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1. Introduction
 Machine learning (ML) is rapidly being established in every 
aspect of modern life. Its ability to simultaneously process 
larger amounts of data and quickly perform multiple 
comparisons make it an integral part of our future (1). In the 
medical field, research and studies on ML are becoming 
increasingly prevalent. Due to the awareness generated by 
these efforts, the widespread adoption of ML in areas such as 
healthcare data systems and medical education is inevitable 
(2). 

Because the cervical vertebrae bears a relatively lesser load 
than the lumbar vertebrae, experiences fewer traumas, and is 
less affected by environmental factors, they can be evaluated 
more easily using ML methods. The nature and determination 
of the direction of cervical disc herniation (CDH) has been a 
relatively underexplored area in artificial intelligence (AI) 
studies. To shed light on future studies, we aimed to approach 
this issue by incorporating AI (3).  

2. Material and Methods 
 Between January 2020 and June 2023, a total of 561 patients 
who were diagnosed with CDH and had presented at the 
neurosurgery clinic of a tertiary university hospital were 
included in the study. The present study was performed in 
accordance with the framework of the Declaration of Helsinki 
and approved by the Alanya Alaaddin Keykubat University 
Ethics Committee (No: 11/06; approval date: 14.06.2023). The 

dominant extremity, level and side of CDH, and nature analysis 
of the radiological data (calcified (Fig. 1) or soft (Fig. 2), were 
documented for each patient. From these patients, 80% were 
randomly selected. The data of these selected patients were 
integrated into an AI module to create the main data table. 
Subsequently, the accuracy of different methods in generating 
data was investigated using the data of the remaining 20% of 
the patients. The suitability of the system was also explored in 
this context. 

 Fig. 1. Computed tomography (1 A, B) and magnetic resonance 
imaging (2 A, B) of CDH calcification 
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 Fig. 2. Magnetic resonance imaging (1 A and B) and computed 
tomography (1 A and B) images of soft herniated disc 

2.1. Statistical analysis 
 The normally distributed continuous variables are expressed as 
mean ± Standard Deviation (SD) and the non-normally 
distributed continuous variables are expressed as median (min-
max). The Shapiro–Wilk test was used to determine the 
normality of the data. The categorical variables are expressed 
as frequencies (n) and percentages (%). The Pearson chi-square 
and Fisher’s exact tests were used to determine the relationship 
between the categorical variables. The Kruskal–Wallis test was 
used for non-parametric comparisons of continuous data, and 
the independent t-test and one-way ANOVA were used for 
parametric comparisons. A post-hoc analysis was performed 
using the Bonferroni correction. All statistical analyses were 
carried out using IBM SPSS Statistics for Windows (version 
23.0; IBM Corp., Armonk, NY). A two-sided p < 0.05 was 
considered statistically significant. 

2.2. Methodology of machine learning 
 To be able to use classification models for determining the 
direction and nature of disc herniation, a custom dataset was 
created by collecting information from 561 patients treated 
clinically and surgically. The dataset included the following 
data: age, gender, dominant hand, CDH level and its direction 
and nature, and direction of arm pain (4). 

Using this dataset, 15 different classification models were 
evaluated. The top five models that performed the best for each 
of the two outcomes (direction and nature) were selected, and 
their hyperparameters were tuned accordingly. Subsequently, 
the models were evaluated using metrics such as accuracy, 
precision, specificity, recall, F1-score, negative predictive 
value (NPV), and false positive rate (FPR). 

The models used for classifying the nature of CDH were 
decision tree (DT) classifier, random forest classifier, gradient 
boosting (GB) classifier, multi-layer perceptron (MLP) 
classifier, and eXtreme gradient boosting (XGB) classifier. 
The models that produced the best results for determining the 
CDH direction were K-nearest neighbors (KNN) classifier, GB 
classifier, DT classifier, random forest classifier, and XGB 
classifier. 

2.3. Models used 
GB classifier 

 Boosting algorithms progressively combine weak learners, 
which perform marginally better than random guessing, to 

create strong learners. GB is a regression technique that shares 
similarities with boosting. It determines an estimate of the 
function that maps input samples to their corresponding output 
values by minimizing the error function’s estimated value 
using the training data. 

DT classifier 

 DTs are supervised learning models capable of handling 
classification and regression tasks, although they are 
predominantly used for solving classification problems. They 
have a tree-like structure, where each node corresponds to a 
feature value check, branches represent test outcomes, and leaf 
nodes represent the final classifications. DTs can efficiently 
generate interpretable rules and classify data with minimal 
computation. 

Random forest classifier 

 The random forest classifier is a popular ML technique that 
leverages multiple DTs built on various subsets of the main 
dataset to make predictions. It functions as both a regression 
and classification model. As a regression model, it computes 
the mean of all the DT outcomes. As a classification model, it 
combines the votes from multiple DTs to obtain the final 
prediction. 

KNN classifier 

 The KNN classifier prediction algorithm follows a lazy 
learning technique, generating predictions based on the KNN 
input. When predictions for any instance are requested, the 
entire prediction process is carried out. The Euclidean distance 
method is commonly used to determine the proximity between 
instances. 

MLP classifier 

 The MLP classifier is a prediction algorithm based on an 
artificial neural network (MLP). When predictions for any 
instance are required, the neural network processes the input 
through its layers to generate the output. The MLP classifier is 
particularly effective for solving complex classification 
problems and can determine both linear and non-linear 
relationships in the data. 

XGB classifier 

The XGB classifier is a speedy and robust implementation 
of GB used for classification purposes. It leverages decision 
trees to make precise predictions, and the final outcome is 
determined through the combined voting of multiple trees. 

2.4. Metrics used 
Classification accuracy  

 The overall accuracy of the classifiers indicates the percentage 
of correct predictions among all predictions. The accuracy was 
calculated using the following equation:	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 
𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), where TP is True Positives, TN 
is True Negatives, FP is False Positives, and FN is False 
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Negatives.  

Precision  

 Precision is a crucial metric used to assess the classifier 
performance. It represents the ratio of true positives to the sum 
of true positives and false positives. The precision was 
calculated using the follow equation:	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃) / (𝑇𝑃 
+ 𝐹𝑃), where TP is true positives and FP is false positives. 

Recall/Sensitivity/True positive rate  

 True positive recall, commonly referred to as recall, is a metric 
defined as the ratio of true positive results to the sum of true 
positive and false negative results. Recall was calculated using 
the following equation: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝑇𝑃) / (𝑇𝑃 + 𝐹𝑁), where 
TP is true positives and FN is false negatives. 

FPR  

 The FPR is the ratio of false positive values to the sum of false 
positive values and true negative values. FPR was calculated 
using the following equation: 𝐹𝑃R = (𝐹𝑃) / (𝐹𝑃 + 𝑇𝑁), where 
FP is false positives and TN is true negatives.  

NPV  

 The NPV is another significant metric used to assess the 
classifier performance. It represents the ratio of true negative 
values to the sum of true negative and false negative values. 
NPV was calculated using the following equation:	𝑁𝑃𝑉 = (𝑇𝑁) 
/ (𝑇𝑁 + 𝐹𝑁), where TN is true negatives and FN is false 
negatives. 

F1-score  

 The F-measure, also known as the F1-score, is determined by 
obtaining the harmonic mean of accuracy and recall. A value 
of 0 indicates the worst performance, while a value of 1 

indicates the best performance. The F1-score was calculated 
using the following formula:	 𝐹1-s𝑐𝑜𝑟𝑒 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 
𝑟𝑒𝑐𝑎𝑙𝑙 / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

2.5. Experimental setup 
 All ML algorithms and classification and regression models 
used in this study were evaluated using the same dataset with 
the same split ratios in Google Colab (Global Al Hub, 
Matterhorn, Switzerland). The top five models that yielded the 
best results were selected, and their hyperparameters were 
tuned. Google Colab is a free platform that offers various tools 
for working with AI, allowing us to utilize ML effectively. 

While deep learning and clustering models were utilized, 
their outcomes were not assessed due to their lower 
performance compared to the described classification models. 

2.6. Machine learning dataset 
 This was a novel study we conducted in this field of study. 
Hence, there was no existing dataset to be used. To create our 
own custom dataset, we collected the following information 
from the 561 admitted symptomatic patients after obtaining 
their consent: age, gender, dominant hand, CDH level and its 
direction and nature, and direction of arm pain. The following 
eight features were used as inputs: age, gender, dominant hand, 
pain direction and CDH at C3-4, C4-5, C5-6, and C6-7). The 
remaining factors, herniation nature and CDH direction, were 
used as outputs. 

Within our dataset, 443 patients had a soft disc and 118 
patients had a hard disc. A total of 197 patients had a right-
sided CDH, 222 patients had a left-sided CHD, and 142 
patients had bilateral CDH. The training set comprised of 80% 
of the dataset, while the test set comprised of 20% of the dataset 
(Table 1).

  
Table 1. Detailed information about the dataset 

No Attribute Name Abbreviation Values Explonation 
1 Gender Gender 0-1 Male-Female 
2 Age Age 21-81 21-81 
3 Dominant Hand dHand 0-2 Right-Left-Both 
4 CDH Level C3-4 hLevel_C3-4 0-1 Yes-No 
5 CDH Level C4-5 hLevel_C4-5 0-1 Yes-No 
6 CDH Level C5-6 hLevel_C5-6 0-1 Yes-No 
7 CDH Level C6-7 hLevel_C6-7 0-1 Yes-No 
8 CDH Direction hDirection 0-2 Right-Left-Both 
9 Hernia Type hType 0-1 Soft-Hard 
10 Pain Direction pDirection 0-2 Right-Left-Both 

3. Results 
 The mean age of the patients in the outpatient clinic and 
surgical groups (48.97 ± 11.69 and 48.98 ± 10.15; p = 0.995) 
and the gender distributions (p = 0.875) were statistically 
similar. No significant differences were observed in the 
dominant hand (p = 0.639), CDH level (p = 0.792), and CDH 
nature (p = 0.871) between the two groups. A left-sided CDH 
was more commonly seen than a right-sided CDH in the 
outpatient clinic (40.9% vs. 26%). In the surgical group, a 

central CDH was seem more commonly than a right- or left-
sided CDH (38% vs. 24.1%; p = 0.048). The proportion of 
patients with bilateral arm pain was higher in the surgical group 
than in the outpatient clinic group (24% vs. 6.7%) (p = 0.001) 
(Table 2).  

Independent t-test, Pearson chi-square test, Fisher’s exact test. 
Statistical analysis indicated no significant differences 
between the groups within the same column of lowercase 
letters. 
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 Table 2. Demographics information of patients’ 

Variables Clinic patients 
(n=511) 

Surgical patients 
(n=50)  

Age (year)    
Mean±SD 48.97±11.69 48.98±10.15 0.995 
Min-maks 21-81 33-73  

Gender, n(%)    
Male 200(39.1) 19(38.0) 0.875 
Female 311(60.9) 31(62)  

Hand preference, 
n(%) 

   

Right 394(77.1) 37(74.0) 0.639 
Left 50(9.8) 7(14.0)  
Both hands 67(13.1) 6(12.0)  

Level of CDH. n(%)    
C3-4 9(1.8) 1(2.0) 0.792 
C4-5 59(11.5) 8(16.0)  

C5-6 284(55.8) 25(50.0)  
C6-7 159(31.1) 16(32.0)  

Direction of CDH, 
n(%) 

   

Right 179(35) a 18(36)a 0.048 
Left 209(40.9) b 13(26) a  
Central 123(24.1) b 19(38)a  

Nature of CDH, 
n(%) 

   

Soft 402(79) 39(78) 0.871 
Hard 107(21) 11(22)  

Direction of Arm 
Pain, n(%) 

   

Right 265(51.9)a 20(40)a 0.001 
Left 212(41.5)a 18(36)a  
Both Sides 34(6.7)b 12(24)a  

 Table 3. Patients' ages according to disease-related characteristics  
 age   

Characteristics X̅±SD Min-Maks p Post-Hoc (Adj P) 
Dominant hand     
Right 49.35±11.10 21-81 0.369  
Left 46.98±13.5 27-74   
Both Hands 48.26±12.85 29-75   

Level of CDH     

1.C3-4 (low count) 50.90±10.78 39-66 <0.001 1>2 (NS) 
1>3(NS) 

2.C4-5 45.03±10.31 21-68  1<4(NS) 
2<3(NS) 

3.C5-6 47.55±10.31 22-75  2<4 (<0.001) 
3<4(<0.001) 

4.C6-7 52.88±13.04 23-81   
Direction of CDH      
1. Right 48.56±11.64 22-81 <0.001 1>2 (NS) 
2. Left 46.55±11.93 21-75  2<3(<0.001) 
3.Central 53.32±11.24 27-76  1<3(0.001) 

Nature of CDH     
Soft 45.55±9.25 21-68 <0.001  
Hard 61.60±10.55 28-81   

Direction of Arm Pain     
Right 48.50±10.72 22-77 0.147  
Left 48.95±12.69 21-81   
Both Sides 51.98±10.28 34-73   

The dominant hand (p = 0.369) and direction of arm pain 
(p = 0.147) were not associated with the patient’s age. The 
mean age of the patients with CDH at the C6-7 level was higher 
than those with CDH at the C4-5 and C5-6 levels (p < 0.001). 
Patients with a central CDH or hard disc had higher mean ages 
than those with right- or left-sided CDH or soft disc (p < 0.001) 
(Table 3). 

Independent t-test, one-way ANOVA, Kruskal–Wallis test. 
The same lowercase letters within a column indicate no 
significant difference between the groups. Bonferroni, NS: 
non-significant 

No significant differences were observed in the distribution 
of dominant hand and direction of arm pain across age groups 
(p = 0.228). CDH was more prevalent at the C5-6 level in 
patients aged < 50 years than in those aged ≥ 50 years (60.1% 
vs. 48.6%). CDH was more prevalent at the C6-7 level in 
patients aged ≥ 50 than in those aged < 50 years (39.5% vs. 

25.1%; p = 0.001). A left-sided CDH was more common in 
patients aged < 50 years old than in those aged ≥ 50 years 
(46.5% vs. 30.5%). A central CDH was more common in 
patients aged ≥ 50 than in those aged < 50 years (35.8% vs. 
17.3%; p < 0.001). Furthermore, the prevalence of a hard disc 
was significantly higher in patients aged ≥ 50 than in those 
aged < 50 years (42.7% vs. 4.7%; p < 0.001) (Table 4). 

Pearson chi-square test, Fisher’s exact test. The same 
lowercase letters within a row indicate no significant difference 
between the groups. 

There is no significant difference in the CDH level (p = 
0.156), herniation direction (p = 0.095), and CDH nature (p = 
0.318) according to the patient’s dominant hand. Left-sided 
arm pain was higher in patients predominantly using the left 
hand than in those using both hands (54.4% vs. 32.9%). In the 
group using both hands, pain occurred more frequent on both 
sides than in the group predominantly using the left hand 
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(24.7% vs. 1.8%, p < 0.001). In the group using both hands, 
more patients had right-sided dominance than left-sided 
dominance (24.7% vs. 6.3%) (Table 5). 

 Table 4. Disease-Related Characteristics According to Age Groups of 
Patients 

 Age  
Characteristics, n(%) <50 (n=318) ≥50 (n=243) p 

Dominant hand    
Right 236(74.2) 195(80.2) 0.228 
Left 37(11.6) 20(8.2)  
Both Hands 45(14.2) 28(11.5)  

Level of CDH    
C3-4 4(1.3)a 6(2.5)a 0.001 
C4-5 44(13.8)a 23(9.5)a  
C5-6 191(60.1)a 118(48.6)b  
C6-7 79(25.1)a 96(39.5)b  

Direction of CDH    
Right 115(36.2)a 82(33.7)a <0.001 
Left 148(46.5)a 74(30.5)b  
Central 55(17.3)a 87(35.8)b  

Nature of CDH    
Soft 303(95.3)a 138(57.3)b <0.001 
Hard 15(4.7)a 103(42.7)b  

Direction of Arm 
Pain    

Right 160(50.3) 125(51.4) 0.213 
Left 137(43.1) 93(38.3)  
Both Sides 21(6.6) 25(10.3)  

Pearson chi-square test, Fisher’s exact test. The same 
lowercase letters within a row indicate no significant difference 
between the groups. 

3.1. Machine learning analysis 
 The experiment used the herniation nature and direction data, 
which was split into the training (80%) and testing (20%) 
datasets. A confusion matrix measured the performance of the 
classifier models (Tables 2 and 4). The results of the study 
classifiers are listed in Tables 3 and 5.  

 Table 5. Other Characteristics According to Patients' Dominant Hand  
 Dominant hand  

Characteristics, 
n(%) Right hand Left hand Both hands p 

Level of CDH     
C3-4  10(2.3) 0(0) 0(0) 0.156 
C4-5 57(12.3) 6(10.5) 4(5.5)  
C5-6 239(55.5) 29(50.9) 41(56.2)  
C6-7 125(29.0) 22(38.6) 28(38.4)  

Direction of CDH     
Right 156(3.2) 13(22.8) 28(38.4) 0.095 
Left 162(37.6) 32(56.1) 28(38.4)  
Central 113(26.2) 12(21.1) 17(23.3)  

Nature of CDH     
Soft 337(78.6) 49(86.0) 55(75.3) 0.318 
Hard 92(21.4) 8(14.0) 18(24.7)  

Direction of Arm 
Pain     

Right 229(53.1)a 25(43.9)a 31(42.5)a <0.001 
Left 175(40.6)a.b 31(54.4)b 24(32.9)a  

Both Hands 27(6.3)a 1(1.8)a 18(24.7)b  
The determination of herniation nature yielded the most 

successful classification model (Table 3), with the GB 
classifier achieving a performance of 89.3%. Although the 
other models were not as successful as GB, their performances 
were still quite impressive. The DT and random forest 
classifiers both achieved the same percentage result (87.6%), 
the XGB classifier achieved a performance of 86.7%, and the 
MLP classifier yielded a performance of 85.8% (Table 3). 

The models of herniation direction determination did not 
achieve the same level of success as that of herniation nature 
classification models. The classification models could not 
establish sufficient correlations between the data or adequately 
generalize data. Thus, the RF was the most successful (62.8%), 
followed closely by GB (59.2%). The XGB, MLP, and KNN 
models achieved results of 52.2%, 51.3%, and 50.4%, 
respectively (Tables 6, 7, 8, and 9)

 Table 6. Summarised Depiction of Confusion Matrices for Herniation Nature for All Classifiers 
 Decision Tree Classifier Random Forest Classifier Gradient Boosting 

Classifier 
MLP Classifier XGB Classifier 

TP 17 16 16 19 17 
TN 81 81 82 67 81 
FP 3 3 2 17 3 
FN 12 13 13 10 12 

Three different results were obtained regarding herniation 
direction. This is because the CDH could occur on the right, 
left, or bilaterally within our dataset. The models we used 
provided separate results for each scenario (Table 3).  

The F1-score (Table 9) provided us with an idea of the 

model’s classification capability; the higher the value, the 
higher the model’s classification ability. The classification 
model with the highest accuracy also had the highest F1-score. 
For herniation nature determination, the GB classification 
model yielded the highest F1-score (0.854), while the MLP 
model yielded the lowest F1-score (0.788).

Table 7. Performance Statistics of All Classifiers for Herniation Nature 
Model Accuracy (%) Precision Sensitivity Recall F1-score NPV (%) FPR (%) 

Decision Tree 
Classifier 87.6 0.883 0.894 0.781 0.814 87.2 2.3 

Random Forest 
Classifier 87.6 0.883 0.894 0.781 0.814 87.2 2.3 

Gradient Boosting 89.3 0.898 0.904 0.815 0.845 89.1 2.3 
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Classifier 
MLP Classifier 85.8 0.851 0.842 0.758 0.788 86.1 3.5 
XGB Classifier 86.7 0.860 0.850 0.775 0.804 87.0 3.5 

Table 8. Summarised Depiction of Confusion Matrices for Herniation Direction for All Classifiers 
 K-Neighbors 

Classifier 
Random Forest 

Classifier 
Gradient Boosting 

Classifier 
MLP Classifier XGB Classifier 

TN-Right 49 50 50 69 51 
TN-Left 53 57 58 0 54 
TN-Both 68 74 71 83 67 
FP- Right 20 19 19 0 18 
FP- Left 21 17 16 74 20 
FP- Both 15 9 12 0 16 
TP- Right 25 32 30 0 24 
TP- Left 24 26 26 39 25 
TP- Both 8 10 10 0 10 
FN- Right 19 12 14 44 20 
FN- Left 15 13 13 0 14 
FN- Both 22 20 20 30 20 

Sensitivity- Right 0.555 62.7 61.2 Nan 57.1 
Sensitivity- Left 0.533 60.4 61.9 34.5 55.5 
Sensitivity- Both 0.347 52.6 45.4 Nan 34.8 
NPV- Right (%) 72.0 80.6 78.1 61.0 71.8 

NPV- Left (%) 77.9 81.4 81.6 Nan 79.4 
NPV- Both (%) 77.5 78.7 78.0 74.3 77.0 
FPR- Right (%) 28.9 27.5 27.5 0 26.0 
FPR- Left (%) 28.3 22.9 21.6 1 27.0 
FPR- Both (%) 18.0 10.8 14.4 0 19.2 

Table 9. Performance statistics of All Classifiers for Herniation Direction 
Model Accuracy (%) Precision Recall F1-score 
K-Neighbors Classifier 50.4 0.478 0.483 0.478 
Random Forest Classifier 62.8 0.612 0.602 0.599 
Gradient Boosting Classifier 59.2 0.580 0.571 0.570 
MLP Classifier 51.3 0.466 0.473 0.443 
XGB Classifier 52.2 0.503 0.506 0.503 

The NPV and FPR indicate the accuracy of detecting 
negative cases and the rate of incorrectly detecting negative 
values, respectively. Thus, a higher NPV and lower FPR 
indicate better results. Sensitivity shows how successful we are 
in achieving a true positive rate in correct outcomes. Finally, 
the recall value is necessary for calculating some key metrics, 
as mentioned before. 

Thus, our classification models exhibit a performance of 
89.3% for determination of herniation nature and a 
performance of 62.8% for hernia direction determination. This 
issue arises from the inability of the models to adequately 
generalize the data used because of the insufficient data or a 
lack of correlation between the available data and desired 
outcomes. 

4. Discussion 
 In the current era, ML is becoming increasingly prominent in 
our lives. ML is expected to enable software-powered robots 
to perform tasks that were once carried out by humans. 
Moreover, the utilization of ML in fields such as healthcare and 
education are steadily on the rise (1, 2). Thus, software 
programs capable of simultaneously comparing multiple 
parameters and producing results will replace humans who 
obtain experience and skills gained through formal education. 
This could make it possible for a general practitioner triaging 

in an emergency room or an individual overseeing healthcare 
insurance expenses to be replaced by such programs in the near 
future. Thus, we need to determine the usability of ML within 
the realm of healthcare and how it should be employed. Our 
study significantly contributes to literature by investigating the 
potential contribution of ML in assessing spinal pathologies 
and shedding light on how effective it can be in this context. 

Cervical trauma is less commonly encountered compared 
to trauma at other spinal regions. Factors that could lead to 
spinal pathologies, such as obesity, pregnancy, and heavy 
lifting, have a lesser impact on the cervical region than on the 
other spinal regions (5). Due to its simpler dynamic function, 
the cervical spine is more amenable to investigation for disc 
degeneration and herniation using ML systems than the other 
spinal regions (3). The most influential factors in this regard 
include the age, dominant extremity, nature and side of the disc 
herniation, and level of disc herniation. In our study, we 
initially statistically compared these data in patients and 
assessed their comparability with those in literature. 
Subsequently, we compared these findings with the results 
obtained via ML. 

Takahashi et al. reported a higher prevalence of CDH, 
especially at the C6-7 level, in individuals with left-hand 
dominance (6). Kang et al. reported that factors such as 
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dominant extremity, age, disc level, and nature play a crucial 
role in disc herniation and emphasized the need for further 
research to support these findings. They attributed this to 
patients unknowingly placing their non-dominant arm higher 
while writing with their dominant hand and more frequently 
bearing loads on the dominant hand (7). However, in our study, 
we did not find a significant correlation between dominant 
extremity and disc herniation, both during statistical analyses 
and within the ML system. 

As people age, an increase in spinal degeneration, 
calcification, and the presence of pathologies such as 
osteophytes often become inevitable (8). This standard 
knowledge for medical practitioners is easily predictable due 
to its frequent occurrence in educational and practical 
applications. In our statistical study, there was a statistically 
significant correlation between aging and the occurrence of 
calcified CDH. However, in ML, achieving a high level of 
accuracy, often close to 90%, is crucial. For instance, health 
insurance companies aim to streamline expenses by 
eliminating unnecessary tests for their customers. In such a 
scenario, a computer programmer without basic medical 
knowledge could monitor the expenditures of insured 
customers. Similarly, medical students lacking sufficient 
clinical experience could benefit from similar support 
programs. 

Our AI-supported study results indicate that age and gender 
heavily impact disc nature (8). In the test models, a significant 
decrease did not occur when only age and gender parameters 
were used. Thus, our original intention, to establish a 
correlation between the arm pain direction and hand 
dominance and the direction of CDH, might not hold true based 
on the study findings. This insight offers valuable guidance for 
further exploration and analysis of spinal pathologies. 

This study focused on CDH. AI-supported applications do 
not yet appear to be suitable for practical use in this field due 
to the lack of sufficient data and correlations as well as 
inadequate diversity in the data utilized. However, AI-
supported applications hold promise for the future. The 
appropriate identification, collection, and processing of 
relevant data will pave the way for more accurate results. This 
study has identified important foundation points to be 
considered in future AI-supported studies on the detection of 
CDH nature and direction. 

Furthermore, changes in the diversity and quantity of 
collected data can lead to different results in other 
classification models. Models developed using deep learning 
algorithms could yield entirely different outcomes for 
parameters that are considered independent. 

This study serves as a valuable reference for forthcoming 
AI-supported research on the detection of CDH nature and 
direction. Adjustments in the diversity and quantity of 
collected data, as well as the application of deep learning 
algorithms, could potentially yield diverse and impactful 
outcomes.  
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