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 Accurate yield estimation before harvest is important for farmers and researchers to optimize 
field management and increase productivity. The purpose of this study is to develop efficient 
cotton plant productivity using field studies and satellite imagery. Nitrogen (N) fertilizer is an 
important nutrient in plant development, and when suboptimal amounts are applied, it can 
cause yield reductions. Different vegetation indices were employed to analyze the dynamics 
and yield of cotton plants, with a primary focus on the Red, Near-Infrared (NIR), and Red Edge 
bands derived from satellite imagery. The objective was to assess the nitrogen content in the 
plants. The present study involved a comparative analysis of various vegetation indicators in 
relation to cotton plant production. The productivity of the cotton plant was assessed by 
employing the indices that exhibited the most influence. The analysis revealed that the MCARI 
index exhibited the worst weaknesses, while the CLRE index demonstrated the main 
performance. The productivity of each index was computed, and it was observed that the CLRE 
index exhibited the closest proximity to the average productivity of 34.48 cents per hectare 
(cent/ha). Similar results have been observed in other indices. The MCARI index exhibits a 
distinct value of 32.08 in comparison to the others indices. The results of this study illustrate 
the potential of satellite imaging in monitoring cotton yield, hence offering valuable 
theoretical and technological assistance for estimating cotton production in agricultural areas. 
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1. Introduction  
 

Agriculture plays a crucial role in the global economy, 
and as the world's population grows, the need for 
agricultural products increases [1]. Cotton belongs to the 
genus Gossypium L. of Malvaceae family [2]. The cotton 
industry is of great national economic importance in 
terms of employment of the population and the 
development of the textile industry. Cotton is among the 
most cultivated plants in the world [3]. Today, the most 
developed countries in the world are engaged in cotton 
production. Countries such as the USA, Israel, Turkey, 
China, and India receive quite a lot of income from this 
field. China, India and the United States are the top three 
producers of cotton in the world [4-5]. Cotton growing in 
Pakistan, Uzbekistan and Turkey is developing at a high 
pace. Along with the development of cotton cultivation in 
these countries, the textile industry is also expanding. 

Crop growth and productivity are the combined 
effects of the environment, water, soil, nitrogen and other 

components. This makes product evaluation difficult and 
often inaccurate. Currently, evaluation of cotton plant 
productivity plays an important role for agriculture [6]. 
Conventionally, cotton yield is estimated based on the 
number of bolls per unit area. However, cotton yield 
varies according to field irrigation and fertilization. Many 
researchers have tried to develop different methods to 
increase the accuracy of productivity estimation [7–9]. 

 The traditional yield survey method relies on the 
experience of farmers or professionals, which is time-
consuming, laborious and uncertain. Recent studies have 
shown that technological progress can play a crucial role 
in achieving sustainable intensification in agriculture 
[10]. In recent years, remote sensing technology has been 
widely applied in agriculture [11]. At present, relevant 
scientists also offer various methods for predicting 
cotton yield.  

Quan Xu significantly contributed to the enhancement 
of precision agriculture by conducting an evaluation of 
cotton productivity in China [12]. The study introduced a 
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novel approach named SENP (Seedling Emergence and 
Number of Peaches) that leverages the capabilities of 
Amazon Web Services (AWS). The assessment of cotton 
productivity was conducted utilizing high-resolution 
data collected by an Unmanned Aerial Vehicle (UAV), the 
U-Net model of deep learning and Sentinel-2 data. It is 
demonstrated that estimating cotton condition from 
Normalized difference vegetation index (NDVI) data 
collected over a specific time is imprecise. The utilization 
of predominantly time series data has demonstrated that 
NDVI is a more effective method for monitoring cotton 
development. The experiment's results indicate that 
utilizing cotton emergence and growth data is a suitable 
approach for estimating yield. The reliability and 
excellent accuracy of the SENP-based cotton yield 
estimation model have been proven through validation 
using the real crop. Therefore, a digital platform has been 
developed utilizing Amazon Web Services (AWS) and 
ENVI Services Engine (ESE) measure cotton production 
online. This platform aims to offer valuable data for 
regional agricultural management and macro-level 
decision-making, leveraging the benefits of cloud 
computing. Accuracy of precision achieved in the 
experiment was 93.88%, recall rate was found to be 
97.87% and F value calculated 95.83%. 

Guanwei Shi employed a new method to estimate 
cotton yield by utilizing the density of open Cotton boll 
Pixels (DCP) derived from unmanned aerial vehicles 
(UAVs) [13]. Correlation analysis was employed to 
compare the performance of several indexes. A 
performance indicator that demonstrates excellence and 
an index that measures profitability, both obtained from 
empirical field research, are conceptualized. The study 
area is partitioned into three distinct regions, each 
characterized by varying datasets obtained from drone-
based observations and traditional field surveys. The 
findings of the study indicate a significant relationship 
between the DCP and crop yield, as evidenced by a 
Pearson correlation coefficient of 0.84. The Random 
Forest (RF) technique had superior performance in 
estimating revenue, as evidenced by its average R-
squared (R2) value of 0.77 and relative root mean 
squared error (RMSE) value of 7.5%. 

Ping Lang investigated the most significant VIs and 
CVs for Xinjiang Province district-level cotton 
productivity estimation [14]. The researcher discovered 
that the vegetation indices (VIs) pertaining to canopy 
structure, chlorophyll content, and moisture coefficient 
of variation (CV) were the primary determinants 
influencing the growth of cotton. The individual 
employed various regression methodologies to estimate 
cotton yield. The study acquired annual (April-
September) and monthly averages of MODIS and 
Sentinel-2 photos pertaining to cotton fields from 2012 
to 2019. A total of 14 satellite VIs were computed to 
forecast fertility. Monthly data was utilized for the 
purpose of predicting cotton production prior to harvest 
and examining the temporal progression of cotton 
growth. Climatic variables are extensively employed in 
the estimation of crop productivity. The findings of the 
study indicate that the Long Short-Term Memory (LSTM) 
model exhibited the highest performance, as evidenced 
by an R2 value of 0.76, a Root Mean Square Error (RMSE) 

of 150 kg/ha, and a relative Root Mean Square Error 
(RMSE) of 8.67%. The study showcased the viability of 
county-level yield estimation and early forecasting in 
extensive cotton fields through the integration of satellite 
imagery and environmental data. 

Compared to traditional methods, remote sensing 
methods are more economical and effective when it 
comes to cotton yield monitoring [15-16]. Nitrogen (N) is 
a major nutrient that directly affects plant behavior [17-
18]. Both N deficiency and N excess have negative effects 
on plant development, yield, and fiber quality [19-20]. 
Insufficient N supply often leads to reduced leaf area and 
reduced leaf photosynthesis and biomass production, 
resulting in reduced yield and unsatisfactory fiber 
quality [21-23]. VIs used in yield calculations are 
designed to increase sensitivity to vegetation 
characteristics while minimizing confounding factors 
such as soil background reflectance, directional, and 
atmospheric effects [24-25]. 

The implementation of satellite remote sensing has 
been widely used in agricultural research. The utilization 
of satellite data to calculate VIs has emerged as a 
prevalent approach in predicting crop yields [26]. VIs has 
the capability to characterize biotic attributes, including 
vegetation structure, chlorophyll concentration, and 
nitrogen content. Various VIs, such as the (NDVI), 
Enhanced Vegetation Index (EVI), and Near Infrared 
Reflectance of Vegetation (NIR), have been employed in 
studies to elucidate the fluctuations in yields of wheat, 
cotton, corn, rice, and soybeans [27-28]. Even though VIs 
is useful in predicting cotton production, environmental 
conditions should also be taken into account as a 
component that affects yield. 

The objective of this research is to assess productivity 
of the cotton plant by determining the growth level 
(biomass) with the VI based on ground and satellite data. 
VIs is considered the main factor in agriculture to 
calculate the biomass of vegetation in cultivated areas. 

 

2. Method 
 

The focus of this study related to the cotton fields 
located within Beylagan district (Figure 1). Beylagan 
district has boundaries with the Agjabadi, Zardab, Fuzuli, 
and Imishli districts of the Republic of Azerbaijan, as well 
as the Islamic Republic of Iran [29]. Azerbaijan, the 
nation and former Soviet republic is geographically 
bounded by the Caspian Sea and the Caucasus Mountains, 
encompassing territories spanning the continents of Asia 
and Europe. The geographical location of this entity is 
situated in the central region of the country, and it is 
encompassed within the Mil-Mugan Economic Region. 
The district spans between longitudes 47.46°E and 
47.94°E, and latitudes 39.57°N and 40.14°N. The district 
covers an area of 1.13 thousand square kilometers. 
Beylagan is the city in the center. 

The scope of this study encompasses cultivated 
cotton fields spanning across 14 villages, occupying a 
total arable land area of 59,893 hectares. Based on 
statistical data, it can be observed that the financial 
backing for planted cotton fields primarily stems from 
three firms, namely "MTK IK" LLC, "Azer Pambig" LLC, 
and "P-Agro" LLC [30]. 
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Figure 1. Study area. 

 
2.1. Data 
 

At the initial stage, Azersky/SPOT-7 (Satellite Pour 
l'Observation de la Terre-7) satellite images taken in 
periods covering different vegetation stages of cotton 
were used in the research area [31-32]. SPOT 7 is an 
Azerbaijan's first commercial high-resolution earth 
observation satellite. It was launched on 30 June 2014 
and ceased operations on 17 March 2023. On December 
2, 2014, the name was changed to 'Azersky'. It was 
providing a consistent stream of high-resolution, wide-
swath data. The Panchromatic imagery exhibited a 

resolution of 1.5 meters, whereas the Multispectral 
imagery showed a resolution of 6 meters. The imaging 
system consisted of 1 panchromatic band and 4 
multispectral bands, specifically capturing data in the 
green, blue, red, and near-infrared wavelengths. The 
shown landscape exhibited a range of dimensions, with a 
minimum extent of 60 kilometers by 60 kilometers and a 
maximum extent of 60 kilometers by 600 kilometers. The 
satellite was deployed in a Sun-synchronous circular 
orbit at an altitude of 694 km. 

Based on the controlled classification algorithm of 
satellite images, cotton fields were identified in the area 
[33-34]. Hancong [35] calculated the percentage of 
cotton area using satellite imagery. By dividing the 
number of cotton pixels by the total area of the field, they 
obtained the percentage of cotton area that was strongly 
correlated with yield. The methodology consists of two 
main data sources (Figure 2). Satellite images and field 
research data were used. The image used is the main 
phase of the plant in the growing season [36]. NDVI was 
produced based on a satellite image of the study area 
acquired on August 17, 2022 (Figure 3) to separate the 
cotton fields [37-38]. 

Five stationary observation sites were chosen using 
NDVI images to assess the development state of the 
cotton fields in the study area (Figure 4). Thus, the 
stationary areas to be researched cover approximately 
2350 ha of cotton cultivation area, which is up to 27% of 
the total cotton cultivation area. Cotton plantations are 
categorized into three distinct classes based on their 
level of development. Weak, medium and high levels of 
productivity. Field study was conducted in each of the 
five pee-determined permanent observation areas, 
following the approved sequence of activities inside the 
specific cotton fields of the respective areas. The 
agricultural enterprises in the local area supplied 
farmers with a range of cultivars, including BA-440, 
Flash, Lodos, May 344, ADN-123, Ganja-114 and Ganja-
160. 

 

 
Figure 2. Productivity modeling based on remote sensing and field survey data. 
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Figure 3. NDVI image of the study area. 

 

 
Figure 4. Selected stationary observation sites.

 
The study involved the random selection of a 1-meter 

row of plant bushes within a designated region spreading 
20-25 meters. The objective was to determine the 
quantity of plant bushes in this row, as well as the 
number of productive cotton bolls that were older than 
30-35 days, within these bushes. However, it should be 
noted that the repetition of the same activities was 
carried out in a diagonal manner with 30-50 meters, 
depending on the size of the field. The determination and 
record of both the plant count and boll count were 

conducted at a minimum of three distinct locations along 
a single diagonal within each field. Additionally, this 
process was repeated on the other diagonal in two 
separate samples. For an example, the product of 219.6 
grams of cotton per meter and the row length of 11111.1 
meters yields a value of 2440 kg or 24.4 centners per 
hectare. In each group, a diagonal assessment was 
conducted across three samples to determine the 
number of plants within a one-meter radius and the 
corresponding count of bolls capable of producing crop. 
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Subsequently, cotton samples were obtained from the 
opened bolls and quantified by weight using an 
electronic scale. Multiple independent experiments were 
done on predetermined regions, referred to as stationary 
zones (Table 1). 

Nowadays, the evaluation of plant production 
primarily relies on the utilization of satellite remote 
sensing data. The Sentinel-2 satellite was employed due 
to the absence of a red edge capability in the Azersky 
satellite. Multispectral sensors (MSI) with 13 spectral 
bands and varying spatial resolutions (10, 20, 60 m) are 
installed on board the twin satellites Sentinel-2, A and B. 
This provides novel prospects for the monitoring of 
agricultural activities at both regional and global scales. 
The utilization of the Sentinel-2 satellite has facilitated 
the conduction of time-series analysis for monitoring 
agricultural development and studying productivity. 
 

Table 1. Statistical analysis of field research results. 
Study 
area 

Number of 
samples 

Biological productivity 
cent/ha 

1 5 35.1 

2 5 43.2 

3 5 35.9 

4 6 36.6 

5 5 34.5 

6 6 41.1 

7 6 45.4 

8 6 36.4 

9 6 45.3 

10 6 44.4 

11 6 31.0 

12 6 33.7 

13 6 31.8 

14 5 33.1 

15 6 32.1 

16 5 36.8 

17 5 29.8 

18 6 30.8 

19 5 32.7 

20 5 32.9 

21 6 30.3 

22 6 34.7 

23 5 30.5 

24 6 42.4 

25 5 31.2 

Sum 139 33.5 cent/ha 

 
 

2.2. Vegetation indices 
 

The most used indices for vegetation use red and 
near-infrared (NIR) reflectance or brightness data [39]. 
For this purpose, some VIs such as NDVI, Chlorophyll 
vegetation index (CVI), Modified Chlorophyll Absorption 
in Reflectance Index (MCARI), Normalized Difference 
Red-Edge (NDRE), Chlorophyll Red Edge Index (CIre) 
and The Green Normalized Difference Vegetation Index 
(GNDVI) have been used. 

Various VIs is employed in the computation of cotton 
yield (Table2). NDVI indicates that in healthy vegetation 
where there is a lot of green foliage, most of the visible 
light that hits it is absorbed, while NIR light is mainly 
reflected by the plant [40-41]. Unhealthy vegetation with 
little or no green foliage reflects most of the visible light, 
absorbing more NIR light [42-43]. Strong correlations 
are observed between NDVI measurements and plant 
biomass, total green area, spikeless green area, and 
above-ground nitrogen content [44-46]. The calculation 
procedure of NDVI is as follows [47-48]. CVI has an 
increased sensitivity to the chlorophyll content of leaf 
cover [49]. It is used early to mid-crop growth cycle for a 
wide range of soil and crop conditions by analyzing a 
large set of synthetic data obtained using a leaf surface 
contrast model. The increased sensitivity of the index to 
leaf chlorophyll concentration is due to the effective 
normalization of different LAI values obtained by 
applying red and green colors. MCARI measures the 
depth of chlorophyll absorption and is very sensitive to 
changes in leaf area index and chlorophyll concentration 
[50-51]. MCARI values are not affected by lighting 
conditions, background reflection from soil and other 
observed non-photosynthetic materials. 

Using the Normalized Difference Red-Edge (NDRE) 
Red edge parameter, a measurement that is not strongly 
absorbed by the uppermost layers of leaves allows for 
better information about plants at a later stage [52-53]. 
These include poor watering, disease, improper fertilizer 
use, or identifying pests. 

CIrededge was developed to estimate the chlorophyll 
content of leaves using the ratio of reflectance in the 
near-infrared (NIR) and red-edge bands [54]. 
Chlorophyll is a good indicator of a plant's production 
potential. Additionally, it can be utilized to get insight on 
the nutrient status of plants, the presence of water stress, 
the prevalence of diseases, and other related factors. 

 
Table 2. Vegetation indices formula.  

Index Formula Reference 
NDVI (NIR-RED) / (NIR + RED) [40] 
CVI (NIR * (RED / (GREEN*GREEN) [49] 

MCARI ((RE-RED) -0.2 * / (RE-GREEN)) * (RE + RED) [50] 
NDRE (RE-RED) / (RE + RED) [52] 
CLRE 

GNDVI 
(NIR – RE) / 1 

(NIR – Green) / (NIR + Green) 
[54] 
[55] 

 
GNDVI provides an indicator for quantifying the level 

of "greenness" or photosynthetic activity shown by crops 
[55]. The vegetation index (VI) under consideration is 
extensively employed for assessing water and nitrogen 
absorption inside the crop canopy. The results provided 

by this index exhibit variation within the range of -1 to 1. 
Values within the range of -1 to 0 are indicative of the 
existence of water or exposed soil. The utilization of this 
measure is primarily observed throughout the 
intermediate and final phases of the crop cycle. GNDVI is 
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a quantitative measure that utilizes the near infrared and 
green band wavelengths within the electromagnetic 
spectrum. 

CLRE enhances vegetation detection in areas with 
little vegetation cover by utilizing the difference between 
the NIR and red edge bands. It can be used to monitor 
vegetation change in dry and semi-arid locations. The 
NDRE is calculated using the nir and red edge bands. The 
NDRE system is intended for observing the depth of 
dense vegetation. This makes it an excellent instrument 
for monitoring densely planted crops such as coffee, 
corn, cotton, grapes, sunflowers, and others. CVI 
estimates chlorophyll concentration in plants using the 
ratio of NIR and red bands. It can be used to monitor 
plant health and detect nutritional deficits in crops. 
MCARI reacts to chlorophyll content in the leaf and 
ground reflectance. In general, high MCARI readings 
suggest a poor chlorophyll concentration in the leaf. 
MCARI has a deficit in forecasting low chlorophyll 
concentrations, which is exacerbated by the influence of 
the soil signal. The Nir and red bands are used to 
calculate NDVI. The density and greenness of vegetation 
in a field can be measured using NDVI. Dense green 
vegetation is a good general sign of crop health under the 
proper conditions and at the right time of year. However, 
cotton is a unique plant, it produces varied results when 
calculating productivity. The NDVI is primarily used to 
calculate the degree of photosynthesis in plants. As a 

result, the healthier and denser the plant tissues are, the 
more energy they absorb while also reflecting the NIR 
spectrum. Vegetation covers have indicators ranging 
from 0.3 to 0.8 (tall and dense plants) as biomass 
increases. MCARI is the proportion of the green, Nir and 
red bands. 

According to the field samples collected to determine 
the biological productivity and the calculations made, the 
productivity of the cotton fields was divided into 3 
classes according to the following up criteria: 

 
Poorly developed, up to 60-62 cones per meter:  
61 x 4.5** = 180 g x 11111* = up to 31 cent/ha 
 
Medium developed, up to 65-70 cones per meter:  
67 x 4.5 = 225 x 11111 = up to 34 cent/ha 
 
Strongly developed, up to 75-80 cones per meter:  
80 x 4.5 = 363 x 11111 = up to 40 cent/ha 
 
* 11111 - row length in 1 hectare. 
** 4.5 – average cotton weight from field data 
 
Based on statistical indicators, 2350 hectares of the 

9122 ha of cotton area planted in the region formed the 
scope of our research, and the biological productivity of 
cotton was studied in 139 samples in those areas. This 
includes one sample for every 16.9 hectares of cotton. 

 

 
Figure 5. Development levels of vegetation indices. 

 
 

The most critical phase in cotton irrigation is the 
second vegetation irrigation. If the second vegetation 
irrigation of cotton is not carried out on time, we can face 
a 25-40 percent decrease in yield. The maximum 
consumption of water by the plant falls during the period 
of flowering and ripening. In this period, the lack of water 
leads to a sharp decrease in the yield and its quality. 
During the period of mass ripening, cotton shows 
relatively little demand for water shortage. The total 
water used for crop production in a cotton field consists 

of the part absorbed by the plant and the part that 
evaporates from the soil. If we consider the total amount 
of water used by the field as 100%, then the water used 
by the plant (for transpiration) will be 60-80% and the 
water evaporated from the soil will be 20-40%. The more 
fertile the soil and the higher the applied agrotechnical 
measures, the less the amount of water that will be used 
for evaporation, and the more efficient its use by the 
plant will be. Irrigation mode and volume of cotton 
should be organized based on the biological 
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characteristics of cotton varieties and the conditions of 
agrotechnics. Experiments show that increasing the 
density of the cotton plant increases the total amount of 
water consumed by the cotton field. This is related to the 
increase of dry mass and leaf area in the same unit area, 
which should be considered when determining the 
irrigation rate. The variety of irrigation also depends on 
the distance between rows. NDVI is mainly used in the 
calculation of biomass density. It is observed that the 
correlation relationship between biomass and 
productivity is not high. For this reason, measuring the 
amount of nitrogen in plants is a more reliable way to 
determine the condition of crops. Based on the results of 
the field samples and the values of the VIs, the cotton 

fields were divided into 3 classes, and the development 
group was determined by using the classified satellite 
images of the areas belonging to each class (Figure 5). 

 

3. Results  
 

NDVI measurements produce different results while 
calculating cotton plant yield during the vegetation 
season by the biomass technique, hence other indices 
were examined in the project while accounting for the 
data mentioned above. It is clear from the graph that CVI, 
MCARI, NDRE, CIrededge and NDVI indices have more 
influence factors during the growing season (Figure 6). 
Therefore, in addition to the NDVI index, the CVI, MCARI, 
NDRE, and CIrededge indexes were utilized. 

 

 
Figure 6. Comparison of different vegetation indices on cotton fields. 

 
The graph provides evidence indicating that CVI 

exhibits a higher level of sensitivity in relation to cotton 
fields. Simultaneously, MCARI has a higher level of 
sensitivity in comparison to other alternatives. The 
values of NDVI, NDRE, and CLRE exhibit a high degree of 
similarity. Distribution percentages and "Impact index" 
(Ti) coefficient were calculated based on the values of VIs 

selected according to the obtained indicators and the 
state of development (Table 3). As we defined earlier, 
weak areas were considered as 31 cent/ha, medium 
areas as 34 cent/ha and strong areas as 40 cents/ha. As a 
result of the observations, the weakest areas are 
observed in the MCARI, and the strongest areas are 
observed in the CLRE index (Figure 7). 

 
Table 3. Vegetation indices results.  

 Level of development Values Area* Impact index**, Ti 

NDVl 
Low < 0.66 4901.4 ha 53.68 % 
Mid 0.66 - 0.72 2887.18 ha 31.6 % 
High > 0.72 1342.77 ha 14.7 % 

NDRE 
Low < 0.52 5175.64 ha 56.06 % 
Mid 0.52 - 0.55 1529.56 ha 16.7 % 
High > 0.55 2438.73 ha 26.7 % 

MCARl 
Low < 0.07 6522.41 ha 71.33 % 
Mid 0.07 - 0.09 2292.76 ha 25.07 % 
High > 0.09 328.72 ha 3.59 % 

CVl 
Low < 2.5 5768.76 ha 63.09 % 
Mid 2.5 – 2.6 1161.93 ha 12.71 % 
High > 2.6 2213.28 ha 24.2 % 

CLRE 
Low < 4 4214.11 ha 46.09 % 
Mid 4 – 4.34 2096.26 ha 22.93 % 
High > 4.34 2833.6 ha 30.99 % 

GNDVI 
Low < 0.55 2639.27 ha 28.59 % 
Mid 0.55 – 0.6 2339.95 ha 25.34 % 
High > 0.6 4253.53 ha 46.07 % 
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Figure 7. Grouping of various vegetation indices on 

cotton fields. 
 

Based on the impact indices, the generalized 
Sylvester-transfer matrix equation [56] can be used to 
calculate the average biological productivity for the 
region as shown in Equation 1. 
 

MBio = Mlow*Tilow + Mmid *Timid + Mhigh *Tihigh (1) 

 
Cotton harvested from cultivated fields yielded an 

average of 34.4 cents per hectare in 2022 [57]. The 
various VIs yielded diverse outcomes. Among the indices 
considered, the CLRE index had a level of production that 
closely approximated the average value of 34.48 (Figure 
8). Similar values have been obtained for other indices. 
The MCARI index exhibits a distinct value in comparison 
to the remaining indices. 
 

 
Figure 8. Average cotton yield of vegetation indices. 

 
 

4. Discussion 
 

The objective of this work is to forecast the yield of 
cotton by utilizing VIs that are derived from satellite 
imagery. One notable advantage associated with the 
utilization of satellites for plant monitoring is the 
capacity for remote control, which consequently leads to 
reduced maintenance expenses. 

A total of six VIs were chosen for the purpose of 
conducting a comprehensive assessment of vegetation 
within the designated experimental region, as indicated 
in Table 3. The calculation of VIs was performed by 
utilizing multispectral reflectance measurements taken 
at certain wavelengths, including the visible, near-

infrared, and red-edge regions. The range of lengths has 
been employed in several applications within the field of 
precision agriculture, ranging from to plant counting, 
growth tracking, and chlorophyll measurement. 

Currently, the assessment of plant productivity is 
carried out mainly based remote sensing data. The red 
edge band is used to measure chlorophyll levels. The 
Sentinel-2 satellite was utilized because the Azersky 
satellite does not have a red edge band. The fundamental 
issue with these techniques is that Sentinel images’ 
resolution is low for some uses. Nevertheless, Sentinel 
images are sufficient for vegetation monitoring. 

The primary objective of our initial experiment was to 
examine the significance of various satellite data and VIs 
in the assessment of cotton yield. After conducting a 
screening process on a sample of 10 variables of interest 
(VIs), a total of six VIs were chosen for further analysis. 
They exhibit a heightened sensitivity for cotton fields 
compared to other individuals. Similar to the majority of 
crops, reflectance exhibits its maximum values 
throughout the infrared range, while displaying 
relatively minimal absorption within the green range and 
total absorption within the red range. According to Meng 
et al. (2017), VIs has proven to be a successful approach 
in the monitoring of crop development and yield. 

NDVI is extensively employed for assessing crop 
health. However, it is important to note that the 
calculated productivity of different crop types using the 
NDVI index may yield varying results. According to a 
study conducted by [58], it has been observed that high 
NDVI values throughout the developmental phase of 
cotton do not necessarily correlate with high 
productivity. The timely implementation of irrigation 
practices has a significant impact on plant development 
in regions where it is not promptly executed. If the crops 
receive further irrigation from underground water 
sources, this simply impacts the growth and maturation 
of the leaves. During this phase, the growth of the cotton 
plant is inhibited, resulting in stunted development. 
Consequently, the assessment of production through the 
evaluation of NDVI values becomes complex. Hence, the 
growth of additional leaves does not invariably serve as 
the main reason for the formation of cones. In the context 
of cotton fields, there is a notable proximity in values 
seen between areas characterized by both low and high 
production. Consequently, this difference leads to 
different outcomes while calculating productivity. This 
rationale was employed in further indices apart from 
NDVI. 

Measuring the amount of nitrogen in plants is a more 
reliable technique to estimate crop condition when 
calculating biomass density. The classification of cotton 
fields into three classes was based on the findings from 
field samples and the analysis of VI values. Subsequently, 
satellite images were utilized to classify the areas of each 
class, and the development group was identified (Figure 
5). 

The analysis involved conducting an overall 
assessment of the VI values obtained from the sample 
locations utilized in the field investigation. Each VI 
possesses distinct values. The graph (Figure 9) illustrates 
the range of values for the CLRE index, with the minimal 
value being 3.22 and the highest value being 4.99 du. The 
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NDVI index ranges from a minimum value of 0.51 to a 
maximum value of 0.71. Similarly, the NDRE index ranges 
from a minimum value of 0.38 to a maximum value of 0.6. 
The MCARI index ranges from a minimum value of 0.03 

to a maximum value of 0.09. The CVI index ranges from a 
minimum value of 2.03 to a maximum value of 2.87. 
Lastly, the GNDVI index ranges from a minimum value of 
0.44 to a maximum value of 0.62. 

 

 
Figure 9. Distribution values of vegetation indices. 

 
In the context of CLRE, low area values classified up 

to 4, medium areas to 4-4.34, and high area with values 
over 4.34. The selection criteria for categorizing areas 
based on NDVI values up to 0.66 were classified as low, 
areas with NDVI values ranging from 0.66 to 0.72 were 
classified as medium, and areas with NDVI values greater 
than 0.72 were classified as high. The selection criteria 
for NDRE values below 0.52 were classified as low, areas 
with NDRE values ranging from 0.52 to 0.55 were 
classified as medium, and areas with NDRE values 
greater than 0.55 were classified as high. The selection 
criteria for MCARI involved categorizing areas as low if 
their values were up to 0.07, if their values were from 
0.07 to 0.09 as medium, and high if their values exceeded 
0.09. In the context of CVI, regions with a CVI value of up 
to 2.5 were classified as low areas, while places with CVI 
values ranging from 2.5 to 2.6 were categorized as 
medium areas. CVI values over 2.6 were designated as 
good areas. Lastly, GNDVI areas with values below 0.5 
were categorized as low, areas with values ranging from 
0.5 to 0.55 were classified as medium, and areas with 
values above 0.55 were designated as high. 

The categorization of cotton fields based on VIs were 
conducted, taking into consideration the productivity of 
each field. Based on the data derived from field research, 
places exhibiting lower levels of performance were 
categorized as weak, with an average cost of 31 cents per 
hectare. places demonstrating moderate levels of 
performance were classified as medium, with an average 
cost of 34 cents per hectare. Lastly, areas displaying 
higher levels of performance were designated as strong, 
with an average cost of 40 cents per hectare. The VIs of 
the respective locations were compared using the 
provided data. Therefore, the development groups and 
intermediate values derived from each index have been 
identified. Once the identification of each development 
area was completed, the respective area was quantified 
and subsequently assigned a percentage value, referred 
to as the impact index. The average productivity of the 

development groups and the region was determined 
based on data collected from impact and field studies. 

According to statistics data, the mean productivity in 
the region was calculated to be 34.4 cents per hectare. 
Based on the calculations derived from the ClRE values in 
our investigation, the productivity observed was found 
to be near the average value with 34.48 (Figure 8). The 
analysis reveals that there is no significant difference in 
the mean productivity achieved across other indices. The 
MCARI index exhibits a distinct value in comparison to 
the remaining indices. The primary factor contributing to 
this phenomenon is the prevalence of underdeveloped 
regions in MCARI, as depicted in Figure 7. Furthermore, 
it is evident that there are comparatively few high areas 
(3.59%), which is the lowest percentage when compared 
to other indices. The medium areas exhibit a range of 12-
31% across all indices. 

The occurrence of moderate weather during the 
months of May and June in 2022 resulted in delays in the 
vegetation season of plants and restricted their growth. 
The growing season was extended beyond expectations 
due to the negative impact of prolonged overcast and 
foggy days on the cotton plant. The process of maturation 
and boll opening is experiencing a delay. Additionally, 
Insufficient exposure to sunlight can also lead to the 
deterioration of internal organs [59]. All varieties of 
cotton plants necessitate exposure to shorter daylight 
periods. While the plant development levels in past years 
exhibited distinct visibility, the development levels in the 
current year displayed a notable proximity to one 
another. Crop yields can fluctuate from year to year due 
to a combination of various genotypes, management 
approaches, and extreme weather conditions, including 
high temperatures, precipitation, floods, and droughts 
[60]. The precise and punctual assessment of cotton 
output is crucial to implement efficient agronomic 
management strategies intended for mitigating potential 
losses [61]. Due to this factor, there existed distinct 
variations in the values of the acquired VIs. Furthermore, 



Turkish Journal of Engineering – 2024, 8(1), 139-151 

 

  148  

 

the cotton plant's development is adversely impacted by 
drought conditions and water scarcity. 

Nitrogen plays a crucial role in promoting plant 
development and enhancing productivity. The proper 
growth and physiological development of cotton are 
crucial factors to consider [62]. Analyzing the anomalies 
that have occurred within the cotton fields over the 
previous five years has revealed various consequences 
depending on the amount of nitrogen. The categorization 
led to the identification of areas with excellent, good, 

efficient, and poor performance (Figure 10). Poor areas 
are more visible in 2019 than other years. In 2020, high 
areas are more dominant. In the year 2022, there is a 
greater prevalence of fields that are considered medium 
or good. Upon analyzing the five-year statistical data 
pertaining to the Beylagan region, it is evident that the 
agricultural production in the year 2020 surpassed that 
of previous years, reaching a notable value of 35.5 cents 
per hectare [30]. 
 

 

 
Figure 10. Classification of 5-year cotton fields. 

 
5. Conclusion  
 

In this study, satellite imagery was used to monitor 
cotton yield before harvest. VIs and field samples were 
used to estimate pre-harvest cotton yield from the 
images. Since nitrogen plays an important role in aphid 
development, several VIs have been used to estimate 
plant height in cotton with high accuracy based on 
remote sensing data in the visible, NIR and Red Edge 
regions of the spectrum. VIs extracted from the obtained 
images and sample yield were significantly correlated 
and therefore could be used in cotton yield monitoring. 
This shows us that it is possible to obtain practical and 
economic solutions with satellite observations. 
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