
 International Journal of Environment and Geoinformatics 10(3):077-085 (2023) 

77 

A Model on Charter Rate Prediction in Container Shipping 

Tolga Tuzcuoğlu1, , Hüseyin Gençer2,* 

1 Turkish German University, Faculty of Economics and Administrative Sciences, Department of Business, Istanbul, TÜRKİYE 
2 Piri Reis University, Faculty of Economics and Administrative Sciences, Department of Maritime Business Management, Istanbul, TÜRKİYE 

* Corresponding author: H. Gençer Received 17.08.2022 

* E-mail: hgencer@pirireis.edu.tr Accepted 06.09.2023 

Abstract 

The maritime industry has witnessed numerous challenges in recent years after the global pandemic, primarily characterized by sharp 

fluctuations in the daily charter rates. Considering an unpredictable business environment, this study aims to suggest a financial 

forecasting model on charter rates, creating added value for the stakeholders of the maritime trade business. The empirical analysis 

utilized the data from the Clarksons Research Portal, which encompassed 7,409 charter chartering transactions of container ships from 

01.01.2018 to 10.03.2023. After examining seven different linear and ensemble regressions, it was revealed that the XGBoost regressor 

resulted in the least RMSE value of 0.1833 with an R2 of 0.9015. The selected predictors were the TEU, container fixture type, charter 

time, charter time multiplied by TEU, ship age, laycan year, and laycan month, respectively. In addition to coping with the limitations 

of linear regression, the model revealed that the laycan years, charter time, and charter time multiplied with TEU were the essential 

variables in charter rate prediction. As a result, the model developed in the study can be used as an important decision support tool for 

stakeholders in the container shipping industry. 
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Introduction 

Maritime industry has witnessed many challenges such as 

financial crisis, pandemic and war risks. As in many areas 

of the maritime industry, the container shipping is also 

affected by similar risks and uncertainties. Container 

shipping has profound implications for the maritime 

industry, as more than 50% of world trade in value is 

handled by container shipping (UNCTAD, 2021). It is one 

of the most important catalysts of globalization thanks to 

the safe, reliable, fast handling and intermodal 

transportation opportunities it provides (Ma, 2021). 

One of the main challenges in container shipping is the 

sharp fluctuations in daily charter rates. Fluctuations in 

charter rates have a direct impact on the price of shipping 

products, which impacts companies’ expenses for import 

and export. On the other hand, charter rates directly affect 

the profitability of ship owners and operators. Figure 1 

depicts that the average daily charter rates have been 

highly volatile since the end of 2020, leading to sudden 

and unforeseen fluctuations. Container shipping is a 

highly competitive industry with low profit margins. 

Accurate forecasting allow companies to adjust their 

pricing strategies and are important in estimating their 

profits. Moreover, accurate forecasting helps companies 

manage risk against losses and industry fluctuations 

(Petersen, 2016). For that purpose, this study proposes a 

forecasting model on charter rates, creating added value 

for the stakeholders of the container shipping industry. 

Fig. 1. Average Daily Charter Rates between 2018 and 2023 

The charter market in maritime transport is divided into 

two as voyage charter and time charter. Voyage charter, 

which is common especially in dry bulk cargo and tanker 

transportation, is the charter of a ship for the 
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transportation of a certain cargo between two ports. A 

time charter is the charter of ships for a certain period of 

time (from a few months to several years) and is very 

common in container shipping. A bareboat charter is a 

variant of a time charter where the charterer undertakes 

the crew and maintenance of the ship. Bareboat charters 

are frequently utilized when the owner is a financial 

investor uninvolved in shipping operations (Hübner, 

2016). 

Chartering of container ships has become even more 

important due to the start of container liner shipping in the 

1970s and its widespread use, especially after the 1990s 

(Otani and Matsuda, 2023) Time charter markets 

ultimately reflect the balance of supply and demand for 

shipping on a global scale. On the other hand, while the 

trends in freight rates are similar to charter rates, there are 

minor differences. If too many new ships are built, liner 

carriers may not charter all of these ships, so if demand 

increases slightly, freight rates may remain stable, even if 

chartering rates fall (Lemper). Container ship charter rates 

remained high from the late 1980s to the mid-1990s. 

Subsequently, there was an oversupply due to the boom in 

new shipbuilding and the effects of the 1997 Asian 

financial crisis on trade and shipping. Because of this, 

charter rates fell to very low levels in 1999. Afterwards, 

the rates reached quite high levels in the mid-2000s (Otani 

and Matsuda, 2023).  

The charter rates, which fell sharply because of the 

financial crisis in 2008, and remained at similar levels 

until 2020. Due to the halt of production at the beginning 

of the Covid-19 pandemic and then its resumption, charter 

rates reached an all-time high. After the pandemic, charter 

rates decreased sharply as a result of the decrease in 

demand in world trade. 

Container shipping is mainly applicable for freight 

markets with parcel shipment sizes. Whereas the charter 

market pertains to the overall transport capacity of the 

entire ship, the freight market focuses solely on parcels 

smaller than a complete vessel (Ma, 2021). Most of the 

forecasting studies in container shipping are on the freight 

market. 

Luo et al. (2009) investigated the fluctuation in freight 

rates due to supply and demand in container shipping. In 

the study, the relationship between ship new order and 

time charter was also examined. Fan and Yin (2015) 

examined the dynamic interactions between container 

ship newbuilding and second-hand prices, and time 

charter rate. The authors also discussed the impact of 

different sized container ships such as feeder, handymax, 

sub-panamax and panamax. Jeon et al. (2019) analyzed 

the CCFI (China Containerized Freight Index) cycles 

using the system dynamics approach. Their study can be 

used as an important guideline for decision makers in ship 

investment time. Chen et al. (2021) proposed a combined 

approach consisting of empirical mode decomposition 

and grey wave methods to predict CCFI. Koyuncu et al. 

(2021) proposed SARIMA and an Exponential Smoothing 

State Space models to forecast container throughput index 

of RWI/ISL considering the impact of COVID-19. 

Schramm and Munim (2021) introduced an 

autoregressive integrated moving average (ARIMA) 

model to forecast China Containerized Freight Index 

(CCFI) and later on the Shanghai Containerized Freight 

Index (SCFI). Munim (2022) used SARIMA (Seasonal 

Autoregressive Integrated Moving Average), SNNAR 

(Seasonal Neural Network Autoregression) and the state-

space TBATS models to forecast CCFI. Hirata and 

Matsuda (2022) developed a long short-term memory 

(LSTM) model and a seasonal autoregressive integrated 

moving average (SARIMA) model to forecast the 

Shanghai Containerized Freight Index (SCFI). Saeed et al. 

(2023) analyzed the data between 2010 and 2020 using 

machine learning and natural language processing, and 

determined six important factors in container shipping 

such as congestion, peak demand, policy, price up, 

overcapacity, and coronavirus. The authors used the 

prophet method to forecast the container freight rates on 

the six main container routes, considering these six 

factors.  

As can be seen, no research in the literature has considered 

a model by taking into accountdry bulk the variables in 

this study. The second part of the study describes the data 

and methodology used in the study. In the third part, 

empirical findings are presented. The fourth part 

concludes the study with the discussions. 

Table 1. Descriptive Statistics 
Count Mean Std Min 25% 50% 75% Max 

Built year 7,409 2007 4.9 1989 2005 2007 2010 2024 

TEU 7,409 2,671.9 1,945.3 340.0 1,221.0 1,970.0 3,450.0 14,952.0 

Charter  

Rate 
7,409 14,851.8 15,785.3 820.0 8,000.0 10,250.0 15,000.0 235,000.0 

Charter Time 7,409 324.4 356.0 5.0 150.0 210.0 360.0 5,400.0 

Transaction 

Year 
7,409 2020 1.3 2018 2018 2020 2020 2023 

Transaction 

Month 
7,409 6.1 3.5 1.0 3.0 6.0 9.0 12.0 

Laycan Year 7,409 2020 1.3 2018 2018 2020 2021 2024 

Laycan Month 7,409 6.4 3.4 1.0 3.0 6.0 10.0 12.0 

Ship Age 7,409 12.5 5.0 -3.0 10.0 12.0 15.0 32.0 

Data and Methods 

The data used in this study was acquired from Clarksons 

Research Portal, a prominent worldwide data supplier in 

the shipping business. The dataset extracted from the 

research portal encompassed 8,231 container ship charter 

rate transactions of diverse charterers between 01.01.2018 

and 10.03.2023. To be more precise, the observations 
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included ten features, which were the transaction date, 

name of the container ship, built year, twenty-foot 

equivalent unit (TEU), charterer name, starting laycan 

date, charter time, daily charter rate in United States 

Dollar (USD), ship owner and the type of the container 

fixture, respectively. During the exploratory data analysis 

phase, the dataset was refined to 7,409 observations due 

to missing charter rate values. The refined dataset 

consisted of 227 unique charterers, 461 diverse owners, 

and 2,468 different container ships. As for container 

fixture types, there were six classes; Feeders 100-999 

TEU, Feeders 1-1,999 TEU, Feeders 2-2,999 TEU, 

Narrow Beams 3,000+ TEU, Wide Beams 3-5,999 TEU 

and Containerships 6,000+ TEU. 

The highlights of the extracted dataset are further 

described in Table 1. Accordingly, the built year of the 

container ships ranged from 1989 to 2024, which was, on 

average, 2007. Similarly, the average ship age at the time 

of the conclusion of the chartering agreement was 12.5 

years, which was between -3 and 32 years. Negative ship 

age implied that the transaction covered a future laycan 

date upon constructing a newly built vessel. Overall, out 

of 7,409 transactions, 5,840 of them (78.8%) included a 

future laycan date at the time of the conclusion of the 

contract; 1,009 instances (13.6%) covered a retrospective 

laycan date, which can be thought of as a renewal or 

extension of an existing agreement; and 560 of the 

observations (7.6%) had the same transaction and laycan 

date. In addition, the TEU of the vessels ranged from 

340.0 to 14,952.0 TEU with a mean value of 2,671.9, all 

in line with the defined thresholds of the fixture types. As 

for the charter time, the acquired data, in most instances, 

illustrated a period with lower and upper values instead of 

a single discrete value. In such cases, the upper boundary 

was taken as a single charter time, expressed in days. 

Hence, the calculated charter days were between 5 and 

5,400, with a median of 210 days. The transaction and 

laycan dates in the observations were further expressed in 

years and months, giving rise to additional four features. 

The transaction years were between 2018 and 2023, as 

expected, with the date dimension of the acquired dataset. 

On the contrary, the laycan year additionally covered a 

future time frame in 2024, indicating the conclusion of 

prospective contracts. 

The charter rate ranged from 820 to 235,000 USD daily, 

in which the mean and median values were 14,851.8 and 

10,250.0 USD, respectively. A higher mean value than the 

median implied a skewed distribution, plotted in Figure 2. 

As it may be inferred from the first plot in Figure 2, the 

distribution of the charters rates, which is the target 

variable, had a right-skewed distribution. A log 

transformation was carried out to bring this to a normal 

distribution, depicted in the second plot above.  

Following the transformation of the target variable, the 

exploratory data analysis continued investigating the 

association between the variables. In this sense, the 

correlation between the numerical variables, the TEU, 

charter time, ship age, and the target charter rate, was 

examined with Pearson correlation. The correlation 

matrix presented in Figure 3 reported that the TEU and 

charter time were positively and weakly correlated with 

the charter rate at 0.27 and 0.31, respectively. In addition, 

the analysis revealed that the ship age was not associated 

with the charter rate. As for the association between the 

predictors, the TEU and the charter time were again 

positively and weakly correlated with 0.32, in which the 

ship age showed no association with the rest of the 

numerical predictors.  

The correlation between the categorical variables in the 

dataset, the laycan year, laycan month, container fixture 

type, transaction year, and transaction month, was 

analyzed with the Cramer's V approach. As expected, the 

laycan month and the transaction month, along with the 

laycan year and the transaction year, resulted in a high 

positive association with each other with 0.61 and 0.92, 

respectively. The rest of the categorical variables did not 

show any significant association. The results of the 

correlation matrix between the categorical variables are 

summarized in Figure 4. As for the next step, the focus 

was on the effect of container fixture types on charter 

rates. As expected, it was determined that as the container 

ship's capacity  

increased, the range of the daily charter rate also rose. The 

median value of the charter rate was 6,600 USD for 

feeders 100-999 TEU, 9,000 USD for feeders 1-1,999 

TEU, 10,250 USD for feeders 2-2,999 TEU, 11,350 USD 

for narrow beams 3,000+ TEU, 16,000 USD for wide 

beams 3-5,999 TEU, and 22,000 USD for containerships 

6,000+ TEU.  

To conduct an eyeball test, the boxplot of charter rates by 

container fixture types was plotted, depicted in Figure 5. 

In addition, to further analyze whether container fixture 

types significantly affect daily charter rates, an ANOVA 

test was executed. The reported p-value was almost zero, 

concluding that at least one mean value differed 

significantly from the rest. Tukey's test was additionally 

conducted to carry out multiple comparisons of container 

fixture type means. Tukey's HSD results indicated that 

except for the wide beams 3-5,999 TEU and 

containerships 6,000+ TEU, all paired mean values 

significantly differed from each other at FWER=0.05. 

Using the same method of eyeball tests through boxplots, 

ANOVA, and Tukey's test for multiple comparisons of 

means, charter rates were examined against laycan years 

and laycan months. The boxplot of charter rates by laycan 

years, illustrated in Figure 6, provided an impression of 

differing mean charter rate values in the laycan years of 

2021 to 2024. The ANOVA test, with a p-value of 0.06, 

concluded no significant differences among the means. 

However, Turkey's test at FWER=0.05 level rejected no 

significant differences except for the pairs 2018-2019, 

2018-2020, 2019-2020, and 2022-2024. The ANOVA test 

for laycan months yielded a p-value of 0.3 and reported 

no significant differences among the means. The 

following Tukey's test stated significant mean differences 

mainly for May and August, with most of the rest. The 

boxplot of charter rates by laycan months is shown in 

Figure 7. 
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Fig. 2. The Distribution of Charter Rates: Nominal and Log Transformed 

Fig. 3. Correlation Matrix of Numerical Variables 

Fig. 4. Correlation Matrix of Categorical Variables 

Tuzcuoğlu and Gençer / IJEGEO 10(3):077-085 (2023) 



81 

Fig. 5. Boxplot of Charter Rates by Container Fixture Types 

Fig.6. Boxplot of Charter Rates by Laycan Years 

Fig. 7. Boxplot of Charter Rates by Laycan Months 

The last step of the exploratory data analysis investigated 

whether selected two predictors mutually affect the target 

variable. One predictor was divided into two equal 

instances by taking the median value as the cut-off point. 

Subsequently, the target variable was plotted against the 

other predictor showing the initially paired predictor. To 

illustrate, the interaction between the TEU and the charter 

time on charter rates was analyzed by dividing the TEU 

instances into two subsets by taking the median 

observation as the cut-off point. Then, charter rates were 

plotted against the charter time in the interacting pair of 

below-median and above-median TEU observations, 

Tuzcuoğlu and Gençer / IJEGEO 10(3):077-085 (2023) 
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depicted in Figure 8. The crossing lines in the figure 

implied that the charter time interacted with the TEU to 

impact the charter rates. The same analysis was conducted 

for ship age and TEU and ship age and chartering days. 

However, no crossing lines were detected. 

In summary, the exploratory data analysis concluded with 

the following findings: 

 The use of the log-transformed form of the target

variable charter rate.

 The primary consideration of the laycan months

and laycan years instead of the transaction

months and transaction years due to their highly

correlated nature, the boxplot analysis of laycan

variables as well as Tukey's test results. In

addition, since the laycan year was available one

year further compared to the transaction year in

the dataset, a prospective model with the

inclusion of laycan variables would extend the

availability of the prediction horizon for more

than one year. In other words, if the transaction

month and year were included in the model, the

prediction horizon of such a model would be

limited to the most recent available transaction

date, which was 10.03.2023 in the dataset.

 The addition of container fixture types as a

categorical variable in the model since they

impacted charter rates.

 The inclusion of the multiplication of TEU

with charter time due to their combined

effect on charter rates.

 It was decided to consider the ship age in the

model selection phase along with the

abovementioned predictors.

Accordingly, the variables which were considered in the 

regression model development phase to predict the charter 

rate were the TEU, charter time, charter time multiplied 

with the TEU, ship age, container fixture type, laycan 

year, and the laycan month, in which the latter three were 

categorical variables. After defining the variables, the 

dataset was divided into two sub-datasets to train (80%) 

and test (20%) diverse regression models. The model 

evaluation phase included a five-fold cross-validation to 

examine model performance in which the numerical 

variables were standardized, and the categorical ones 

were one-hot encoded. Seven different regression models 

were trained in the empirical analysis, and their 

performance was compared with the RMSE metric. These 

models were the linear regression, Ridge regressor, Lasso 

regressor, stochastic gradient descent (SGD) regressor, 

random forest regressor, extreme gradient-boosting 

(XGBoost) regressor, and light gradient-boosting 

machine (LightGBM) regressor, respectively. 

Fig. 8. The Impact of TEU on Charter Rates and Charter Time 

Fig. 9. The Plots of Test Values and Residuals vs. Predicted Values 
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Fig. 10. The Learning Curve of the XGBoost Regressor 

Emprical Results 

The empirical analysis started with implementing linear 

regression, considered the baseline model. The 

conventional assumptions of linear regression are 

fivefold; independence (the prediction errors are 

independent of each other), homoscedasticity (constant 

variance of the errors), collinearity (predictors are not 

perfectly associated with each other), normality (the 

errors have a normal distribution with zero mean value), 

and linearity (the target variable and the predictors do not 

have a curved relationship) (Hoffman, 2022). In practice, 

if the primary objective of linear regression is to predict 

the target variable, then most of the assumptions stated 

above will not be relevant; nevertheless, such a case will 

lead to deriving misleading statistical interpretation 

(Matloff, 2017). 

The linear regression model is presented below in the 

Equation . 

Log(Target)~ TEU +  C(ContainerFixtureType) +
 CharterTime +  CharterTime ∗ TEU +  C(LaycanYear)  +
 C(LaycanMonth)  +  ShipAge  

Where 

Log(Target): Daily Charter Rate, log-transformed 

C(): Categorical variable 

The zero mean of the residuals and homoscedasticity were 

first analyzed to examine whether the model fulfilled the 

assumptions of linear regression. Whereas the mean value 

of the residuals in the test dataset was 0.0073, almost close 

to zero, the p-value of the Breusch-Pagan test was zero, 

leading to the rejection of the hypothesis that the variance 

of the residuals was constant. The cone-shape of the 

residuals plot presented on the right side of Figure 9 also 

confirmed the test finding. Secondly, the normality of the 

residuals was examined by conducting Jarque-Berra and 

Kolmogorov-Smirnov tests. 

The p-values of both tests were almost zero, which led to 

the rejection of the null hypothesis that the residuals are 

normally distributed. Thirdly, the Durbin-Watson test was 

conducted to report whether there was no autocorrelation 

in the residuals. The test statistic was 1.9532, which could 

be accepted as relatively usual since falling in the 

threshold from 1.5 to 2.5. The last step was to check 

whether there was no perfect multicollinearity between 

the predictors by calculating the VIF values. For almost 

all predictors, the VIF values were infinite, revealing solid 

collinearity between the predictors, hence leading to 

misinterpretation of coefficients. The linear regression 

model did not satisfy the residuals' homoscedasticity and 

normality and the independent variables' non-

multicollinearity. Despite this, the calculated RMSE value 

of the test data was 0.2898, in which the R2 was 0.7538. 

The regression model was re-trained using regularization 

via Ridge and Lasso in the next step. Regularization 

penalizes one of the highly collinear predictors by pushing 

them to zero to handle the multicollinearity problem; 

hence predictors are subject to shrinking and getting too 

large values (Matloff, 2017). The penalty factor (alpha) 

was 2.9763 in the Ridge regression, in which the model 

picked 29 independent variables without eliminating any 

of them. The reported test RMSE value was 0.2893 with 

an R2 of 0.7546. The Lasso regression revealed 

equivalent results; the alpha was this time close to zero, in 

which 27 variables were picked up, and the other two were 

eliminated. The Lasso test RMSE and R2 values were 

0.2892 and 0.7548, respectively. As for the last step of the 

linear regression approach, a Stochastic Gradient 

Boosting (SGD) regression model was constructed. With 

the selected hyperparameters of alpha: 0.001, epsilon: 

0.001, eta: 0.1, loss: squared error, and the penalty factor: 

no, the SGD regressor revealed an RMSE of 0.2970 and 

R2 of 0.7415 in the test dataset. In conclusion, the 

application of regularization and a stochastic method 

showed no improvement in the RMSE value. 

Given that the assumptions of linear regression are not 

entirely fulfilled, the second phase of the empirical 

analysis focused on non-parametric regression 

techniques, including tree-based regressors. Ensemble 

regression models offer better prediction accuracy, 
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robustly handle outliers, and unveil complex relationships 

in the data; nevertheless, they are inclined to overfit 

(Kunapuli, 2023). The analysis started with random forest 

regression. The hyperparameters determined as a result of 

the cross-validation were bootstrap: true, max depth: 10, 

max features: auto, min samples leaf: 1, min samples split: 

2, and the number of estimators: 50. The model disclosed 

an RMSE value of  0.2154 with an R2 of 0.8640 in the test 

dataset, quite outperforming the linear regression models. 

As for the top five most important features, the model 

reported the CharterTime_TEU, TEU, LaycanYear 2022, 

LaycanYear 2021, and CharterTime, respectively. On the 

other hand, the RMSE and R2 values in the training 

dataset were 0.1678 and 0.9212, which implied 

overfitting. Overfitting was further checked with the 

learning curve depicted in Figure 10. As it may be inferred 

from this chart, the test and train RMSE lines became 

parallel as the sample size increased. 

As for the second tree-based model, the Extreme Gradient 

Boosting (XGBoost) regression was implemented. The 

model considered the hyperparameters as a result of the 

cross-validation as follows; colsample by level: 0.8, 

colsample by tree: 0.8, learning rate: 0.1, max depth: 9, 

number of estimators: 75, and subsample: 0.8. The test 

RMSE value of the model was 0.1833, and the R2 was 

0.9015, which reported better results compared to the 

random forest regression. The top-five feature rankings 

stated the laycan years 2022, 2021, and 2023 as well as 

CharterTime and CharterTime_TEU. Besides, the RMSE 

and R2 in the training dataset were 0.1151 and 0.9629, 

which signaled to overfit. The learning curve of the model 

presented in Figure 11 plotted train and test RMSE lines 

that were not wholly parallel but approached each other 

as the sample size increased. It led to the impression that 

had we more observations, the test RMSE line would 

come closer to the train RMSE line. 

Fig. 11. The Learning Curve of the LightGBM Regressor 

The third and last tree-based model trained was the Light 

Gradient-Boosting Machine (LightGBM) regression. The 

tuned hyperparameters in the model were colsample by 

tree: 0.5, learning rate: 0.2, max depth: 10, metric: l1, min 

child samples: 10, min child weight: 0.01, number of 

estimators: 300, number of leaves: 9, alpha: 0, lambda: 

0.1, and task: train. The LightGBM disclosed a test RMSE 

of 0.1972, in which the test R2 was 0.8860, performing 

better than the random forest but worse than the XGBoost 

regressor. The RMSE and R2 values in the training dataset 

were 0.1458 and 0.9405, which implied overfitting again. 

Overfitting was verified with the parallel RMSE lines in 

Figure 12. The top-five feature rankings included the 

TEU, CharterTime_TEU, CharterTime, ShipAge, and the 

laycan year 2021. 

The result of the empirical analysis is summarized in 

Table 2. The best-performing model of the trained 

regression models was the XGBoost regressor with the 

least RMSE value. 

Table 2. Summary of the Regression Model Results 

Regressor RMSE R-squared

Linear 

Regression 0.2898 0.7538 

Ridge 0.2893 0.7546 

Lasso 0.2892 0.7548 

SGD 0.2970 0.7415 

Random Forest 0.2154 0.8640 

XGBoost 0.1833 0.9015 

LightGBM 0.1972 0.8860 

Discussion and Conclusion 

Container shipping is one of the most important 

components of international trade. Charter rates play a 

significant role when making decisions and taking action 

in container shipping. However, it is quite a challenge to 

have a clear opinion on how the rates will develop in the 

future, especially in today's turbulent economic 

environment. This study strived to propose a model for 
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predicting charter rates to create added value for the 

decision-makers and stakeholders in the maritime 

business. The predictors considered in the analysis were 

the TEU, charter time, charter time multiplied by the 

TEU, ship age, container fixture type, laycan year, and the 

laycan month. The analysis first focused on the traditional 

linear regression model and strived for its enhancement 

by applying regularization and stochastic methods. In this 

sense, the RMSE values of the linear regression, ridge, 

lasso, and SGD regressor were 0.2898, 0.2893, 0.2892, 

and 0.2970, respectively. However, limitations arise due 

to the fulfillment of the assumptions of linear regression. 

To cope with this challenge, tree-based models were 

further analyzed by constructing models with random 

forest, XGBoost, and LightGBM algorithms. In addition 

to offering flexibility for the assumptions of linear 

regression, the tree-based models reported improved 

RMSE values of 0.2154 (random forest), 0.1833 

(XGBoost), and 0.1972 (LightGBM). Hence, out of the 

trained models, the least RMSE was derived from the 

XGBoost regressor, where the R2 was 0.9015. Besides, 

the overfitting problem was comparatively less evident in 

the XGBoost regression. It was also disclosed that the 

TEU, charter time, ship age, and laycan year were the 

industry's most significant determinants of charter rates. 

In sum, the study highlighted that the XGBoost regression 

could be adapted as a method for charter rate prediction 

with its outstanding prediction accuracy and flexibility. 

As for the study's limitations, it would be worth 

mentioning two main aspects. Firstly, the limited number 

of observations could not be verified how the overfitting 

trend would look as the training data volume increased. 

Secondly, the model employed the laycan year and the 

laycan month as predictors. Accordingly, the prediction 

charter rate is limited to the extent that these two variables 

are available for the requested time frame. Taking these 

limitations as a basis for future research, the volume of 

observations could be increased to analyze possible 

overfitting situations in tree-based regressors. In addition, 

further research can focus on LSTM (long short-term 

memory) and neural network-based models such as CNN 

(convolutional neural network). 
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