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Research Article 

Abstract − One of the prominent nonlinear partial differential equations in mathematical physics is the 

Clannish Random Walker’s Parabolic (CRWP) equation. This study uses Residual Power Series Method 

(RPSM) to solve the time fractional CRWP equation. In this equation, the fractional derivatives are 

considered in Caputo’s sense. The effectiveness of RPSM is illustrated with graphical results. The series 

solutions are utilized to represent the approximate solutions. Besides, the approximate solutions found by 

the suggested method ensure good accuracy when compared with the exact solution. Moreover, RPSM 

efficiently analyzes complex problems that emerge in the related mathematical and scientific fields. 

Keywords Fractional partial differential equation, Caputo derivative, Clannish Random Walker’s Parabolic equation, residual 

power series method, approximate solution 
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1. Introduction 

The Clannish Random Walker’s Parabolic (CRWP) equation in the form 

𝜕𝑢

𝜕𝑡
−
𝜕𝑢

𝜕𝑥
+ 2𝑢

𝜕𝑢

𝜕𝑥
+
𝜕2𝑢

𝜕𝑥2
= 0 

is a mathematical model of physical problems appearing in various scientific fields such as mathematical 

biology and physics. This equation describes the behavior of two types that carry out a concurrent one-

dimensional random walk defined by the condensation of the clannishness of members as the density of another 

increases. In the literature, various methods, such as the improved tanh function method [1], homotopy 

perturbation method [2], Jacobi elliptic function method [3], unified rational expansion method [3], and a direct 

rational exponential scheme [4], have been used to solve the CRWP equation. 

Fractional calculus is a quickly developing branch of mathematics with various applications in numerous 

chemistry, physics, biology, and engineering fields such as thermodynamics, viscoelasticity, electricity, 

aerodynamics, fluid dynamics, control theory, turbulence, signal processing, and others [5-10]. Thus, finding 

exact and approximate solutions to fractional differential equations is important in scientific studies. An 

important one of these fractional differential equations is the time fractional CRWP equation. 

Recently, many methods, such as the adapted (𝐺′ 𝐺⁄ )-expansion scheme [11,12], the (𝐺′ 𝐺⁄ , 1/𝐺)-expansion 

method [12,13], the Kudryashov method [14], the improved tan(𝑄(𝜉)/2)-expansion method [15], the 

generalized homotopy analysis method [16], the modified Kudryashov method [17], the extended 

exp(−𝜑(𝜉)/2)- expansion method [18], the modified extended auxiliary mapping method [19], the modified 
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F-expansion method [19, 20], the modified (𝐺′ 𝐺2⁄ )-expansion method [20], the power series method [21], 

the natural decomposition method [22], the energy inequality method [23], and the modified trial equation 

method [24], have been used to find solutions to the fractional CRWP equation. Residual Power Series Method 

(RPSM) has not yet been investigated to solve the time fractional CRWP equation in the literature. Thus, the 

main focus of this paper is to utilize RPSM to calculate the approximate solutions of the time fractional CRWP 

equation 

𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥(𝑥, 𝑡) = 0,    0 < 𝜇 ≤ 1 (1) 

where 𝐷𝑡
𝜇

 is the fractional derivative operator in the Caputo sense. Abu Arqub [25] suggested RPSM as a 

useful method for obtaining coefficients of the power series solution in 2013. RPSM has numerous benefits 

for solving partial differential equations compared to other methods [26]. RPSM provides an easy and effective 

power series solution for various equations without linearization, discretization, or perturbation. This method 

does not need a recursion relationship and does not require comparing the coefficients of the corresponding 

terms. The suggested method yields the solutions as a convergence series. With this method, infinite series 

solutions can be gained by iterated operations. Besides, RPSM is unaffected by rounding errors in computation 

and does not require a lot of computer memory and time. Moreover, there is no need for any transformation 

with this method. Furthermore, RPSM can be implemented directly into the present equation by choosing an 

initial guess approximation. In literature, RPSM has been used to find power series solutions for different 

problems, such as those provided in [27-44]. 

The organization of the study is as follows: Section 2 provides some definitions and theorems for the Caputo 

derivative and the fractional power series. Section 3 presents RPSM for the approximate solutions of nonlinear 

fractional differential equations. Section 4 applies the proposed method for the fractional CRWP equation 

solutions and exhibits the suggested method’s effectiveness with table and graphics. Finally, the last section 

contains the concluding remarks. 

2. Preliminaries 

Many fractional derivative definitions, such as Riemann-Liouville, Caputo, Grunwald-Letnikov, Marchaud, 

Weyl, and Hadamard fractional derivatives, have been used in scientific studies. In this section, the Caputo 

derivative is considered because the initial conditions of the fractional partial differential equations with the 

Caputo derivative have the common form of the integer order partial differential equations, and the derivative 

of the constant is zero. 

Definition 2.1. [45] The time-fractional derivative in Caputo sense is described as 

𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) =

{
 
 

 
 1

Γ(𝑚 − 𝜇)
∫(𝑡 − 𝜏)𝑚−1−𝜇

𝜕𝑚𝑢(𝑥, 𝜏)

𝜕𝜏𝑚
𝑑𝜏

𝑡

0

, 𝑚 − 1 < 𝜇 < 𝑚

𝜕𝑚𝑢(𝑥, 𝑡)

𝜕𝑡𝑚
, 𝑚 = 𝜇 ∈ ℕ

 

Definition 2.2. [46] The fractional power series about 𝑡0 is defined as 

∑ 𝑐𝑚(𝑡 − 𝑡0)
𝑚𝜇 =

∞

𝑚=0

𝑐0 + 𝑐1(𝑡 − 𝑡0)
𝜇 + 𝑐2(𝑡 − 𝑡0)

2𝜇 +⋯ ,    0 ≤ 𝑚 − 1 < 𝜇 ≤ 𝑚    and    𝑡 ≥ 𝑡0 

Here, 𝑐𝑚 are constants, and 𝑡 is a variable. 
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Theorem 2.1. [46] Suppose that ℎ is a fractional power series representation about 𝑡0 of the manner  

ℎ(𝑡) = ∑ 𝑐𝑚(𝑡 − 𝑡0)
𝑚𝜇

∞

𝑚=0

,    0 ≤ 𝑚 − 1 < 𝜇 ≤ 𝑚    and    𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅 

When 𝐷𝑚𝜇ℎ(𝑡) are continuous on (𝑡0, 𝑡0 + 𝑅),  then coefficients 𝑐𝑚 are given as 

𝑐𝑚 =
𝐷𝑚𝜇ℎ(𝑡0)

Γ(1 + 𝑚𝜇)
,    𝑚 ∈ {0,1,2,⋯ } 

where 𝑅 is the radius of convergence and 𝐷𝑚𝜇 = 𝐷𝜇𝐷𝜇⋯𝐷𝜇⏟        
𝑚 𝑡𝑖𝑚𝑒𝑠

. 

Theorem 2.2. [46] Suppose that 𝑢(𝑥, 𝑡) has a multivariate fractional power series representation at 𝑡0 of the 

form 

𝑢(𝑥, 𝑡) = ∑ ℎ𝑚(𝑥)(𝑡 − 𝑡0)
𝑚𝜇

∞

𝑚=0

,    𝑥 ∈ 𝐼,    0 ≤ 𝑚 − 1 < 𝜇 ≤ 𝑚,    and    𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅 

If 𝐷𝑡
𝑚𝜇
𝑢(𝑥, 𝑡) are continuous on 𝐼 × (𝑡0, 𝑡0 + 𝑅), then ℎ𝑚(𝑥) are given as 

ℎ𝑚(𝑥) =
𝐷𝑡
𝑚𝜇
𝑢(𝑥, 𝑡0)

Γ(1 + 𝑚𝜇)
,    𝑚 ∈ {0,1,2,⋯ } 

Here, 𝐷𝑡
𝑚𝜇

=
𝜕𝑚𝜇

𝜕𝑡𝑚𝜇
=

𝜕𝜇

𝜕𝑡𝜇
 
𝜕𝜇

𝜕𝑡𝜇
⋯

𝜕𝜇

𝜕𝑡𝜇
 and 𝑅 = min

𝑐∈𝐼
𝑅𝑐 that 𝑅𝑐 is the radius of convergence of the fractional 

power series 

∑ ℎ𝑚(𝑐)(𝑡 − 𝑡0)
𝑚𝜇

∞

𝑚=0

 

3. General Structure of RPSM 

In this section, to find the approximate solutions of nonlinear fractional differential equations with the 

suggested method, we investigate the following general nonlinear fractional differential equation with the 

initial condition 

𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) = 𝑅(𝑢) + 𝑁(𝑢),    0 < 𝜇 ≤ 1,    𝑡 > 0,    and    𝑢(𝑥, 0) = ℎ(𝑥) (2) 

where  𝑅(𝑢) is the linear term and 𝑁(𝑢) is the nonlinear term. Here, 𝐷𝑡
𝜇

 is the fractional derivative operator 

in the Caputo sense. The proposed method suggests the solution for Equation 2 as a fractional power series, 

𝑢(𝑥, 𝑡) = ∑ ℎ𝑚(𝑥)
𝑡𝑚𝜇

Γ(1 + 𝑚𝜇)

∞

𝑚=0

,    𝑥 ∈ 𝐼,    0 < 𝜇 ≤ 1,    and    0 ≤ 𝑡 < 𝑅 

Then, the 𝑢𝑘(𝑥, 𝑡) is given as 

𝑢𝑘(𝑥, 𝑡) = ∑ ℎ𝑚(𝑥)
𝑡𝑚𝜇

Γ(1 + 𝑚𝜇)

𝑘

𝑚=0

,    𝑥 ∈ 𝐼,    0 < 𝜇 ≤ 1,    and    0 ≤ 𝑡 < 𝑅 (3) 

The 0-th RPSM approximate solution of 𝑢(𝑥, 𝑡) is expressed as 

𝑢0 = ℎ0(𝑥) = 𝑢(𝑥, 0) = ℎ(𝑥) 

Equation 3 can be given as  
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𝑢𝑘(𝑥, 𝑡) = ℎ(𝑥) + ∑ ℎ𝑚(𝑥)
𝑡𝑚𝜇

Γ(1 + 𝑚𝜇)

𝑘

𝑚=1

,    𝑥 ∈ 𝐼,    0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑅,    and    𝑘 ∈ {1,2,⋯ } (4) 

The residual function for Equation 2 is stated by 

Res𝑢(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) − 𝑅(𝑢) − 𝑁(𝑢) 

Hence, Res𝑢,𝑘 is expressed as 

Res𝑢,𝑘(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢𝑘(𝑥, 𝑡) − 𝑅(𝑢𝑘) − 𝑁(𝑢𝑘) (5) 

As can be seen in [25,26, 47-49], it is obvious that Res𝑢(𝑥, 𝑡) = 0 and lim
𝑘→∞

Res𝑢,𝑘(𝑥, 𝑡) = Res𝑢(𝑥, 𝑡), for 𝑡 ≥

0 and 𝑥 ∈ 𝐼. Since the fractional derivative of a constant function is zero in the Caputo sense, we express 

𝐷𝑡
𝑚𝜇
Res𝑢(𝑥, 𝑡) = 0. Besides, the fractional derivatives of Res𝑢(𝑥, 𝑡) and Res𝑢,𝑘(𝑥, 𝑡) are matching at 𝑡 = 0 

for 𝑚 ∈ {0,1,⋯ , 𝑘}; that is 𝐷𝑡
𝑚𝜇
Res𝑢(𝑥, 0) = 𝐷𝑡

𝑚𝜇
Res𝑢,𝑘(𝑥, 0) = 0, 𝑚 ∈ {0,1,⋯ , 𝑘}. 

To gain the coefficients ℎ𝑚(𝑥) with 𝑚 ∈ {1,2,⋯ , 𝑘} in Equation 4, we substitute the 𝑢𝑘(𝑥, 𝑡) in Equation 5 

and calculate the 𝐷𝑡
(𝑘−1)𝜇

 of Res𝑢,𝑘(𝑥, 𝑡) for 𝑘 ∈ {1,2,⋯ } at 𝑡 = 0. Then, we solve the following algebraic 

equation  

𝐷𝑡
(𝑘−1)𝜇

Res𝑢,𝑘(𝑥, 0) = 0,    0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑅,    𝑡 = 0,    and    𝑘 ∈ {1,2,⋯ } (6) 

4. Implementation of RPSM for the Solution of the Fractional CRWP Equation 

In this section, the suggested method is used to determine the RPSM solutions for Equation 1 subject to the 

initial condition 

𝑢(𝑥, 0) =
1

2
+

1

1 + cosh𝑥 − sinh𝑥
 (7) 

Here, 𝑢(𝑥, 𝑡) =
1

2
+

1

1+cosh(𝑥−𝑡)−sinh(𝑥−𝑡)
 is the exact solution of Equation 1 for 𝜇 = 1 [14]. We express the 

residual function of Equation 1 as 

Res𝑢(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) 

Hence, Res𝑢,𝑘(𝑥, 𝑡) is given as 

Res𝑢,𝑘(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢𝑘(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢𝑘(𝑥, 𝑡) + 2𝑢𝑘(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢𝑘(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢𝑘(𝑥, 𝑡) (8) 

We investigate 𝑘 = 1 in this equation to determine the ℎ1(𝑥) and gain 

Res𝑢,1(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢1(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢1(𝑥, 𝑡) + 2𝑢1(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢1(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢1(𝑥, 𝑡) 

From Equation 4 at 𝑘 = 1, 

𝑢1(𝑥, 𝑡) = ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
 

Therefore, 
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Res𝑢,1(𝑥, 𝑡) = ℎ1(𝑥) − (ℎ
′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
) + 2 (ℎ(𝑥) + ℎ1(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
) (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
) 

 +ℎ′′(𝑥) + ℎ1
′′(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
 

We gain Res𝑢,1(𝑥, 0) = 0 from Equation 6. Hence, 

ℎ1(𝑥) =
1

−2(1 + cosh𝑥)
 

Therefore, 

𝑢1(𝑥, 𝑡) =
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
 

To determine ℎ2(𝑥), we investigate 𝑘 = 2 in Equation 8 and gain 

Res𝑢,2(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢2(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢2(𝑥, 𝑡) + 2𝑢2(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢2(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢2(𝑥, 𝑡) 

From Equation 4 at 𝑘 = 2, 

𝑢2(𝑥, 𝑡) = ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
 

Thus, 

Res𝑢,2(𝑥, 𝑡) = ℎ1(𝑥) + ℎ2(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
− (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
) 

 +2(ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
)(ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
) 

 +ℎ′′(𝑥) + ℎ1
′′(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′′(𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
 

We gain 𝐷𝑡
𝜇
Res𝑢,2(𝑥, 0) = 0 from Equation 6. Thus, 

ℎ2(𝑥) = −2csch
3𝑥 sinh4 (

𝑥

2
) 

Hence,  

𝑢2(𝑥, 𝑡) =
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
− 2csch3𝑥 sinh4 (

𝑥

2
)

𝑡2𝜇

Γ(1 + 2𝜇)
 

To find ℎ3(𝑥), we investigate 𝑘 = 3 in Equation 8 and gain 

Res𝑢,3(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢3(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢3(𝑥, 𝑡) + 2𝑢3(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢3(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢3(𝑥, 𝑡) 

From Equation 4 at 𝑘 = 3, 

𝑢3(𝑥, 𝑡) = ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3(𝑥)

𝑡3𝜇

Γ(1 + 3𝜇)
 

Hence, 
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Res𝑢,3(𝑥, 𝑡) = ℎ1(𝑥) + ℎ2(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ3(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
− (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3

′ (𝑥)
𝑡3𝜇

Γ(1 + 3𝜇)
) 

 +2(ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3(𝑥)

𝑡3𝜇

Γ(1 + 3𝜇)
) (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3

′ (𝑥)
𝑡3𝜇

Γ(1 + 3𝜇)
) 

 +ℎ′′(𝑥) + ℎ1
′′(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′′(𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3

′′(𝑥)
𝑡3𝜇

Γ(1 + 3𝜇)
 

We gain 𝐷𝑡
2𝜇
Res𝑢,3(𝑥, 0) = 0 from Equation 6. Thus, 

ℎ3(𝑥) = −
1

8
(−2 + cosh𝑥)sech4 (

𝑥

2
) 

Therefore, 

𝑢3(𝑥, 𝑡) = 
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
− 2csch3𝑥 sinh4 (

𝑥

2
)

𝑡2𝜇

Γ(1 + 2𝜇)
 

 −
1

8
(cosh𝑥 − 2)sech4 (

𝑥

2
)

𝑡3𝜇

Γ(1 + 3𝜇)
 

Utilizing the same operation for 𝑘 = 4, 

ℎ4(𝑥) = −
1

16
sech5 (

𝑥

2
)(−11sinh (

𝑥

2
) + sinh (

3𝑥

2
)) 

and 

𝑢4(𝑥, 𝑡) = 
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
− 2csch3𝑥 sinh4 (

𝑥

2
)

𝑡2𝜇

Γ(1 + 2𝜇)
 

 −
1

8
(cosh𝑥 − 2𝑥)sech4 (

𝑥

2
)

𝑡3𝜇

Γ(1 + 3𝜇)
−
1

16
sech5 (

𝑥

2
)(−11sinh (

𝑥

2
) + sinh (

3𝑥

2
))

𝑡4𝜇

Γ(1 + 4𝜇)
 

The solution 𝑢4(𝑥, 𝑡) is obtained for 𝜇 = 0.25, 𝜇 = 0.50, and 𝜇 = 1 with the different values of 𝑥 and 𝑡 in 

Table 1. Besides, 𝑢4(𝑥, 𝑡) is compared numerically with the exact solution for 𝜇 = 1 in this table. Table 1 

indicates that the absolute error increases as the value 𝑡 increases. When compared with the generalized 

homotopy analysis method [16] and the natural decomposition method [22], it is seen that more numerical 

results are presented with the proposed method for the different values of 𝑥 and 𝑡 in this table. The comparison 

of the approximate solution and the exact solution is illustrated for 0 ≤ 𝑥 ≤ 1 and  𝑡 = 0.1 by the natural 

decomposition method. However, this comparison is illustrated for −20 ≤ 𝑥 ≤ 20 and 0 ≤ 𝑡 ≤ 1 by the 

suggested method. Moreover, the comparison of the approximate and exact solutions is demonstrated only 

with the help of figures by the generalized homotopy analysis method. 

Table 1. Comparing the 𝑢4(𝑥, 𝑡) solution with the exact solution  

𝑥 𝑡 
𝜇 = 0.25 𝜇 = 0.50 𝜇 = 1 

𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) Exact solution Absolute error 

-20 

0 0.500000002061 0.500000002061 0.500000002061 0.500000002061 0 

0.2 0.500000001322 0.500000001336 0.500000001688 0.500000001688 5.21805 × 10−15 

0.4 0.50000000142 0.500000001187 0.500000001382 0.500000001382 1.64757 × 10−13 

0.6 0.500000001569 0.500000001147 0.500000001132 0.500000001131 1.21259 × 10−12 

0.8 0.500000001743 0.50000000118 0.500000000931 0.500000000926 4.9557 × 10−12 

1 0.500000001931 0.500000001277 0.500000000773 0.500000000758 1.46766 × 10−11 
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Table 1. (Continued) Comparing the 𝑢4(𝑥, 𝑡) solution with the exact solution 

𝑥 𝑡 
𝜇 = 0.25 𝜇 = 0.50 𝜇 = 1 

𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) Exact solution Absolute error 

-5 

0 0.506692850924 0.506692850924 0.506692850924 0.506692850924 0 

0.2 0.504227945443 0.504341132518 0.50548631283 0.505486298899 1.39308 × 10−8 

0.4 0.504461951935 0.503840255916 0.504496707853 0.504496273161 4.34692 × 10−7 

0.6 0.504857371886 0.503672525135 0.503687458916 0.503684239899 3.21902 × 10−6 

0.8 0.505329920677 0.503726292195 0.503031646234 0.503018416325 1.32299 × 10−5 

1 0.50585023446 0.50396675685 0.502512007312 0.502472623157 3.93842 × 10−5 

5 

0 1.49330714908 1.49330714908 1.49330714908 1.49330714908 0 

0.2 1.48180816187 1.48809037128 1.4918374435 1.49183742885 1.46499 × 10−8 

0.4 1.47688585161 1.48424157072 1.49004867877 1.49004819813 4.8064 × 10−7 

0.6 1.47276294279 1.48024305141 1.48787530595 1.48787156502 3.74094 × 10−6 

0.8 1.46904740969 1.47598316537 1.4852421188 1.48522596831 1.61505 × 10−5 

1 1.46559068753 1.47142711235 1.48206425377 1.48201379004 5.04637 × 10−5 

20 

0 1.5 1.5 1.5 1.5 0 

0.2 1.49999999636 1.49999999837 1.49999999954 1.5 4.56339 × 10−10 

0.4 1.49999999477 1.49999999715 1.49999999899 1.5 1.01354 × 10−9 

0.6 1.49999999343 1.49999999587 1.49999999831 1.5 1.69303 × 10−9 

0.8 1.49999999222 1.4999999945 1.49999999748 1.5 2.51955 × 10−9 

1 1.4999999911 1.49999999303 1.49999999648 1.4999999851 1.138 × 10−8 

In Figure 1, the comparison between the exact solution and the 𝑢4(𝑥, 𝑡) is demonstrated for −20 ≤ 𝑥 ≤ 20 

and 0 ≤ 𝑡 ≤ 1 at 𝜇 = 1. When equal parameters are chosen, it is clear that the 𝑢4(𝑥, 𝑡) solution has almost the 

same shape as the exact solution in Figure 1. 

 
Figure 1. The graphic of the exact solution and 𝑢4(𝑥, 𝑡) 
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In Figure 2, the 𝑢4(𝑥, 𝑡) is demonstrated for −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 5 when 𝜇 = 0.1, 𝜇 = 0.4, 𝜇 = 0.7, 

𝜇 = 1. In Figure 3, the same solution is illustrated for −10 ≤ 𝑥 ≤ 10  and 𝑡 = 4 with the different values of 

𝜇. The solution at 𝜇 = 0.1 is demonstrated with the blue line, the solution at 𝜇 = 0.4 is demonstrated with the 

orange line, the solution at 𝜇 = 0.7 is demonstrated with the green line, and the solution at 𝜇 = 1 is 

demonstrated with the red line in Figure 3. Cleary observed from Figure 3 that a solitary wave occurs as the 

values of 𝛼 increase. All graphics are demonstrated with the aid of Mathematica. 

  

i. ii. 

  

iii. iv. 

Figure 2. 3D graphics of the 𝑢4(𝑥, 𝑡): (i) for 𝜇 = 0.1, (ii) for 𝜇 = 0.4, (iii) for 𝜇 = 0.7, and (iv) for 𝜇 = 1 

 

 
Figure 3. 2D graphic of the 𝑢4(𝑥, 4) for the different values of 𝜇 

5. Conclusion 

In this paper, RPSM is utilized to obtain the approximate solutions of Equation 1. Numerical results are 

introduced with the different values of 𝜇, 𝑥, and 𝑡. The proposed method reaches a higher level of accuracy 
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when these results are investigated. It is seen that the approximate solutions are found to have nearly the same 

shape as the exact solution when equal parameters are chosen. These solutions are also illustrated in 2D and 

3D graphics as proof of visualization. The suggested method does not require a lot of calculation work and 

time. This method can obtain infinite series solutions using only a few iterations. Moreover, RPSM is highly 

efficient for the fractional CRWP equation. Furthermore, there is no need for perturbation, linearization, 

discretization, or transformation when utilizing the proposed method. For future studies, RPSM can be used 

as an alternative to gain the approximate solutions of different types of partial and fractional differential 

equations encountered in physics, mathematics, and engineering.  
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