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Abstract
The aim of this paper is to investigate the existence of pseudo-solutions for a First- order multivalued
differential equation with nonlocal integral boundary condition in a Banach space.

Our approach is based on the use of the technique of measures of weak noncompactness and a fixed-

point theorem of Mdnch type.
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1. Introduction

There are many problems in applied mathematics such as: control theory, economical systems,
Hamiltonian system, that lead us to the study of differential inclusions

x'(t) € F(t,x(t))
where F(.,.)is a set valued map (see [3] and [11] for instance and references there in).

The main purpose of this paper is to establish the existence of pseudo-solutions to the nonlocal
boundary value problems of integral type

x'(t) € F(t,x(t)), tel=][0,T] (1
T

x(0) + uf x(s)ds = x(T) (2)

0

where F: 1 X E — P(E) is a multivalued map, E is a Banach space with the norm . ||,

P (E) is the family of all subsets of E and u € R*



Nonlocal problems for ordinary differential equations (single valued F ) have been investigated
by several authors (see for instance [12] and references therein), also classical initial values
problems for multivaled differential equations have been considered by many authors (see [15])
and nonlocal differential inclusions have been studied by many authors (see for instance [9] and
the references therein).

Boundary value problems with integral boundary conditions constitute a very interesting and
important class of problems. They include two, three, multi-point and nonlocal boundary value
problems as special cases. Integral boundary conditions are often encountered in various
applications, it is worthwhile mentioning the applications of those conditions in the study of
population dynamics [8] and cellular systems [1]. Moreover, boundary value problems with
integral boundary conditions have been studied by a number of authors such as Arara and
Benchohra [2], Benchohra et al [5 ]- [7], Infante [14] and references therein.

In our investigation, we apply the method associated with the technique of measures of weak
noncompactness and fixed point theorem of Mdnch type.

The remainder of this paper is organized as follows. In section 2, we present some basic

definitions and notations about pseudo-solutions and multivalued map. In section 3, we give
main results for nonlocal boundary value problem for differential inclusions of integral type.

2. Preliminaries
In this section, we introduce notations, definitions and preliminary facts that used in the

remainder of this paper. Let E be a real Banach space with the norm ||. || and dual space E* , let
C(I; E) be the Banach space of all continuous functions from I to E with the norm

Iyllo = sup{lly(®Il; 0<t<T}

and let L'(I; E) denote the Banach space of functions y:I — E that are lebesgue integrable
with norm

T
Iyl = f ly@®)llde
0

let L* (I, E) to be the Banach space of bounded measurable functions y: I — E equipped with
the norm

Iyl = infl{c > 0; lly@®ll <c, a.e.t €}
Also let P (E) is the set of all nonempty subsets of E.
P.,(E)={Y € P(E); Y isclosed}.
P.,(E) ={Y € P(E); Y is convex}.
P, (E) ={Y € P(E); Y is bounded}.

Py (E) ={Y € P(E); Y isclosed and convex}.



Pepev(E) ={Y € P(E); Y is compact and convex}.

Definition 2.1: A set-valued function F: E = P(E) is called convex, closed and compact valued
respectively if F (x) is convex, closed, compact respectively for all x € E.

Definition 2.2: A set-valued function F: E — P(FE) is called bounded valued on bounded sets
B if F(B) = Uyeg F(x) is bounded in E for all B € P,;(E) or equivalently;

suprB{sup{IuI; ueE F(x)}} < oo,

Definition 2.3: A set-valued function F: E — P(E) is called upper semicontinuous (u.s.c) on E
if for each x, € E the set F (x,) is nonempty closed subset of E and if for each open set N
containing F(x,), there exist an open neighborhood N, of x, such that F(N,) S N. In other
words, F is u.s.c if the set F"1(4) = {x € E: F(x) € A} is open in E for every open set 4 in
E. Orif every closed subset A of E the set FT(A) ={x € E: ANF(x) # @}isclosedinE.

Definition 2.4: A set-valued function F: E — P(E) is called sequentially weakly upper semi-
continuous (w.u.s.c) if F is u.s.c with respect to the weak topology of E.

Definition 2.5: A set-valued function F: [ — P(E) is said to be measurable if for any t € I, the
function ¢ » d(x, F(t)) = inf{lx —ul: u € F(t)} is measurable. Or for every closed set
M, F~1(M) is measurable.

Definition 2.6: x(.): I — E is called weakly continuous (measurable) at t, € [ if for every ¢ €
E*, o (x(.)) is continuous (measurable) at t,.

Definition 2.7: A family G = {f;, i € J(index)} is said to be weakly equicontinuous if given
£>0,0 €E* there exists § >0 such that for each t,s € if |[t—s|<§ then

lo(fi(t) — fi(s))| < eforalli €].

Definition 2.8: The function x(.): I — E is said to be Pettis integrable on I if and only if there
is an element x; € E corresponding to each J € I such that (p(x]) = f] (p(x(s))ds forall p €
E* where the integral in the right is assumed to exist in the sense of Lebesgue. By definition

X, =f] x(s)ds.

We denote P1(I) the space of Pettis integrable functions on /.
Se(x) = {f € PX(I): f € F} denotes the set of Pettis selections functions of F , it is clear that

Sp(x) D Spx = {f € LX(I): f € F}.

Definition 2.9: Let Q5 be the family of bounded subsets of E and B; be the unit ball in E. The
De Blasi measure of weak noncompactness is the map

B: QE 4 [0, +00]
defined by



B(X) = inf{e > 0: there exists a weakly compact subset Q of E such that X c Q + €B,}

Lemma 2.10: Let A, B be bounded subsets of E and {x,}, {y,,} be bounded sequences in E.
Then:

1- A € Bthen B(A) < B(B),
2- B(A) = B(AY) where AW denotes the weak closure of 4,

3- B(A) = 0 if and only if A¥ is weakly compact,

4- B(AU B) = max(B(A),B(B)),

5- B(A) = B(Co(A)),

6- B(A+B) < B(A) + B(B),
7- B{xn}) = Byn}) < B{xn = yu}),
8- L(x+ A) = B(A) where x EE,

9- B(tA) =tB(A), t = 0.

Proof. Proof See [10]

Proposition 1: Let E' be a normed space and element x, # 0. Then there exists ¢ € E* with
llpll = 1 and @(xo) = lxoll-

Proof. See [19] (Chapter IV, Corollary 2).

Definition 2.11: A function x(.) € C(I,E) is said to be weakly differentiable if @ (x(.)) is
derivable for every ¢ € E*.

Definition 2.12: A function x(.) € C(/, E) is said to be pseudo-differentiable on I to a function
y:1 - E if for every ¢ € E* there exists a null set N' (i.e. mes(N,)=0) such that the real
function ¢t = (¢, x(t)) is differentiable on I'\N,, and

d
E(q),x(t)) = (¢,y(t)), t€\N,,

The function y is called a pseudo-derivative of x and it will denoted by x'(.) or by % x(.).

In the other words (¢, x(.)) differentiable a.e. on I.

Definition 2.13: A function x(.): I — E is said to be a pseudo-solution of problem (1)-(2) if it
satisfies the following conditions
1- x(.) is absolutely continuous,



2- x(0) + ,ufoTx(s)ds = x(T),
3- For each ¢ € E* there exists a null set N, such that for each t € I\N,,

o(x'(®) = p(v(1)
Where v(t) € F (t,x(t)), t € I and ' denotes a pseudo-derivative.

In other words by a pseudo-solution of the problem (1) - (2) we will understand an absolutely
continuous function x(.) such that x(0) + u fOTx(s)ds = x(T) and for each ¢ € E*, x(.)
satisfies the following:

(p(x’(t)) = <p(v(t)), a.e. t€l

where v(t) € F(t,x(t)), tel.
Remark 2.14: If g is Pettis integrable and x(t) = [ Ot g(s)ds,then x(.) is weakly differentiable

and x'(t) = g(t).

If x(.):1 — E is a function weakly differentiable on I, then we have

d !
E((p,x(t)) = ((p,x (t)), tel

for every ¢ € E™.

Definition 2.15: A function F: E — P, ., (E) has a weakly sequentially closed graph if for any
sequence (x,,y,) € E X E,y, € F(x,) forn € {0,1,2,3, ... } with x,,(t) — x(t) foreach t € I
and y,(t) = y(t) foreach t € I, then y € F(x), where — denote a weak convergence.

Lemma 2.16: If x(.) is Pettis integrable and h(.) is a measurable and essentially bounded real
valued function, then x(.)h(.) is Pettis integrable.

Next, we shall use the following fundamental theorem

Theorem 2.17: (Mdnch fixed point theorem) Let E be a Banach space with Q a nonempty,
bounded, closed, convex, equicontinuous subset of C(/, E).

Suppose N: Q — P ,,(Q) has a weakly sequentially closed graph. If the implication
V =tonv(N(V) u{0}) = V is relativelly weakly compact  (¥)

holds for every subset IV of @, then the operator inclusion x € N(x) has a solution in Q.



3. The main result
In this section we give the state and the proof of our result.
Firstly we have the following lemma
Lemma 3.1: Let h(.) € P1(I) be a given function, then the boundary value problem
x'(t)=h(t), tel=][0,T] 3)

T

x(0) + uj x(s)ds = x(T) 4)

0

has a solution given by

T
x(t) =f G(t,s)h(s)ds
0

where G (.,.) is the function defined by the formula:

S 42 0<s<t
T uT =9
GEs)=1_r-95 1
N t<s<T
T +uT S

Proof: we can reduce the equation (3) to an equivalent integral equation

x(t) = x(0) + fth(s)ds
0

By integration we have (using Fubini’s integral theorem)

fo(s)ds = fo(O)ds + fT(fSh(T)dr)ds =Tx(0) + fT(deS)h(T)dT

0

T
=Tx(0) + f (T — 1)h(r)dt
0
applying the boundary condition (4), we get:

T T
/,tf x(s)ds = uTx(0) + ,uj (T — 1h(t)dt

this implies that

T
x(T) — x(0) = uTx(0) + uj (T —t)h(t)dt
0



hence

T T
%(0) + f h(s)ds — x(0) = uTx(0) + f (T — Dh()dr

therefore

1 T T
x(0) = u_T Uo h(s)ds — ujo (T — s)h(s)dsl

hence

x(t) = .l% U;Th(s)ds — ufOT(T — s)h(s)dsl + foth(s)ds

1

‘ 1 (7 t
— ,u_TfO (1 — (T = s))h(s)ds + ﬁ-ft (1 — (T —s))h(s)ds + fo h(s)ds

This implies that

T
x(t) =f G(t,s)h(s)ds
0

which completes the proof.

Remark 3.2: The function t — fOTIG(t, s)|ds is continuous on I, and hence is bounded, let

T
G=sup{j |G(t,s)|ds; tEI}.
0

Now, we are in position to state and prove our existence result for the problem (1)-(2), firstly
we need the following assumptions;

a) The set-valued function F: I X E = P, .,(E) is measurable in the first variable and x -
F(t, x) is sequentially weakly upper semicontinuous a.e. t € I,

b) There exist ¢ € L*(I,R,) and a continuous nondecreasing function pg: [0, +oo[ —
[0, + o[ such that

I1F(t, )l = sup{lv]; v e F(t,x)} < @r(©)pp(lx]D,
c) There exists a constant R > 0 such that

R
— >
GllopllLopr(R)

d) For each bounded set Q € E and each t € I,

)



BF(t, Q) < pr(OBQ).
Theorem 3.3: Assume that the assumptions a)-b) are satistied. If
lorll=G < 1,
then, the boundary value problem (1) - (2) has at least one solution.

Proof: From the assumptions a)-b) we deduce that there exists a petties selection function
fil > E of F (ie. f(t) € F(t,x(t)), Vt € ).

Now, we transform the problem (1) - (2) into fixed point problem by considering the
multivalued operator N: C(I, E) — P ,(C(I, E)) defined by

N(x) = {h € C(I,E); h(t) = fTG(t, s)f(s)ds,f € SF(x)},
0

Firstly, we show that the operator N makes sense, to see this, let x € C(I, E), by a)-b) there
exists a pettis integrable function f: I — E such that f(t) € F(t,x(t)) fora.e. t € I.

Since G(t,.) € L®, then G(t,.)f(.) is pettis integrable and thus N is well defined.

Let R > 0, and consider the set
Q= {x €CLE); lxllw <R and ||lx(t;) — x (&)l
T
< “(pF”prF(R)f |G(t1,5) — G(ty,8)lds forty,t, € 1}-
0

Notice that Q is a closed, convex, bounded and equicontinuous subset of C (I, E'). We shall
show that N satisfies the assumptions of Monch fixed point theorem, to see this we have
several steps.

Stepl: N(x) is convex for each x € Q.

Indeed, if y; and y, belong to N (x), then there exists pettis integrable functions f;, f, where
f1(t), fo(t) € F(t,x(t)) such that for all t € [ we have

T
y;(t) =.f G(t,s)fi(s)ds, i=1.2.
0
Let 0 < a < 1, then, for each t € I, we have
T
@+ (1= @)® = | GENAE + (1 - DfE)ds,
0

since F has convex values, af;(t) + (1 — a)f,(t) € F(t, x(t)), and we have
(ay; + (1 —a)y,) € N(x).



Step 2: N maps Q into Q.

To see this, take u € NQ, then there exists x € Q with u € N(x) and there exists a pettis
integrable function f: 1 — E with F(t, x(t)) for a.e. t € I, without loss of generality, we
assume u(s) # 0,Vs € I, then there exists ¢ € E* with ||¢|| = 1 and go(u(s)) = |lu(s)ll,
hence, for each fixed t € I, we have

T T
)l = 9(u(®) = o( f G(t,5)f (s)ds) < f 166 )o(f())ds < Ellopllpr (i)
0 0

therefore
llullo <R

Now, suppose that u € NQ and t;, t, € I with t; < t, so that u(t,) — u(t;) # 0, then, there
exists @ € E* such that

T
lu(ts) — u(e)l = o f (G(t5,5) — G(tr, )f (s)ds)
0
< f 16(ts,5) — Gty HIFSNlds < lgpllopr(R) f 16 (ts,5) — G(ty,5)]ds
0 0

therefore, u € Q.
Step 3: N has a weakly sequentially closed graph.
Let (x,, Yn)n be asequence in Q X Q with x,,(t) — x(t) for each t € I, y, (t) = y(t) for

eacht € I, and y, € N(x,) forn € {0,1,2, ... }. We shall show that y € N(x). By the relation
Yn € N(x,,), we mean that there exists f,, € Sp(x,,) such that

T

Yult) = f G(t, $)fu(s)ds,

0

we must show that there exists f € Sg(x) such that for each t € I,

T
or f G(t,5)f (s)ds,
0

since F has compact values (so weakly compact), then, there exists a subsequence f;,, such
that

fr @) = f(&) asmy > 0

and

fu® € F (6,2, () ae. tel



we have also F(t,.) has a weakly sequentially closed graph (because F(t,.) is sequentially
weakly upper semicontinuous), f(t) € F(t,x(t)) the Lebesque Dominated convergence
theorem for pettis integral then implies that for each ¢ € E* we have

0on®) =0 (Jy 6t )f(5)ds) > o(fy G(t,5)f(s)ds)

i.e.,y,(t) = N(x)(t)
we can repeat this for each t € I, so y(t) € N(x)(¢t).

Step 4: The implication (*) holds.

Let V be a subset of Q such that V = conv(N (V) U {0}), clearly, V(t) c conv(NV(t) U {0})
forall t € I. Also NV (t) € NQ(t), for each t € I, and is bounded in P(E). By the properties
of the measure 5, we have

BT(V(t)) < B(conv(NV(t) U {0})) = B(NV (D))
= ﬁ(f G(t,s)f(s)ds; f(©) €F(t,x(t)), x€V,tel)

T
< f 1G(t,5)|0x(s)B(V(s))ds
0

and therefore

T
ol < 0l j or(s)ds

0
where [|V]|e = sup{ﬂ(V(t)), t e I}.
This means that

Ivllel1 = ll@pll =Gl < 0

and hence ||v||, = 0, thus, V is weakly relatively compact. Applying Moénch fixed point
theorem, we deduce that N has a fixed point that is a solution of the problem (1) - (2).
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