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ABSTRACT

Many techniques have been proposed to project the high-dimensional space into a low-
dimensional space, one of the most famous methods being principal component analysis. The
Klein quadric is a geometric shape defined by a second-degree homogeneous equation. The lines
of projective three-space are, via the Klein mapping, in one-to-one correspondence with points of
a hyperbolic quadric of the projective 5−space. This paper presents some results on the images
under the Klein mapping of the projectice 3−space order of 4 and the fuzzification of the Klein
quadric in 5−dimensional projective space.
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1. Introduction

Mathematicians also use Galois theory to examine geometry, physics, chemistry, and many other fields of
study. We introduce the n−dimensional projective space PG(n,K) for n > 0 and K, any Galois field GF (qr)
where q is prime number and r is a positive integer. In a field of order qr, adding q copies of any element
always results in zero; that is, the characteristic of the field is q.

Let V be any vector space of dimension (n+ 1) over K. Then PG(n,K), the n−dimensional projective space
over K, is the set of all subspaces of V distinct from the trivial subspaces {0} and V . The 1−dimensional
subspaces are called the points of PG(n,K), the 2−dimensional subspaces are called the (projective) lines and
the 3−dimensional ones are called (projective) planes. We can see that by going from a vector space to the
associated projective space, the dimension drops by one unit. Hence an (n+ 1)−dimensional vector space V
gives rise to an n−dimensional projective space PG(n,K) [7].

It is shown in [3] that the lax generalized Veronesean embeddings of PG(2, 3). They relate to the quadric
Veronesean of PG(n,K) in PG(d,K) and its projections from subspaces of PG(d,K) generated by sub-
Veroneseans (the point sets corresponding to subspaces of PG(n,K), if K is commutative, and to a degenerate
analogue of this, if K is noncommutative.

Since the Klein correspondence preserves incidence relation, two concurrent lines of PG(n,K) are mapped
to two collinear points of the Klein quadric. If we take all the lines incident with a single point p of PG(n,K),
then the image is a set of mutually collinear points of Klein quadric, that is, a plane of the quadric. Likewise, if
we take all the lines contained in a single projective plane of PG(n,K), then the image is again a plane (for the
same reason). So points and planes of PG(n,K) are the planes of Klein quadric. Two points of PG(n,K) span
a line, and so the corresponding planes must meet in a point. It is not difficult to see that an incident point and
plane must be mapped to the set of points on a line of the quadric, and a non-incident point and plane yield
two planes of the Klein quadric that are disjoint. In other words, we have an equivalence relation on planes of
the Klein quadric that divides them into two equivalence classes:

The two equivalence classes are known as the latins and the greeks. The latins are in one-to-one
correspondence with the points of PG(3,K), whereas the greeks are in one-to-one correspondence with the
planes of PG(3,K). Projective space is a mathematical concept with nonlinear geometry, and the Klein quadric
is defined as a surface within projective space and expressed by a specific equation.
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A lot of theories in mathematics have the so-called fuzzy counterparts. Basically this means that certain
elements of an object get a membership degree as an alternative for the classical black and white situation
of belonging to or not belonging to. In the theory of fuzzy sets, Lubczonok [10] gives the notion of fuzzy vector
space, he defines fuzzy dimension for all fuzzy vector spaces as a non-negative real number or infinity and he
investigates the properties of the introduced concepts. In [9], a general definition of a fuzzy n−dimensional
projective space λ

′
which is obtained from fuzzy (n+ 1)−dimensional vector space λ on V over some field K

and a method to find a fuzzy projective line and a fuzzy projective plane are given. The notion of a fuzzy spread
of a fuzzy projective space and the fuzzy line spreads of the smallest finite projective space are inroduced in
[1].

And then the classification of fuzzy vector planes and 3-dimensional vector spaces of fuzzy 4−dimensional
vector space are given in [2],[6]. In [5], the role of triangular norm, fibered harmonic conjugates and a fibered
version of Reidemeister’s condition are considered. In [4], the classifications of fuzzy vector planes of fuzzy
(n+ 1)−dimensional vector space and fuzzy projective lines of fuzzy n−dimensional projective space from
fuzzy (n+ 1)−dimensional vector space λ on V for n > 2 were given.

2. Preliminaries

First recall that, projective space, Klein quadric and fuzzy set will be introduced.

Definition 2.1. We define the n-dimensional projective space PG(n,K) for n > 0 and K any (skew) field. Let
V be any vector space of dimension n+ 1 over K. Then PG(n,K), the n-dimensional projective space over K,
is the set of all subspaces of V distinct from the trivial subspaces {0} and V . The one-dimensional subspaces
of V are called the points of PG(n,K), the two-dimensional subspaces are called the (projective) lines and the
three-dimensional ones are called (projective) planes. A non-trivial (k + 1)-dimensional subspaces of V is also
called a k-subspace of PG(n,K), or simply, a subspace. Since every subspace of V is itself a vector space, we
may view any subspace of PG(n,K) as a projective space. For two subspaces U , U ′ of PG(n,K), we write
U ≤ U ′ if U is contained in U ′.

Let PG(3, q) be a 3−dimensional projective space over a field GF (q) where q is prime, such that the points
and planes are represented by homogeneous coordinates. The method is due to Julius Plucker (1801-1868). In
[11], the homogeneity of Plucker coordinates suggest to view the the coordinates of a line as homogenous
coordinates of points in ve dimensional space PG(5, q). This is a particular case of construction of the
Grassmannian of lines. Homogenous coordinates in PG(5, q) are written as in the form (l01, l02, l03, l23, l31, l12)
where

lij = xiyj − xjyi.

We denote (X0, X1, X2, X3, X4, X5) = (l01, l02, l03, l23, l31, l12).

Definition 2.2. (see [8]) The Klein mapping,

γ : L → PG(5, q)

assigns to a line of L in P (3, q) the point (l01, l02, l03, l23, l31, l12) of PG(5, q) where (l01, l02, l03, l23, l31, l12) are the
line’s Plucker coordinates (F.Klein, 1868). The lines of projective three-space are, via the Klein mapping, in one-
to-one correspondence with points of a hyperbolic quadric of the projective 5−space. The quadric of PG(5, q)
denoted by the equation,

X0X3 +X1X4 +X2X5 = O

is called the Klein Quadric and is denoted by the symbol H5.

The Klein quadric, being a hyperbolic quadric in five dimensions, contains points, lines and planes. The two
equivalence classes are known as the Latin planes and the Greek planes. The points of PG(3, 2) are mapped to
the Latin Planes, whereas the planes are mapped to the Greek planes, [5,9]. Since PG(3, 2) have 15 points, 35
lines and 15 planes, the Klein Quadric H5 have 35 point, 15 the Latin Plane and 15 the Greek plane.

Fuzzy sets were introduced by Zadeh in the fundamental paper [12]. A fuzzy set λ of a set X is a function
λ : X → [0, 1]. We assume that the reader is familiar with the basic notions of fuzzy mathematics and get down
the following definitions and theorems.

Definition 2.3. (see [10]) Let λ : V → [0, 1] be a fuzzy set on V . Then we call λ a fuzzy vector space on V if and
only if λ(a.u+ b.v) ≥ λ(u) ∧ λ(v), ∀u, v ∈ V and ∀a, b ∈ K.
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Definition 2.4. (see [9]) Let λ is a fuzzy vector space on V . The subspace L, (linearly) generated by Supp(λ)
(sup p(λ) = {x ∈ V : λ(x) = 0}, is called the base vector space of λ. The dimension d(λ) of a fuzzy vector space
of V is the dimension of its base subspace.

Definition 2.5. (see [9]) If U is an i−dimensional subspace of V , and (λ,U) is a fuzzy vector space, then it is
called a fuzzy i−dimensional vector space on U . If i = 1, i.e. U is a vector line, then (λ,U) is a fuzzy vector line
on U , if i = 2, i.e. U is a plane, (λ,U) will be called a fuzzy vector plane on U . If i = n− 1, then (λ,U) is called a
fuzzy vector hyperplane on U .

Let V be an n−dimensional vector space over some field K, with n ≥ 2. Let L be a vector line of V , so L
is uniquely defined by some nonzero vector u. Let α be a vector plane of the n−dimensional vector space V
(n ≥ 3), then we know that α is uniquely defined by two linearly independent vectors u and v.

Theorem 2.1. (see[9]) If λ : L → [0, 1] is a fuzzy vector line on L, then λ(u) = λ(v), ∀u, v ∈ L\{o}, and λ(o) ≥ λ(u),
∀u ∈ L.

Theorem 2.2. (see [9]) If λ : α → [0, 1] is a fuzzy vector plane on α, then there exists a vector line L of α and real
numbers a0 ≥ a1 ≥ a2 ∈ [0, 1] such that λ is of the following form:

λ : α → [0, 1]
o → a0
u → a1 for u ∈ L\{o}
u → a2 for u ∈ α\L,

Definition 2.6. (see [9]) Suppose V is an n−dimensional vector space. A flag in V is a sequence of distinct,
non-trivial subspaces (U0, U1, ..., Um) such that Uj ⊂ Ui for all j < i < n− 1. The rank of a flag is the number of
subspaces it contains. A maximal flag in V is a flag of length n.

Theorem 2.3. (see [2]) Let V be a 4-dimensional vector space over some field K and λ : V → [0, 1] be a fuzzy vector
space on V . Then the fuzzy 4-dimensional vector space λ has exactly six kinds of fuzzy vector planes.

Theorem 2.4. (see [2]) Fuzzy 3−dimensional projective space λ′ from fuzzy 4−dimensional vector space λ over some
field K has exactly six kinds of fuzzy projective lines.

Theorem 2.5. (see [6]) Fuzzy 3−dimensional projective space λ′ from fuzzy 4−dimensional vector space λ over some
field K has exactly four kinds of fuzzy projective planes.

3. The images under the Klein mapping of the projectice 3-space order of 4

Let PG(3, 4) be a 3-dimensional projective space over a field GF (22) such that the points and planes are
represented by homogeneous coordinates using irreducible polynomial t2 + t+ 1 over GF (2). PG(3, 4) has 85
points, 357 lines and 85 planes. We will give the full list of points and lines of α−plane and β−plane with the
following propositions.

Proposition 3.1. The points of PG(3, 4) are mapped to α−planes in projective space PG(5, 4) via Klein mapping.

Proof. We prove for a point. The other proofs are similar. Let P = (0, 0, 0, 1) be a point in PG(3, 4).There are 21
lines through P . These lines with their Plücker coordinates listed below as li, i = 1 to 21.

l1(0, 0, 0, 0, 1, 0), l2(0, 0, 0, 1, 0, 0), l3(0, 0, 0, 1, 1, 0), l4(0, 0, 0, t
2, 1, 0),

l5(0, 0, 0, t, 1, 0), l6(0, 0, 1, 1, 1, 0}, l7(0, 0, 1, 1, 0, 0), l8(0, 0, 1, 1, t, 0),
l9(0, 0, 1, 0, t

2, 0), l10(0, 0, 1, 0, 1, 0), l11(0, 0, 1, t
2, 1, 0), l12(0, 0, 1, t, 1, 0),

l13(0, 0, 1, t
2, t, 0), l14(0, 0, 1, t, t

2, 0), l15(0, 0, 1, 0, 0, 0), l16(0, 0, 1, 0, t, 0),

l17(0, 0, 1, 1, t
2, 0), l18(0, 0, 1, t

2, 0, 0), l19(0, 0, 1, t, 0, 0), l20(0, 0, 1, t
2, t2, 0),

l21(0, 0, 1, t, t, 0)

under the Klein mapping these lines are points of PG(5, 4).We show that these 21 points of PG(5, 4) form a
projective plane in PG(5, 4). Let L1 be line through point l1l2. Equation of this line is;

(0, 0, 0, 0, 1, 0) + λ(0, 0, 0, 1, 0, 0)
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where λ = 1, t, t2. For λ = 1 we obtain the point l3(0, 0, 0, 1, 1, 0), for λ = t, t2 we obtain the points l5(0, 0, 0, t, 1, 0),
l4(0, 0, 0, t

2, 1, 0) respectively. The points l1, l2, l3, l4, l5 lie on the line L1. The complete list of lines and points;

Lines Points on the line
L1 l1, l2, l3, l4, l5
L2 l1, l6, l7, l8, l17
L3 l1, l9, l10, l15, l16
L4 l1, l11, l13, l18, l20
L5 l1, l12, l14, l19, l21
L6 l2, l6, l10, l11, l12
L7 l2, l7, l15, l18, l19
L8 l2, l8, l13, l16, l21
L9 l2, l9, l14, l17, l20
L10 l3, l6, l15, l20, l21
L11 l3, l7, l10, l13, l14
L12 l3, l8, l9, l12, l18
L13 l3, l11, l16, l17, l19
L14 l4, l6, l9, l13, l19
L15 l4, l7, l12, l16, l20
L16 l4, l8, l11, l14, l15
L17 l4, l10, l17, l18, l21
L18 l5, l6, l14, l16, l18
L19 l5, l7, l9, l11, l21
L20 l5, l8, l10, l19, l20
L21 l5, l12, l13, l15, l17

These 21 lines Li and 21 points li (i = 1 to 21)satisfy the projective plane axioms. So its a plane of PG(5, 4) that
is called α-plane of point P = (0, 0, 0, 1) in PG(3, 4).

Proposition 3.2. The planes of PG(3, 4) are mapped to β−planes in projective space PG(5, 4) via Klein mapping.

Proof. We prove for a plane. The other proofs are similar. Let P = [0, 0, 0, 1] be a projective plane in
PG(3, 4).There are 21 points and 21 lines of P in PG(3, 4). The points and lines with their Plücker coordinates
listed below as:
N1(0, 1, 0, 0), N2(0, 1, 0, 0), N3(0, 1, 0, 0), N4(0, 1, 0, 0), N5(0, 1, 0, 0),
N6(0, 1, 0, 0), N7(0, 1, 0, 0), N8(0, 1, 0, 0), N9(0, 1, 0, 0), N10(0, 1, 0, 0),
N11(0, 1, 0, 0), N12(0, 1, 0, 0), N13(0, 1, 0, 0), N14(0, 1, 0, 0), N15(0, 1, 0, 0),
N16(0, 1, 0, 0), N17(0, 1, 0, 0), N18(0, 1, 0, 0), N19(0, 1, 0, 0), N20(0, 1, 0, 0),
N21(0, 1, 0, 0)
and
L1(0, 0, 0, 0, 0, 1), L2(1, 0, 0, 0, 0, 1), L3(1, 0, 0, 0, 0, 0), L4(1, 0, 0, 0, 0, t

2),
L5(1, 0, 0, 0, 0, t), L6(0, 1, 0, 0, 0, 1), L7(0, 1, 0, 0, 0, 1), L8(0, 1, 0, 0, 0, t),
L9(0, 1, 0, 0, 0, t

2), L10(1, 1, 0, 0, 0, 0), L11(1, 1, 0, 0, 0, 1), L12(1, 1, 0, 0, 0, t
2),

L13(1, 1, 0, 0, 0, t), L14(1, t
2, 0, 0, 0, t), L15(1, t

2, 0, 0, 0, 1), L16(1, t
2, 0, 0, 0, 0),

L17(1, t
2, 0, 0, 0, t2), L18(1, t, 0, 0, 0, t

2), L19(1, t, 0, 0, 0, 1), L20(1, t, 0, 0, 0, t),
L21(1, t, 0, 0, 0, 0).
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Incidence relation for these points and lines are as follows:

Points Lines through the point
N1 L1, L2, L3, L4, L5

N2 L1, L6, L7, L8, L9

N3 L1, L10, L11, L12, L13

N4 L1, L14, L15, L16, L17

N5 L1, L18, L19, L20, L21

N6 L2, L6, L10, L14, L18

N7 L2, L6, L11, L15, L19

N8 L2, L8, L12, L16, L20

N9 L3, L9, L12, L14, L19

N10 L3, L6, L11, L17, L20

N11 L4, L6, L13, L16, L19

N12 L5, L6, L12, L15, L21

N13 L4, L8, L12, L14, L21

N14 L5, L9, L11, L16, L21

N15 L3, L7, L10, L16, L21

N16 L3, L8, L13, L15, L18

N17 L2, L9, L13, L17, L21

N18 L4, L7, L12, L17, L18

N19 L5, L7, L13, L14, L20

N20 L4, L9, L10, L15, L20

N21 L5, L8, L10, L17, L19

Under the Klein mapping γ these lines are points of PG(5, 4).We show that these 21 points of PG(5, 4) form a
projective plane in PG(5, 4). Let Lp

1 be line through points L1L2. Equation of this line is;

(0, 0, 0, 0, 0, 1) + λ(1, 0, 0, 0, 0, 1)

where λ = 1, t, t2. For λ = 1 we obtain the point L3(1, 0, 0, 0, 0, 0), for λ = t, t2 we obtain the points
L5(1, 0, 0, 0, 0, t), L4(1, 0, 0, 0, 0, t

2) respectively. The points L1, L2, L3, L4, L5 lie on the line Lp
1. Similarly we get

Lp
2, ...L

p
21.These 21 lines Lp

i and 21 points Li (i = 1 to 21) satisfy the projective plane axioms. So it is a plane of
PG(5, 4) that is called β-plane P = [0, 0, 0, 1] in PG(3, 4).

Theorem 3.1. The quadric Veronesean V4
2 can be embedded to Klein quadric with a linear transformation.

Proof. Let (u, v, w) be a point of PG(2, 4), the Veronese surface in PG(5, 4) has parametric equation

V4
2 = (u2, uv, uw,w2, vw, v2).

Veronese surface is embedded in H5 by the linear map;

Φ(X0, X1, X2, X3, X4, X5) = (X0, X1, X2, X3,−X4, X5 −X2).

Since H5 has equation
X0X3 +X1X4 +X2X5 = 0,

we obtain
H5(X0, X1, X2, X3,−X4, X5 −X2) = u2w2 − uv2w + uw(v2 − uw) = 0.

4. Fuzzy (n+ 1)−Dimensional Vector Space and Fuzzy n−Dimensional Projective Space

A general definition of fuzzy (n+ 1)−dimensional vector space (λ, V ) and fuzzy n−dimensional projective
space λ′ on V ′ are well-known [9]. Here, we restrict ourselves to the case a subspace should necessarily have
the same values in its points as the whole space.
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λ : V → [0, 1]
o → a0
u → a1 for u ∈ U1\{o}
u → a2 for u ∈ U2\U1

u → a3 for u ∈ U3\U2

...

...
u → an for u ∈ Un\Un−1

u → an+1 for u ∈ V \Un

(1)

with Ui an i−dimensional subspace of V , containing all Uj for j < i, and a0 ≥ a1 ≥ a2 ≥ ... ≥ an ≥ an+1 are reals
in [0, 1].

Suppose V ′ is the n− dimensional projective space corresponding to the (n+ 1)−dimensional vector space
V . Now, we give fuzzy n−dimensional projective space .λ′ on V ′

λ′ : V ′ → [0, 1]
q → a1
p → a2 for p ∈ U ′

1\{q}
p → a3 for p ∈ U ′

2\U ′
1

...

...
p → an for p ∈ U ′

n−1\U ′
n−2

p → an+1 for p ∈ V ′\U ′
n−1.

with q the projective point corresponding to the fuzzy vector line U1 and U ′
i the i−dimensional projective

space, corresponding to the vector space Ui+1. Then, the sequence (q, U ′
1, U

′
2, ..., V

′) is a maximal flag and
a1 ≥ a2 ≥ ... ≥ an+1 are reals in [0, 1].

5. Fuzzy Klein Quadric

Many techniques have been proposed to project the high-dimensional space into a low-dimensional space,
one of the most famous methods being principal component analysis. Conclusion, this paper presents a
research study on the fusion of the Klein quadric in 5−dimensional projective space. The fusion of the Klein
quadric is an important topic in the field of geometry and requires the utilization of different mathematical
tools. This study contributes to a better understanding of the geometric properties of the Klein quadric and the
discovery of new methods that can serve as foundations for various operations.

In this study, we first provide the fuzzy 5−dimensional projective space.

λ′ : PG(5, 2) → [0, 1]
q → a1
p → a2 for p ∈ U ′

1\{q}
p → a3 for p ∈ U ′

2\U ′
1

p → a4 for p ∈ U ′
3\U ′

2

p → a5 for p ∈ U ′
4\U ′

3

p → a6 for p ∈ PG(5, 2)\U ′
4

the sequence (q, U ′
1, U

′
2, ..., PG(5, 2)) is a maximal flag and a1 ≥ a2 ≥ ... ≥ a6 are reals in [0, 1].

Theorem 5.1. Let P be a 5−dimensional projective space over a finite field. The fuzzy projective space [P, λ′], λ′

: PG(5, 2) → [0, 1], with (q, U ′
1, U

′
2, ..., PG(5, 2)) a maximal flag in PG(5, 2) and a1 ≥ a2 ≥ ... ≥ a6 are reals in [0, 1],
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can be constructed from the following the points of fuzzyy Klein quadric λ
′′

:

λ
′′
: H5 → [0, 1]

q → a1
p → a2 for p ∈ U

′′

1 \{q}
p → a3 for p ∈ U

′′

2 \U
′′

1

p → a4 for p ∈ U
′′

3 \U
′′

2

p → a5 for p ∈ U
′′

4 \U
′′

3

p → a6 for p ∈ H5\U ′′

4

where q ⊆ U
′′

1 ⊆ U
′′

2 ⊆ U
′′

3 ⊆ U
′′

4 ⊆ H5 is a chain of subspaces of H5 such that U
′′

i stabilizes the [i, 5]-flag, for all
i ∈ {0, 1, 2, ..., 5}.

Proof. The quadric of PG(5, q) denoted by the equation,

X0X3 +X1X4 +X2X5 = O

is called the Klein Quadric and is denoted by the symbol H5. We want to classifie the points of the Klein quadric
with the following membership degrees. The base point q has a a0 membership degree, the remaining two
points of base line have a1 membership degrees, the remaining four points of base plane have a2 membership
degrees, four points have a3 membership degrees, 9 points have a4 membership degrees, and the remaining 15
points of H5 have a5 membership degrees.

We will consider an algorithm and fuzzy theory to improve the maximal flag of the Klein model. Now, we
provide an algorithm that contains some steps to complete the proof.

STEP1. Now, we determine the maximal flag covering the points of the Klein quadric and give an algoritym.
For this, in the first step, we select a base point on the Klein quadric H5.
In the second step, we take a base line passing through this base point.
In the third step, we consider a plane of H5 containing the base line selected in the second step. This plane is

called the Greek plane.
In the fourth step, outside the Greek plane, we choose a point on the Klein quadric. Using this point, we

determine the four points in the 3−dimensional subspace of the maximal flag, which consists of the 28 points
outside the Greek plane. Additionally, we establish the equation of the 3-dimensional space.

In the fifth step, we select a point on the Klein quadric that is not in the 3−dimensional space determined
previously. Using this point, we determine the equation of the 4-dimensional subspace of maximal flag and
identify its 9 points.

In the final step, we select a point on the Klein quadric that is not in the 4-dimensional space previously
determined. Using this point, we determine the equation of the 5-dimensional space in the maximal flag and
identify its remaining 15 points.

Exactly! Through the process of selecting points and determining the equations of the lower-dimensional
spaces within the Klein quadric, we establish the distribution of its 35 points into the subspaces of the maximal
flag. This provides valuable information about the geometric structure and arrangement of points in the Klein
quadric space.

STEP2. Thus, we obtain;
0-dimensional space: A point represented by "q" (base point)
1-dimensional space: A line represented by "U

′′

1 " (Base line passing through the base point)
2-dimensional space: A plane represented by "U

′′

2 " (The Greek plane containing the base line passing through
the base point).

3-dimensional space: A subspace represented by "U
′′

3 " (3-dimensional subspace consisting of the 28 points
outside the Greek plane).

4-dimensional space: A subspace represented by "U
′′

4 " (4-dimensional subspace consisting of a point outside
the 3-dimensional space and the remaining 9 points).

5-dimensional space: A subspace represented by "H5" (5−dimensional subspace consisting of a point outside
the 4-dimensional space and the remaining 15 points).

STEP3.These subspaces represent the arrangement of the 35 points in the Klein quadric space according to
the maximal flag.

The distribution of points forming the maximal flag is obtained as follows:
The base point q = (0, 0, 0, 1, 0, 0), the base line U

′′

1 = {(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 1, 0)},
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the base plane U
′′

2 = {(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0),
(0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 1, 0, 1, 0), (0, 0, 1, 0, 0, 0)},
U

′′

3 = U
′′

2 ∪ {(0, 1, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 1, 1, 1, 0, 0)}.
Here, we take a 3−space with the equation S3 = [x1, 0, 0, 0, 0, x6] of PG(5, 2) , which encompasses the Greek

plane U
′′

2 , is obtained as U
′′

3 = S3 ∩H5 and a 4−space with the equation S4 = [x1, 0, 0, 0, 0, 0] of PG(5, 2) , which
encompasses U

′′

3 , is obtained as U
′′

4 = S4 ∩H5.
One can easily calculate that the points of the Klein quadric are as follows: U

′′

3 \U
′′

2 has 4 points, U
′′

4 \U
′′

3 has
9 points, and H5\U ′′

4 has 15 points. This chain allows us to write λ
′′

as the following fuzzy Klein quadric on
PG(5, 2).

If we suppose that a0, a1, ..., a5 are mutually distinct, we can give the membership degrees the points of H5.
1. Put λ

′′
(q) = a0 ≥ λ

′′
(p), ∀p ∈ H5.

2. We chose two points in the base line U
′′

1 , so that every point p ∈ U
′′

1 can be written as a linear combination.
We see that λ

′′
(p) = a0 ∧ a1 for p ∈ U

′′

1 .
3. We chose three points in the base plane U

′′

2 , so that every point p ∈ U
′′

2 can be written as a linear
combination. We see that λ

′′
(p) = a1 ∧ a2 for p ∈ U

′′

2 .
4. We chose a point (0, 1, 0, 0, 0, 0) in the U

′′

3 = S3 ∩H5, so that λ
′′
(p) = a2 ∧ a3 for p ∈ U

′′

3 .
5.We chose a point (0, 0, 0, 0, 0, 1) in the U

′′

4 = S4 ∩H5, so that λ
′′
(p) = a3 ∧ a4 for p ∈ U

′′

4 .
6. the remaining 15 points of H5\U ′′

4 will have the same a5−membership degree.
Therefore, the membership degrees of the points of the Klein quadric and the fuzzy version of the Klein

quadric are obtained as follows:
λ

′′
: H5 → [0, 1]

q → a0
p → a1 for p ∈ U

′′

1 \{q}
p → a2 for p ∈ U

′′

2 \U
′′

1

p → a3 for p ∈ U
′′

3 \U
′′

2

p → a4 for p ∈ U
′′

4 \U
′′

3

p → a5 for p ∈ H5\U ′′

4

the sequence (q, U
′′

1 , U
′′

2 , U
′′

3 , U
′′

4 ,H5) is a maximal flag and a0 ≥ a2 ≥ ... ≥ a5 are reals in [0, 1].
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E-MAIL: zakca@ogu.edu.tr
ORCID ID:0000-0001-6379-0546

ABDILKADIR ALTINTAŞ
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