_1)3n+l—j (lk)2n+1_j E;ik

n=0

sty _n(2n+1)
Z Eihk 9y

n—1 1

s [2n+1],,!

1y (L_sz)zrm .

Proof. Consider following definitions of g;—cosine, g;—sine, g,—Cosine, g;—Sine functions:

cosg a(t—1t) =

Em(/ zk)

Cosga(t—1;) =

1,
e'“(’ )

—la(l—lk)
Cai

2
—m(/flk)

la(t ) _ —la(f—lk)
e, ‘fk

) =

) =

and sing a(t -

E/a(t 1) Eﬂa(l /k)

and Singa (t - 5

Then, by using linearity of g;—Laplace transform,

L, {coqu a(t- tk)}

and in the same manner we have

Ly, {sing a(t - 1)} =

If we take gx = g and #, = 0, then (3.5) and (3.6) reduce to L,(cos, (at)) =

defined in [16], respectively.

ia(t—ty) —ia(t—ty)
eqk + et]k

2

|

1
I za(t ) —ia(t—ty)
_z(l“lk{qk k}+L { A})
n—1 00 . i i
1 1 (ia)" (=1)"7 (&)"™ 1 ’
= =5 D B + E
2 = st £ k [n],,! s—ia *
n—1 oo
1 (—ia)" (=1)" (1)"~/ 1 £
" s+ ZE;‘ [n] : * s+ ia qg)
j=0 n=0 ¢I1<'

S e CVV Gy 1y

' [nly,!

+

n_l [ee) 3 —7 2 —7
I JOPCICT ST R

j+1 qr a2 5 2"

= KA oy [2n],,! s +a
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Now, we achieve g;—Laplace transform of g;—Cosine and g;—Sine functions

Eta(t 1) + E ia(t—ty)
Ly, {Cosga(t - 1)} = qu{ S }

= % (L m {Eéi(t—tk)} + qu {E—ia(z_tk)})

(n

[ 1 & Ga)g T 1w Ey
E d i1 Z [n],,!

N 1 i(ia) E_ST]( n(n 1)
5 n=0 s

n(n-1)

n—1 oo ) n—j n—j st

1 ia 1 1 E>

N (mia)"q, > (=17 ()" Ey,
sJJrl Z [n],,!

n=0
1 < fia )
+= ) |=]) E¥
s;m i)
~ 1 n—1 1 i [1+( l)n](la)nqk ( 1)n ](l )n ]Estk
2|5 = [l !

1{1 < Y e
A cm(e )
aann(2n—1) (_1)3n7j (tk)2n7j E;ik

k
sit1 2, [2nl,,

and

' Eia(t—t;() _ E*ia(t*tk)
L, {Slnqka(t—tk)}quk{ o 5 &

_ l( L, (Ew) - 1, {Ezi0))

2i Gk
n(n=1) . .
_ l n—1 1 i (ia)n qk 7 (_1)71—] (lk)n_J E;ik
- 1
2i = sl oy

= (ia) g, (D 0 g
Ll 2, [n],,!
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S 1 S ==D] (la)"q (D”’(H"’Em
= 5| 25 2 "

p =" ]!
11 < u o, =D
—5[;2[1—( (2 Eytg, ]
n=0
_ o @ a2n+1q1(3ﬂ+1)11(_1)3n+1—j (1)1 Et
Jj=0 s/l n= [2n + 1]61k!
1 e 2n+1
2 ZEW n(2n+1)( ])n( ) .
§ n=0
So, the proof is completed. O

Theorem 3.11. g,—Laplace transform of hyperbolic g—cosine, hyperbolic q—sine functions are

2n 2n— 2n—
. (=1) ’(tk) /
qu{COShqka(t_tk) Z MZ = [2n]
fik'

3.7
st
+EL) w g
n—1 © =J -J
1 a2+l (_1)2n+1 J (tk)2n+1 J
L, {sinh, a(t— 1)} = Ey!
G { g a( k) ; sitl ; ax [2n+1],,! (3.8)
st
+ Eqkk 2 — a2’

Proof. Hyperbolic g,—cosine, hyperbolic g;—sine functions are defined by

a(t—ty) a(t )
eqk + e
2 s
a(t—ty) —a(t—ty)
gk ~ Ca

2

coshy a(t—1) =

sinhy, a(t— 1) =

Then, by using linearity of g;—Laplace transform,

a(t—t;) —a(t—ty)
eq + eq
L, {coshqk a(t— tk)} =L, {%

 (t ) )

Gk Gk

[nl 1 i - a (_l)n—j (tk)n—j

gk [n]qk!
| O, (@) (=D (1) |
+s—aEq" +Z:(;sj+1 ZEqk [n]g,! +s+aEqk

1 n—1 1 =S} . [1 + (_l)n] an (_1)n—j (tk)n—j
) [Z s+l ZE‘” [n],,!

0 i i
S} S SO
= i+l p qk [zn]qk! Ik 2 _ 42

and in the same manner we get
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n-1 o0 2n+1 2n+l—j oy \2n+1—j
- _ 1 i G D U
Ly fsinhg a =10} = ) — > Ey ST
j=0 n=0 4k
Sty
+E<1/<A 2 —a? :
O
If we take gx = g and #; = 0, then (3.7) and (3.8) reduce to L,(cosh,, (af)) = "= and L,(sin, (at)) = -*= that are

defined in [16], respectively.

Theorem 3.12. If f, D,f, D? oS Dy ! f are continuous and D’ ] is piecewise continuous on (0, %) and are of expo-
nential order, then we have

n—1

Ly DL f O} = $"Ly Af 0} = ER™ 3" 717D, £(0). (3.9)

i=0
Proof. f is exponential order c if there exist ¢, K > 0 and T > 0 such that
If 0] < Ke“, forallt < T.
Therefore, we have
lim E;® @) = 0. (3.10)
Then, by using (3.10) we can write

E,D, f (1) dy,t

Ly Dy f (0} =

o3

= E;kqm(t tl\)f(t)‘ +qksff(6]kl+ (- q0 tk)E G zk)d y

00

EM @)+ s f auf (et + (1= g0 10 By ™yt
0

E;:Iks(tftk)f (t)‘o + Sff(”) E;AQkS(Lt—tk)quu
0

= mE M f (1) = Eg ™ £ (0) + sLy, {f (1)
=0 - Eg™ £ (0) + sLy, {f (1))
= sLy \f (O} = EQ™ £ (0).

If we replace f (¢) by D, f () we have

DLf0) = [ ESID 10y
0

(o]

- (1—1)
= E;D, £+ qus f Dy f (qut + (1 = ) 1) B, V1
0

— E;kaS(l*fk)Dqkf ([)‘0 + 5 fDqu(u) E;[Iks(uftk)quu
0
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. —qis(t— —qr s(0—tx
= TmE 8Dy, f (1) = E,* Dy f (0) + 5Ly, {Dy, f ()]

= Ly Dy, f O} = EG™ Dy, f (0)
= s{sLy, \f (O} = EZ" £ ()} = EZDy, f (0).

If we proceed with this way, we have
n—1
Lo DL f 0} = §"Ly (f 0} = EE** " s"17D, £ (0).
i=0
and proof is completed. O

n—1 L
If we take g; = g and #;, = 0, then (3.9) reduce to Lq(D’;f @) =s"L,(f(D))- 2 s”“"Dﬁlkf (0) that is defined in [16].
i=0

4. CONCLUSIONS

In this study, the ¢;—Laplace transform is defined and its properties are expressed. A generalization of the g—Laplace
transform, whose important results were given earlier, is obtained. Some common functions are not defined in this
analysis and images of these functions under the g;—Laplace transform are obtained. In some special selections, it has
been observed that the results coincide with the g—Laplace transform. Using these results, initial value problems of
this type with gz—derivatives can be solved.
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