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Abstract: In this paper, damped spring-mass systems with generalized piecewise constant
argument and with functional dependence on generalized piecewise constant argument
are considered. These spring-mass systems have piecewise constant forces of the forms
Ax(γ(t)) and Ax(γ(t))+h(t,xt ,xγ(t)), respectively. These spring-mass systems are exam-
ined without reducing them into discrete equations. While doing this examination, we
make use of the results which have been obtained for differential equations with functional
dependence on generalized piecewise constant argument in [1]. Sufficient conditions for
the existence and uniqueness of solutions of the spring-mass system with functional de-
pendence on generalized piecewise constant argument are given. The periodic solution of
the spring-mass system which has functional force is created with the help of the Green’s
function, and its uniqueness is proved. The obtained theoretical results are illustrated by
an example. This illustration shows that the damped spring-mass systems with functional
dependence on generalized piecewise constant argument with proper parameters has a
unique periodic solution which can be expressed by Green’s function.

Parçalı Sabit Argümana Fonksiyonel Bağımlı Kuvvetli Bir Yay-Kütle Sisteminin Green
Fonksiyonu ve Periyodik Çözümleri

Anahtar Kelimeler
Genelleştirilmiş parçalı sabit
argümana fonksiyonel bağımlı
diferansiyel denklemler,
Periyodik çözümler,
Green fonksiyonu,
Yay-Kütle sistemi

Özet: Bu çalışmada, genelleştirilmiş parçalı sabit argümanlı ve genelleştirilmiş parçalı
sabit argümana fonksiyonel bağımlı sönümlü yay-kütle sistemleri düşünülmüştür. Bu
yay-kütle sistemleri sırasıyla Ax(γ(t)) ve Ax(γ(t))+h(t,xt ,xγ(t)) formlarında parçalı sabit
kuvvetlere sahiptirler. Bu yay-kütle sistemleri ayrık denklemlere dönüştürülmeden incelen-
miştir. Bu inceleme yapılırken, genelleştirilmiş parçalı sabit argümana fonksiyonel bağımlı
diferansiyel denklemler için elde edilen sonuçlardan [1] faydalanılmıştır. Genelleştirilmiş
parçalı sabit argümana fonksiyonel bağımlı yay-kütle sisteminin çözümlerinin varlık ve
tekliği için yeterli koşullar verilmiştir. Green fonksiyonu yardımıyla fonksiyonel kuvvetli
yay-kütle sisteminin periyodik çözümü oluşturulmuştur ve tekliği ispatlanmıştır. Elde
edilen teorik sonuçlar örneklendirilmiştir. Bu örnek, belli parametreler için genelleştir-
ilmiş parçalı sabit argümana fonksiyonel bağımlı sönümlü yay-kütle sisteminin Green
fonksiyonu ile ifade edilebilen tek bir periyodik çözüme sahip olduğunu göstermiştir.

1. Introduction and Preliminaries

Delay differential equations play an important role to
model real world problems, and scientists [2–5] have done
a lot of work on these types of equations. Differential
equations with piecewise constant argument which
are in the class of delay differential equations, have
deviating arguments of retarded and/or advanced type
[1, 6–9]. Recently, numerous problems mainly related to
the existence of periodic and almost periodic solutions
[8, 10–13], oscillatory behavior of solutions [10, 14–18],
global attractivity of the trivial solution [19] have been
investigated for differential equations with piecewise

* Corresponding author: duyguarugaslan@sdu.edu.tr

constant argument. This type of differential equations
were initiated by Cooke and Wiener [9]. Furthermore,
Cooke and Wiener [20] gave a survey paper concerning
theorems for existence, uniqueness, stability, and results
on existence and oscillation of periodic solutions. In addi-
tion to these developments, Akhmet [21–23] introduced
differential equations with piecewise constant argument of
generalized type, and these equations are studied by many
authors [1, 7, 24–29]. Later, he defined a new class of
differential equations: retarded differential equations with
functional dependence on piecewise constant argument
[1]. In [1], conditions for the existence and uniqueness
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of periodic solutions using Green’s function, existence
and uniqueness of almost periodic solutions, exponential
stability of solutions and periodic solutions, boundedness
of the solutions were obtained under certain assumptions.
Besides, modeling by functional differential equations
provide more detailed analysis for real life problems since
they represent dependency on system’s past and future
situations of its current time. So, functional differential
equations have a great importance, and much investigation
has been carried out on the solutions and on the existence
of periodic solutions for various types of them (see, e.g.,
[30–33] and references therein).

The general form of a damped spring-mass equation whose
main expression come from Newton’s second law and
Hooke’s law for a spring is

mx′′+ cx′+ kx = 0, (1)

which is called a damped harmonic oscillator, as well.
Here, m > 0 is the mass, c > 0 is the damping coefficient,
k > 0 is the spring constant and x(t) is the displacement of
the mass. The cases ∆ > 0, ∆ = 0, ∆ < 0 for the discrimi-
nant

∆ =
c2

m2 −4
k
m

of the equation

s2 +
c
m

s+
k
m

= 0

of the spring-mass system (1) show that the system (1)
exhibits motion with over damped, critical damped and un-
der damped, respectively. The spring-mass system (1) can
include any external force H, in other words, the system (1)
can typically be written as nonhomogeneous differential
equation

mx′′+ cx′+ kx = H, (2)

which is referred as a forced harmonic oscillator. Spring-
mass systems have been widely used by many scientists
in the fields such as physics [34–37], mathematics
[14, 38], biomechanics [39, 40], electrical and computer
engineering [41], biology [42]. Dai and Singh [14] studied
the oscillation problem for the damped spring-mass
equation (2) taking the piecewise constant force Ax([t])
instead of the external force H. In the piecewise constant
force Ax([t]), A specifies the magnitude of the force.

Let Z and R be the sets of all integers and real numbers,
respectively. || · || signs to the Euclidean norm in
R2. Fix two real valued sequences θi, ζi, i ∈ Z such
that θi < θi+1 and θi ≤ ζi ≤ θi+1 for all i ∈ Z with
|θi| → ∞ as |i| → ∞. Describe by C =C([−τ,0] ,R) and
K = C([−τ,0] ,R2) the sets of all continuous functions
mapping the interval [−τ,0] into R and R2 with the
uniform norm ‖φ‖0 = max[−τ,0] ‖φ‖ for fixed number
0 < τ ∈ R, respectively.

In this paper, we are interested in the following damped
spring-mass systems with generalized piecewise constant
argument

mx′′(t)+ cx′(t)+ kx(t) = Ax(γ(t)), (3)

and with functional dependence on generalized piecewise
constant argument

mx′′(t)+ cx′(t)+ kx(t) = Ax(γ(t))+h(t,xt ,xγ(t)), (4)

where x ∈ R, t ∈ R, and γ(t) = ζi if t ∈ [θi,θi+1), i ∈ Z.
m, c, k and A remark the mass, the coefficient of
damping, the spring constant and the magnitude of the
force, respectively. Let D be a subset of the product
R×C ×C and h : D → R denote a continuous functional
force in system (4). Let Cs = {φ ∈ C |‖φ‖0 ≤ s} where
0 < s ∈ R, and C0(W ) be the set of all bounded and
continuous functions on W . Here, h ∈C0(R×CV ×CV )
for each 0 <V ∈ R. In system (4), xt and xγ(t) mean that
xt(s) = x(t + s) and xγ(t)(s) = x(γ(t)+ s) for s ∈ [−τ,0].

With z1 = x, z2 = x′, the damped spring-mass sytems (3)
and (4) can be reduced to the first-order differential equa-
tions as follows:

z′(t) = Bz(t)+Cz(γ(t)) (5)

and

z′(t) = Bz(t)+Cz(γ(t))+ f (t,zt ,zγ(t)), (6)

where the matrices

B =

[
0 1

− k
m
− c

m

]
and C =

[
0 0
A
m

0

]

depend on the parameters of the spring-mass sys-
tems (3) and (4). Here, continuous functional force
f : F → R2 for a subset F = R×K ×K is given by

f (t,zt ,zγ(t)) =

[
0

1
m

h(t,z1t ,z1γ(t))

]
. The spring-mass

system (5) is a linear homogeneous system with argument-
function γ(t), and the system (6) is a quasilinear system
with functional dependence on argument-function γ(t).

The aim of the present paper is to examine damped spring-
mass systems with generalized piecewise constant argu-
ment and with functional dependence on generalized piece-
wise constant argument without transforming them into
discrete equations, assuming the systems exhibit harmonic
motion with under damped. The fundamental matrix of
the homogeneous spring-mass system (5) is constructed in
several intervals for illustration. Sufficient conditions for
the existence and uniqueness of solutions of (6) are found.
Existence of periodic solutions of the system (6) is investi-
gated by using Green’s function which have been obtained
for differential equations with functional dependence on
piecewise constant argument of generalized type [1]. Then,
we prove the uniqueness of the periodic solution.
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2. Material and Method

In this section, we obtain the fundamental matrix of the
linear homogeneous equation without piecewise constant
argument, i.e. the system x′ = Bx. Then, we create the
matrix-function and the fundamental matrix of the lin-
ear homogeneous equation (5) with piecewise constant
argument in several intervals using the construction of the
fundamental matrix of the differential equations with gen-
eralized piecewise constant argument [1]. Additionally,
we give the assumptions needed for our study. We state
the initial conditions depending on two cases of the initial
value t0.

2.1. The fundamental matrix of the linear homoge-
neous equation without piecewise constant argu-
ment

Consider the system

x′(t) = Bx(t) =

[
0 1

− k
m
− c

m

]
x(t). (7)

Equation given by (7) is the linear homogenous part of (5)
and (6) without piecewise constant argument. Let X(t,s)
denote the fundamental matrix of solutions of (7) satisfying
X(s,s) =I, s∈R, where I is the 2×2 identity matrix. Since
it is assumed that systems (5) and (6) exhibit motion with
under damped, X(t,s) for (7) is in the following form

X(t,s) = eB(t−s)

= e−α(t−s)
[

X11(t,s) X12(t,s)
X21(t,s) X22(t,s)

]
,

where its indices are given by

X11(t,s) = cos(β (t− s))+
α

β
sin(β (t− s)),

X12(t,s) =
1
β

sin(β (t− s)),

X21(t,s) =−
k

mβ
sin(β (t− s)),

X22(t,s) = cos(β (t− s))− α

β
sin(β (t− s)),

and

α =
c

2m
, β =

√
k
m
− c2

4m2 =

√
−∆

2
.

We see that the fundamental matrix X(t,s) has elements
depending on the model we consider.

2.2. The matrix-function and fundamental matrix of
the homogeneous spring-mass system (5)

In [1], a matrix-function Mi(t), i ∈ Z, is introduced as
follows

Mi(t) = X(t,ζi)+
∫ t

ζi

X(t,s)B(s)ds

for the systems

z′(t) = B(t)z(t)+C(t)z(γ(t))

and

z′(t) = B(t)z(t)+C(t)z(γ(t))+ f (t,zt ,zγ(t)).

The matrix-function is important for the investigation of
existence and uniqueness of periodic solutions. We find the
matrix-function Mi(t) for the linear homogeneous system
(5) with piecewise constant argument as

Mi(t) = e−α(t−ζi)

[
Ki Li
Mi Ni

]
and its indices Ki, Li, Mi, Ni are in the following form:

Ki =

(
1− A

k

)(
cos(β (t−ζi))+

α

β
sin(β (t−ζi))

)
+

Aeα(t−ζi)

k
,

Li =
1
β

sin(β (t−ζi)),

Mi =−
k

mβ

(
1− A

k

)
sin(β (t−ζi))

and

Ni = cos(β (t−ζi))−
α

β
sin(β (t−ζi)).

Let us fix t0 ∈ R and assume without loss of gen-
erality that θi < t0 < ζi, i ∈ Z. Z(t) = Z(t, t0) with
Z(t0) = Z(t0, t0) =I is called a fundamental matrix of
the system (5). Let θi ≤ t0 < θi+1 for a fixed i ∈ Z. For
interval t ∈ [t0,θi+1], the fundamental matrix is given by

Z(t) = Mi(t)M−1
i (t0).

The fundamental matrix of (5) is defined for increasing t
and decreasing t as expressed in [1, 6]. In other words, if
θi ≤ t0 < θi+1, t ∈ [θl ,θl+1], l > i, then

Z(t) = Ml(t)
[ i+1

∏
k=l

M−1
k (θk)Mk−1(θk)

]
M−1

i (t0).

If θi ≤ t0 ≤ θi+1, t ∈ [θ j,θ j+1], j < i, then

Z(t) = M j(t)
[ i−1

∏
k= j

M−1
k (θk+1)Mk+1(θk+1)

]
M−1

i (t0).

In this context, we create the fundamental matrix of (5) in
three intervals t ∈ [θi,θi+1], t ∈ [θi−1,θi] for decreasing
t and t ∈ [θi+1,θi+2] for increasing t for illustration. It
is possible to obtain the fundamental matrix for more
intervals.

First, we obtain the fundamental matrix of (5) in the fol-
lowing form

Z(t) = Mi(t)M−1
i (t0) =

e−α(t−t0)

si1

[
Ki1 Li1
Mi1 Ni1

]
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for t ∈ [θi,θi+1] with θi ≤ ζi ≤ θi+1, i∈Z. This fundamen-
tal matrix has indices as follows

Ki1 =
(

1− A
k

)(
cos(β (t− t0))+

α

β
sin(β (t− t0))

)
+

Aeα(t−ζi)

k

(
cos(β (t0−ζi))−

α

β
sin(β (t0−ζi))

)
,

Li1 =
1
β

(
1− A

k

)
sin(β (t− t0))

+
Ae−αζi

βk

(
eαt0 sin(β (t−ζi))− eαt sin(β (t0−ζi))

)
,

Mi1 = − k
mβ

(
1− A

k

)
sin(β (t− t0)),

Ni1 =
(

1− A
k

)(
cos(β (t− t0))−

α

β
sin(β (t− t0))

)
+

Aeα(t0−ζi)

k

(
cos(β (t−ζi))−

α

β
sin(β (t−ζi))

)
,

si1 = 1− A
k

+
Aeα(t0−ζi)

k

(
cos(β (t0−ζi))−

α

β
sin(β (t0−ζi))

)
.

Moreover, for t ∈ [θi−1,θi] where t is decreasing, with
θi−1 ≤ ζi−1 ≤ θi, i ∈ Z, the fundamental matrix of (5) is
in the form

Z(t) = Mi−1(t)M−1
i−1(θi)Mi(θi)M−1

i (t0)

=
e−α(t−t0)

si1si2

[
Ki2 Li2
Mi2 Ni2

]
,

where indices are listed below;

Ki2 =

(
1− A

k

)2(
cos(β (t− t0))+

α

β
sin(β (t− t0))

)
+

A
k

(
1− A

k

)(
eα(t−ζi−1) cos(β (ζi−1− t0))

+ eα(t−ζi−1)
α

β
sin(β (ζi−1− t0))

+ eα(θi−ζi) cos(β (t− t0−θi +ζi))

+ eα(θi−ζi)
α

β
sin(β (t− t0−θi +ζi))

−
(

k
mβ 2

)
sin(β (t−θi))sin(β (t0−ζi))

)
+

A
mβ 2

(
1− A

k

)
eα(θi−ζi−1) sin(β (t−ζi−1))

sin(β (t0−θi))

+
A2

k2 eα(t−ζi+θi−ζi−1)
(

cos(β (t0 +θi−ζi−ζi−1))

− α

β
sin(β (t0 +θi−ζi−ζi−1))

+
k

mβ 2 sin(β (θi−ζi−1))sin(β (t0−ζi))
)
,

Li2 =
1
β

(
1− A

k

)2

sin(β (t− t0))

+
A

kβ

(
1− A

k

)(
eα(t−ζi−1) sin(β (ζi−1− t0))

+ eα(t0−ζi) sin(β (t−ζi))

− eα(θi−ζi) sin(β (t0−ζi))(cos(β (t−θi))

+
α

β
sin(β (t−θi)))

+ eα(θi−ζi−1) sin(β (t−ζi−1))cos(β (t0−θi))

+ eα(θi−ζi−1) sin(β (t−ζi−1))
α

β
sin(β (t0−θi))

)
+

A2

k2β

(
− eα(t−ζi−1+θi−ζi) sin(β (t0−ζi)).

.(cos(β (θi−ζi−1))−
α

β
sin(β (θi−ζi−1)))

+ eα(t−ζi−1+t0−ζi) sin(β (ζi−1−ζi))

+ eα(t0−ζi−1+θi−ζi) sin(β (t−ζi−1))(cos(β (θi−ζi))

− α

β
sin(β (θi−ζi)))

)
,

Mi2 = − k
mβ

(
1− A

k

)2

sin(β (t− t0))

+
A

mβ

(
1− A

k

)(
(cos(β (t0−ζi))−

α

β
sin(β (t0−ζi))).

.(−1)eα(θi−ζi) sin(β (t−θi))

− eα(θi−ζi−1) sin(β (θi−ζi))(cos(β (t−ζi−1 + t0

−ζi))−
α

β
sin(β (t−ζi−1 + t0−ζi)))

+ eα(θi−ζi−1) sin(β (t0−ζi)).

.(cos(β (t−ζi−1 +θi−ζi))

− α

β
sin(β (t−ζi−1 +θi−ζi)))

)
,

Ni2 =

(
1− A

k

)2

(cos(β (t− t0))−
α

β
sin(β (t− t0)))

+
A
k

(
1− A

k

)(
eα(t0−ζi)(cos(β (t−ζi))

− α

β
sin(β (t−ζi)))

+ (eα(θi−ζi) sin(β (t0−ζi))sin(β (t−θi))
k

mβ 2 )

+ eα(θi−ζi−1)(cos(β (t− t0 +θi−ζi−1))

− α

β
sin(β (t− t0 +θi−ζi−1)))

− eα(θi−ζi−1) sin(β (t−ζi−1))cos(β (t0−θi))
k

mβ 2

)
+

A2

k2 eα(θi−ζi−1+t0−ζi)
(

cos(β (t−ζi−1 +θi−ζi))

− α

β
sin(β (t−ζi−1 +θi−ζi))

+ sin(β (t−ζi−1))sin(β (θi−ζi))
k

mβ 2

)
,

4
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si1 = 1− A
k

+
Aeα(t0−ζi)

k

(
cos(β (t0−ζi))−

α

β
sin(β (t0−ζi))

)
,

si2 = 1− A
k
+

A
k

(
1− eα(θi−ζi−1)(cos(β (θi−ζi−1))−

α

β

sin(β (θi−ζi−1)))
)
.

Finally, in t ∈ [θi+1,θi+2], θi+1 ≤ ζi+1 ≤ θi+2, i ∈ Z, fun-
damental matrix of (5) for increasing value of t is

Z(t) = Mi+1(t)M−1
i+1(θi+1)Mi(θi+1)M−1

i (t0)

=
e−α(t−t0)

si1si3

[
Ki3 Li3
Mi3 Ni3

]
,

where indices are given by

Ki3 =

(
1− A

k

)2(
cos(β (t− t0))+

α

β
sin(β (t− t0))

)
+

A
k

(
1− A

k

)(
eα(t−ζi+1)(cos(β (t0−ζi+1))

− α

β
sin(β (t0−ζi+1)))

+ eα(θi+1−ζi)(cos(β (t− t0−θi+1 +ζi))

+
α

β
sin(β (t− t0−θi+1 +ζi))

− k
mβ 2 sin(β (t−θi+1))sin(β (t0−ζi)))

)
+

A
mβ 2

(
1− A

k

)
eα(θi+1−ζi+1) sin(β (t−ζi+1)).

.sin(β (t0−θi+1))

+
A2

k2 eα(t−ζi+θi+1−ζi+1)
(

cos(β (t0 +θi+1−ζi−ζi+1))

− α

β
sin(β (t0 +θi+1−ζi−ζi+1))

+ sin(β (θi+1−ζi+1))sin(β (t0−ζi))
k

mβ 2

)
,

Li3 =
1
β

(
1− A

k

)2
sin(β (t− t0))

+
A

kβ

(
1− A

k

)(
− eα(t−ζi+1) sin(β (t0−ζi+1))

+ eα(θi+1−ζi+1) sin(β (t−ζi+1))(cos(β (t0−θi+1))

+
α

β
sin(β (t0−θi+1)))

− −eα(θi+1−ζi) sin(β (t0−ζi))(cos(β (t−θi+1))

+
α

β
sin(β (t−θi+1)))

+ eα(t0−ζi) sin(β (t−ζi))
)

+
A2

k2β

(
eα(t0−ζi+1+θi+1−ζi) sin(β (t−ζi+1)).

.(cos(β (θi+1−ζi))−
α

β
sin(β (θi+1−ζi)))

− eα(t−ζi+1+t0−ζi) sin(β (ζi−ζi+1))

− eα(t−ζi+1+θi+1−ζi) sin(β (t0−ζi))(cos(β (θi+1−ζi+1))

− eα(t−ζi+1+θi+1−ζi) sin(β (t0−ζi))(cos(β (θi+1−ζi+1))

− α

β
sin(β (θi+1−ζi+1)))

)
,

Mi3 = − k
mβ

(
1− A

k

)
sin(β (t− t0))

+
A

mβ

(
1− A

k

)(
− eα(θi+1−ζi) sin(β (t−θi+1))

(cos(β (t0−ζi))−
α

β
sin(β (t0−ζi)))

+ eα(θi+1−ζi+1) sin(β (t0−θi+1))(cos(β (t−ζi+1))

− α

β
sin(β (t−ζi+1)))

)
,

Ni3 =

(
1− A

k

)2(
cos(β (t− t0))−

α

β
sin(β (t− t0))

)
+

A
k

(
1− A

k

)(
eα(t0−ζi)(cos(β (t−ζi))

− α

β
sin(β (t−ζi)))

+ (eα(θi+1−ζi) sin(β (t0−ζi))sin(β (t−θi+1))
k

mβ 2 )

+ eα(θi+1−ζi+1)(cos(β (t− t0 +θi+1−ζi+1))

− α

β
sin(β (t− t0 +θi+1−ζi+1))

− (sin(β (t−ζi+1))sin(β (t0−θi+1))
k

mβ 2

)
+

A2

k2 eα(θi+1−ζi+1+t0−ζi)
(

cos(β (t−ζi+1 +θi+1−ζi))

− α

β
sin(β (t−ζi+1 +θi+1−ζi))

+ sin(β (t−ζi+1))sin(β (θi+1−ζi))
k

mβ 2

)
,

si1 = 1− A
k

+
Aeα(t0−ζi)

k

(
cos(β (t0−ζi))−

α

β
sin(β (t0−ζi))

)
and

si3 = 1− A
k
+

Aeα(θi+1−ζi+1)

k

(
cos(β (θi+1−ζi+1))−

α

β

sin(β (θi+1−ζi+1))
)
.

The fundamental matrix can be obtained as shown above
for any other intervals.

Besides, it can be shown that Z(t,s) = Z(t)Z−1(s), t,
s ∈ R, and a solution z(t), z(t0) = z0, (t0,z0) ∈ R×R2, of
(6) is equal to z(t) = Z(t, t0)z0, t ∈ R.

2.3. Assumptions

For the damped spring-mass systems (5) and (6), we shall
need the following assumptions throughout the paper:
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(S1) h satisfies the Lipschitz condition for some constant
L > 0:

|h(t,µ1,η1)−h(t,µ2,η2)| ≤ L(|µ1−µ2|
+ |η1−η2|),

where (t,µ1,η1) and (t,µ2,η2) ∈D ;

(S2) there exist positive numbers θ , ζ > 0 such that θi+1−
θi ≤ θ , ζi+1−ζi ≤ ζ , i ∈ Z;

(S3)
(

1− eα(t−ζi)

(
cos(β (t−ζi))−

α

β
sin(β (t−ζi))

))
6=

k
A

, ∀t ∈ [θi,θi+1], i ∈ Z;

(S2) and (S3) imply the existence of constants 0 < m, 0 <
M, 0 < M such that m≤ ‖Z(t,s)‖ ≤M, ‖X(t,s)‖ ≤M for
t, s ∈ [θi,θi+1], i ∈ Z [1].

(S4) 2ML(1+M)θ < 1.

Moreover, assume that system (6) is ω−periodic with the
following conditions:

(S5) there are two numbers ω ∈ R and p ∈ Z such that
θk+p = θk +ω and ζk+p = ζk +ω , k ∈ Z;

(S6) h(t +ω,µ,η) = h(t,µ,η), t ∈ R, µ,η ∈ C .

We can infer from (S1) and (S6) that the functional force

f (t,zt ,zγ(t)) =

[
0

1
m

h(t,z1t ,z1γ(t))

]
also satisfies the

Lipschitz condition and periodicity condition.

In addition to the above conditions, we can define the initial
conditions for the damped spring-mass system (6) with the
functional force for the cases corresponding to t0 ≤ ζi or
ζi < t0 for t ≥ t0. It is clear that γ (t0)≥ t0 and γ (t0)< t0
if θi ≤ t0 ≤ ζi < θi+1 and θi ≤ ζi < t0 < θi+1, respectively.
For a fixed number t0 ∈ R, the functions µ, η ∈K and
some i ∈ Z, if θi ≤ t0 < θi+1:

(K1) there exists a solution z(t) = z(t, t0,µ) satisfying the
initial condition zt0 (s) = µ (s), µ ∈K , s ∈ [−τ,0] if
γ (t0)≥ t0;

(K2) there exists a solution z(t) = z(t, t0,µ,η) satisfying
the initial conditions zt0 (s) = µ (s) and zγ(t0) (s) =
η (s) with µ , η ∈K , s ∈ [−τ,0] if γ (t0)< t0.

Definition 2.1. [1] A function z(t) is a solution of (6) with
(K1) or (K2) on an interval [t0, t0 +a) , a > 0, if:

(i) it satisfies the initial condition,

(ii) z(t) is continuous on [t0, t0 +a),

(iii) the derivative z′ (t) exists for t ≥ t0 with the possible
exception of the points θi, where one-sided deriva-
tives exists,

(iv) equation (6) is satisfied by z(t) for all t > t0, except,
possibly, the points of θ and it holds for the right
derivative of z(t) at points θi.

Definition 2.2. [1] A function z(t) is a solution of (6)((5))
on R if:

(i) z(t) is continuous,

(ii) the derivative z′ (t) exists for all t ∈ R with the possi-
ble exception of the points θi, i ∈ Z, where one-sided
derivatives exists,

(iii) equation (6)((5)) is satisfied by z(t) for all t ∈ R,
except, points of θ and it holds for the right derivative
of z(t) at points θi.

3. Results

In this section, we give the sufficient conditions for the
existence and uniqueness of solutions and periodic solu-
tions of the damped spring-mass system (6). We create
the periodic solution using Green’s function with the ini-
tial condition corresponding to the Poincare criterion for
differential equations with generalized piecewise constant
argument.

3.1. Existence and uniqueness of solutions

The following lemmas give necessary conditions for exis-
tence and uniqueness of solutions of the damped spring-
mass system (6).

Lemma 3.1. Assume that the conditions (S1)-(S4) hold.
Then for fixed i ∈ Z and for every (t0,µ,η) ∈ [θi,θi+1]×
K ×K there exists a unique solution z(t) = z(t, t0,µ,η)
of (6) on [t0,θi+1] .

Proof. Consider the initial condition (K1) and so a
solution of the form z(t) = (z1(t),z2(t))

T = z(t, t0,µ)
with θi ≤ t0 ≤ ζi < θi+1 for fixed i ∈ Z. The proof for the
initial condition (K2) can be performed as in the case of
functional differential equations [43].

Existence. With z0 (t) = Z (t, t0)µ (t0), state a sequence{
zk (t)

}
, k ≥ 0 by

zk+1 (t) = µ (t− t0) , t ∈ [t0− τ, t0] ,

zk+1 (t) = Z (t, t0)

µ (t0)+

ζi∫
t0

eB(ζi−s) f
(

s,zk
s ,z

k
ζi

)
ds


+

t∫
ζi

eB(t−s) f
(

s,zk
s ,z

k
ζi

)
ds, t ∈ [t0,θi+1] .

A value MV ∈ (0,∞) can be found such that∥∥ f
(
t,zt ,zγ(t)

)∥∥ ≤ MV since f ∈ C0 (R×KV ×KV ),
0 <V ∈ R. Hence,

max
[t0,θi+1]

∥∥∥zk+1 (t)− zk (t)
∥∥∥≤ [2ML(1+M)θ

]k
Ω,

where Ω = M (1+M)θMV . So, (S4) shows that there
exists a solution z(t) = z(t, t0,µ) of the equation (6) on

6
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[t0,θi+1] given by

z(t) = Z (t, t0)

µ (t0)+

ζi∫
t0

eB(ζi−s) f
(
s,zs,zζi

)
ds


+

t∫
ζi

eB(t−s) f
(
s,zs,zζi

)
ds.

Uniqueness. Denote the solutions of (6) by z j (t) =
z j (t, t0,µ), j = 1,2. With ‖µ‖

∞
= sup

R
‖µ (t)‖, it is found

that∥∥∥z1 (t)− z2 (t)
∥∥∥ ≤ ‖Z (t, t0)‖

ζi∫
t0

∥∥∥eB(ζi−s)
∥∥∥ .

.
∥∥∥ f
(

s,z1
s ,z

1
ζi

)
− f

(
s,z2

s ,z
2
ζi

)∥∥∥ds

+

t∫
ζi

∥∥∥eB(t−s)
∥∥∥ .

.
∥∥∥ f
(

s,z1
s ,z

1
ζi

)
− f

(
s,z2

s ,z
2
ζi

)∥∥∥ds

≤ M

ζi∫
t0

ML
[∥∥∥z1

s − z2
s

∥∥∥
0
+
∥∥∥z1

ζi
− z2

ζi

∥∥∥
0

]
ds

+

t∫
ζi

ML
[∥∥∥z1

s − z2
s

∥∥∥
0
+
∥∥∥z1

ζi
− z2

ζi

∥∥∥
0

]
ds

= M

ζi∫
t0

ML max
σ∈[−τ,0]

∥∥∥z1
s (σ)− z2

s (σ)
∥∥∥ds

+ M

ζi∫
t0

ML max
σ∈[−τ,0]

∥∥∥z1
ζi
(σ)− z2

ζi
(σ)
∥∥∥ds

+

t∫
ζi

ML max
σ∈[−τ,0]

∥∥∥z1
s (σ)− z2

s (σ)
∥∥∥ds

+

t∫
ζi

ML max
σ∈[−τ,0]

∥∥∥z1
ζi
(σ)− z2

ζi
(σ)
∥∥∥ds

≤ 2M

ζi∫
t0

MLsup
R

∥∥∥z1 (t)− z2 (t)
∥∥∥ds

+ 2
t∫

ζi

MLsup
R

∥∥∥z1 (t)− z2 (t)
∥∥∥ds

≤ 2M

ζi∫
t0

ML
∥∥∥z1− z2

∥∥∥
∞

ds

+ 2
t∫

ζi

ML
∥∥∥z1− z2

∥∥∥
∞

ds

≤ 2M

ζi∫
t0

ML
∥∥∥z1− z2

∥∥∥ds

+ 2
t∫

ζi

ML
∥∥∥z1− z2

∥∥∥ds

≤ 2ML(1+M)θ

∥∥∥z1− z2
∥∥∥

≤ 2ML(1+M)θ max
[t0,θi+1]

∥∥∥z1− z2
∥∥∥ .

It is seen that z1 (t) = z2 (t), in other words, uniqueness of
the solution is proved using the condition (S4). �

Lemma 3.2. Assume that conditions (S1)-(S4) hold and
fix i ∈ Z. Then for every (t0,µ,η) ∈ [θi,θi+1]×K ×K
there exists a unique solution z(t) = z(t, t0,µ,η), t ≥ t0,
of (6) and it satisfies the following equation

z(t) = Z (t, t0)

µ (t0)+

ζi∫
t0

eB(t0−s) f
(
s,zs,zγ(s)

)
ds


+

j−1

∑
k=i

Z (t,θk+1)

ζk+1∫
ζk

eB(θk+1−s) f
(
s,zs,zγ(s)

)
ds

+

t∫
ζ j

eB(t−s) f
(
s,zs,zγ(s)

)
ds,

where θi ≤ t0 ≤ θi+1, θ j ≤ t ≤ θ j+1, i < j.

3.2. Existence and uniquness of periodic solutions

In addition to the assumptions, let ζ0 = 0 without loss
of generality, and ζ0 = t0. Z (ω) = Z (ω,0) is called as
the monodromy matrix. Assume that det[I−Z(ω)]−1 6= 0.
Besides, the matrix Q is the monodromy matrix defined by

Q :=
p

∏
k=1

Gk =
p

∏
k=1

M−1
k (θk)Mk−1(θk),k ∈ Z, (8)

where p ∈ Z such that θk+p = θk +ω and ζk+p = ζk +ω

for ω ∈ R, k ∈ Z. Eigenvalues of the matrix Q or Z(ω),
ρ j, j = 1,2, are called multipliers [1]. For the spring-mass
system (6), using the formula (8) we find the matrix Gk as
follows

Gk =
eα(ζk−1−ζk)

gk5

[
gk1 gk2
gk3 gk4

]
,

where

gk1 =

(
1− A

m(α2 +β 2)

)
(cos(β (ζk−1−ζk))

− α

β
sin(β (ζk−1−ζk)))+

Aeα(θk−ζk−1)

m(α2 +β 2)
(cos(β (θk−ζk))

− α

β
sin(β (θk−ζk))),

gk2 =−
sin(β (ζk−1−ζk))

β
,

gk3 =

(
1− A

m(α2 +β 2)

)2(
α2 +β 2

β

)
sin(β (ζk−1 −

ζk))

7
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+

(
1− A

m(α2 +β 2)

)
Aeαθk

mβ
(e−αζk−1 sin(β (θk−ζk))

− e−αζk sin(β (θk−ζk−1))),

gk4 =

(
1− A

m(α2 +β 2)

)
(cos(β (ζk−1−ζk))

+
α

β
sin(β (ζk−1−ζk)))

+
Aeα(θk−ζk)

m(α2 +β 2)
(cos(β (θk−ζk−1))−

α

β
sin(β (θk−ζk−1)))

and

gk5 = 1− A
m(α2 +β 2)

+
Aeα(θk−ζk)

m(α2 +β 2)
(cos(β (θk−ζk))

− α

β
sin(β (θk−ζk))).

The matrix Q can be obtained in terms of the matrices Gk
with the value p ∈ Z corresponding the sequences θ = (θi)
and ζ = (ζi), i ∈ Z. So, the multipliers can be found, and
periodicities of the solutions of the spring-mass system (6)
can be researched. As a result, the existence of periodic
solutions is certain if there exists a unit multiplier. How-
ever, periodic solutions can also be found in the absence of
unit multipliers i.e. in the non-critical case. In this study, a
periodic solution of the damped spring-mass system (6) is
created for the non-critical case with the help of Green’s
function. In the interval t ∈

[
θ j,θ j+1

]
, with Z(t) = Z(t,0),

t ∈ R, the solution z(t) = z(t,0,z0) satisfies the following
integral equation

z(t) = Z(t)z0

+
j−1

∑
k=0

Z(t,θk+1)

ζk+1∫
ζk

eB(θk+1−s) f (s,zs,zγ(s))ds(9)

+

t∫
ζ j

eB(t−s) f (s,zs,zγ(s))ds.

The solution (9) is a periodic solution of the system (6) if
the initial condition is taken according to Poincare criterion
[24], [25], in the following form

z0 = [I−Z(ω)]−1
p−1

∑
k=0

Z(ω,θk+1)

ζk+1∫
ζk

eB(θk+1−s) f (s,zs,zγ(s))ds, (10)

where det[I−Z(ω)]−1 6= 0. Substuting the initial condition
(10) in the equation (9), we obtain the integral equation

z(t) =
j−1

∑
k=0

Z(t) [I−Z(ω)]−1 Z−1(θk+1)

ζk+1∫
ζk

eB(θk+1−s) f (s,zs,zγ(s))ds

+
p−1

∑
k= j

Z(t) [I−Z(ω)]−1 Z(ω)Z−1(θk+1)

ζk+1∫
ζk

eB(θk+1−s) f (s,zs,zγ(s))ds

+

t∫
ζ j

eB(t−s) f (s,zs,zγ(s))ds.

This solution z(t) is a continuous function. Thus, Green’s
function Gp(t,s), t, s ∈ [0,ω] for the periodic solution
can be constructed in t ∈

[
θ j,θ j+1

)
, j = 0,1, ..., p−1 as

follows

Gp(t,s) =



Z(t)[I−Z(ω)]−1Z−1(θk+1)eB(θk+1−s),
s ∈ [ζk,ζk+1) ,k < j,

Z(t)[I−Z(ω)]−1Z(ω)Z−1(θk+1)eB(θk+1−s),

s ∈ [ζk,ζk+1)\ ˆ[ζ j, t],k ≥ j,

Z(t)[I−Z(ω)]−1Z(ω)Z−1(θk+1)eB(θk+1−s)+

+eB(t−s), s ∈ ˆ[ζ j, t].

So, the periodic solution of the system (6) is expressed in
the form

z(t) =
ω∫

0

Gp(t,s) f (s,zs,zγ(s))ds. (11)

In the next theorem, the sufficient conditions for the spring-
mass system (6) to have a unique ω-periodic solution are
given.

Theorem 3.3. Let R̃ = maxt,s∈[0,ω]

∥∥Gp(t,s)
∥∥ < ∞ and

2R̃Lω < 1. Suppose that conditions (S1)− (S6) are valid
and det[I−Z(ω)] 6= 0. Then, the spring-mass system (6)
admits a unique ω-periodic solution.

Proof. Let the complete metric space Cλ (R) denote the sets
of all continuous and ω−periodic functions on R. Define
on Cλ (R) an operator such that

∏ S̃(t) =
ω∫

0

Gp(t,s) f
(

s, S̃s, S̃γ(s)

)
ds,

where t ∈
[
θ j,θ j+1

)
, j = 0,1,2, ..., p−1 and

Gp(t,s) =



Z(t)[I−Z(ω)]−1Z−1(θk+1)eB(θk+1−s),
s ∈ [ζk,ζk+1) ,k < j,

Z(t)[I−Z(ω)]−1Z(ω)Z−1(θk+1)eB(θk+1−s),

s ∈ [ζk,ζk+1)\ ˆ[ζ j, t],k ≥ j,

Z(t)[I−Z(ω)]−1Z(ω)Z−1(θk+1)eB(θk+1−s)+

+eB(t−s), s ∈ ˆ[ζ j, t].

It can be seen that ∏ : Cλ (R)→Cλ (R). Let u, v ∈Cλ (R),

8
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then we have

∥∥∏u(t)−∏v(t)
∥∥ ≤

ω∫
0

∥∥Gp(t,s)
∥∥ || f (s,us,uγ(s)

)
−

− f
(
s,vs,vγ(s)

)
||ds

≤
ω∫

0

R̃L
(
‖us− vs‖0 +

+
∥∥uγ(s)− vγ(s)

∥∥
0

)
ds

≤ 2
ω∫

0

R̃L‖u− v‖ds

≤ 2R̃Lω ‖u− v‖ .

So, the condition 2R̃Lω < 1 shows the uniqueness of the
periodic solution (11). The proof is completed. �

4. An Example

Example 4.1. Taking the parameters k = 10, m = 1,

c = 0.1, A = 0.001 and the sequences θi = ζi =
1
10

i, con-
sider the linear nonhomogeneous spring-mass system with
piecewise constant argument of generalized type and de-
layed argument

x′′(t)+0.1x′(t)+10x(t) = 10−3x(γ(t))+10−1

+10−1x(t− τ) (12)
+10−1x(γ(t)− τ).

Let τ = 1 and the initial condition zt0(s) = µ(s) =
(0.02029980811,−0.01018243128)T, s ∈ [−1,0]. Taking
z1 = x and z2 = x′, spring-mass system (12) can be reduced
to the following nonhomogeneous differential equation

z′(t) =

[
0 1
−10 −0.1

]
z(t)+

[
0 0

10−3 0

]
z(γ(t))

(13)

+

[
0

10−1 (1+ z1(t−1)+ z1(γ(t)−1))

]
.

The conditions (S1)− (S4) are satisfied with L = 10−1,
θ = ζ = 0.1, M = 1.552565377, M = 1.528461349, and
the system (13) is ω = 0.1−periodic since it satisfies
(S5)− (S6). t = ω = 0.1 ∈ [θ0,θ1] = [0,0.1] for i = 0.
Then, for t ∈ [0,0.1], the monodromy matrix is in the form

Z(0.1) =
[

0.9505848166 0.0978515763
−0.9784179112 0.9950124792

]
.

In the interval t ∈ [0,0.1], Z(t) = Z(t,0), t ∈ R is found as
follows

Z(t) =
[

Z11(t) Z12(t)
Z21(t) Z22(t)

]
,

and its indices are

Z11(t) = e−t/20 9999
10000 cos(3.161882351t)

+ e−t/200.01581178375sin(3.161882351t)+ 1
10000 ,

Z12(t) = 0.3162673019e−t/20 sin(3.161882351t),

Z21(t) =−3.162356751e−t/20 sin(3.161882351t),

Z22(t) = e−t/20(cos(3.161882351t)
−0.01581336509sin(3.161882351t)).

So, in the interval t ∈ [0,0.1], the solution z(t) = z(t,0,z0)
satisfies the following integral equation

z(t) = Z(t)z0

+ Z(t)
0∫

−0.1

e−Bs
[

0
10−1 (1+ z1(s−1)+ z1(−1.1))

]
ds

+ Z(t,0.1)
0.1∫
0

e−B(s−0.1)
[

0
10−1 (1+ z1(s−1)+ z1(−1))

]
ds

+

t∫
0

eB(t−s)
[

0
10−1 (1+ z1(s−1)+ z1(−1))

]
ds.

From here,

z(t) = Z(t)z0

+ Z(t)
0∫

−0.1

e−Bs
[

0
0.1040599616

]
ds

+ Z(t,0.1)
0.1∫
0

eB(0.1−s)
[

0
0.1040599616

]
ds

+

t∫
0

eB(t−s)
[

0
0.1040599616

]
ds. (14)

Thus, it can be concluded that the solution (14) is a periodic
solution of the system (13) if the initial condition is taken
in the following form

z0 =

[
0.02029980811
−0.01018243128

]
,

where det[I−Z(0.1)]−1 = 10.41816491 6= 0. Thus, in t ∈
[θ0,θ1) = [0,0.1), Green’s function G1(t,s), t, s ∈ [0,0.1]
for the periodic solution is as follows

G1(t,s) =


G11 , s ∈ [−0.1,0) ,

G12 , s ∈ [0,0.1)\ ˆ[0, t],

G13 , s ∈ ˆ[0, t].

Here, we have

G11 =

[
g∗11 g∗21
g∗31 g∗41

]
and its indices are

g∗11 =
[
0.05196081420e−t/20( 9999
10000

cos(3.161882351t)

+0.01581178375sin(3.161882351t)+
et/20

10000

)
−3.223813545e−t/20 sin(3.161882351t)

]
es/20

(cos(3.161882351s)
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−0.01581336509sin(3.161882351s))

+3.162673019
[
1.019433859e−t/20( 9999

10000
cos(3.161882351t)

+0.01581178375sin(3.161882351t)+
et/20

10000

)
+0.1628193186e−t/20 sin(3.161882351t)

]
es/20 sin(3.161882351s),

g∗21 = −0.3162673019
[
0.05196081420e−t/20( 9999

10000
cos(3.161882351t)

+0.01581178375sin(3.161882351t)

+
et/20

10000

)
−3.223813545e−t/20 sin(3.161882351t)

]
es/20 sin(3.161882351s)+

[
1.019433859e−t/20( 9999

10000
cos(3.161882351t)

+0.01581178375sin(3.161882351t)

+
et/20

10000

)
+0.1628193186e−t/20 sin(3.161882351t)

]
es/20(cos(3.161882351s)

+0.01581336509sin(3.161882351s)),

g∗31 =
(
−0.1643186316e−t/20 sin(3.161882351t)

−10.19331915e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
)

es/20(cos(3.161882351s)

−0.01581336509sin(3.161882351s))

+3.162673019(
−3.223813546e−t/20 sin(3.161882351t)

+0.5148155299e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
)

es/20 sin(3.161882351s),

g∗41 = −0.3162673019(
−0.1643186316e−t/20 sin(3.161882351t)

−10.19331915e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
)

es/20 sin(3.161882351s)

+
(
−3.223813546e−t/20 sin(3.161882351t)

+0.5148155299e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
)

es/20

(cos(3.161882351s)

+0.01581336509sin(3.161882351s)).

Similarly, we find

G12 =

[
g∗12 g∗22
g∗32 g∗42

]
,

where

g∗12 =
[
0.0519608143e−t/20

( 9999
10000

cos(3.161882351t)

+0.01581178375sin(3.161882351t)+
et/20

10000

)
−3.223813545e−t/20 sin(3.161882351t)

]
e−0.005+ s

20

(cos(−0.3161882351+3.161882351s)

−0.01581336509
sin(−0.3161882351+3.161882351s))

+3.162673019
[
1.019433859e−t/20( 9999

10000
cos(3.161882351t)

+0.01581178375sin(3.161882351t)+
et/20

10000

)
+0.1628193187e−t/20 sin(3.161882351t)

]
e−0.005+ s

20 sin(−0.3161882351+3.161882351s),

g∗22 = −0.3162673019
[
0.0519608143e−t/20( 9999

10000
cos(3.161882351t)

+0.01581178375sin(3.161882351t)

+
et/20

10000

)
−3.223813545e−t/20 sin(3.161882351t)

]
e−0.005+ s

20

sin(−0.3161882351+3.161882351s)

+
[
1.019433859e−t/20( 9999

10000
cos(3.161882351t)

+0.01581178375sin(3.161882351t)

+
et/20

10000

)
+0.1628193187e−t/20 sin(3.161882351t)

]
e−0.005+ s

20

(cos(−0.3161882351+3.161882351s)

+0.01581336509
sin(−0.3161882351+3.161882351s)),
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g∗32 =
[
−0.164318632e−t/20 sin(3.161882351t)

−10.19331915e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
]

e−0.005+ s
20

(cos(−0.3161882351+3.161882351s)

−0.01581336509
sin(−0.3161882351+3.161882351s))

+3.162673019[
−3.223813546e−t/20 sin(3.161882351t)

+0.5148155299e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
]

e−0.005+ s
20

sin(−0.3161882351+3.161882351s),

g∗42 = −0.3162673019[
−0.164318632e−t/20 sin(3.161882351t)

−10.19331915e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
]

e−0.005+ s
20

sin(−0.3161882351+3.161882351s)

+
[
−3.223813546e−t/20 sin(3.161882351t)

+0.5148155299e−t/20(cos(3.161882351t)

−0.01581336509sin(3.161882351t))
]

e−0.005+ s
20

(cos(−0.3161882351+3.161882351s)

+0.01581336509
sin(−0.3161882351+3.161882351s)).

Finally,

G13 = G12 +

[
g∗13 g∗23
g∗33 g∗43

]
,

where

g∗13 = e−(t−s)/20

(cos(−3.161882351t +3.161882351s)

−0.01581336509
sin(−3.161882351t +3.161882351s)),

g∗23 = −0.3162673019e−(t−s)/20

sin(−3.161882351t +3.161882351s),

g∗33 = 3.162673019e−(t−s)/20

sin(−3.161882351t +3.161882351s),

g∗43 = e−(t−s)/20

(cos(−3.161882351t +3.161882351s)

+0.01581336509
sin(−3.161882351t +3.161882351s)).

So, the periodic solution of the system (13) can be ex-
pressed in the form

z(t) =
0.1∫
0

G1(t,s)
[

0
10−1(1+ z1(s−1)+ z1(γ(s)−1))

]
ds.

(15)

As a result of Theorem 3.1, the spring-mass system
(13) admits a unique 0.1-periodic solution since R̃ =
maxt,s∈[0,0.1] ‖G1(t,s)‖= 10.24608221 < ∞ and 2R̃Lω =
0.2049216442 < 1, the conditions (S1)− (S6) are valid
and det[I−Z(0.1)] 6= 0.

5. Discussion and Conclusion

Differential equations are important to model real world
problems in many areas. Nevertheless, the modeling the
problems with differential equations may not reflect real-
ity if we ignore the effects of delays and discontinuities.
For this reason, differential equations with deviating argu-
ment that produce more realistic models have great impor-
tance. The differential equations with deviating argument
include delay differential equations, functional differential
equations, differential equations with piecewise constant
argument and differential equations with generalized piece-
wise constant argument. Many scientists have worked on
the theory and applications of these equations. Moreover,
Akhmet contributed to these studies by introducing differ-
ential equations with functional dependence on generalized
piecewise constant argument. This contribution increases
the realism of the models. In applications, the spring-mass
system has an importance in many areas such as physic,
mathematics, biomechanics, biology. In our study, we mod-
eled the spring-mass systems using differential equations
with generalized piecewise constant argument and with
functional dependence on generalized piecewise constant
argument. So, we obtain more realistic and detailed anal-
ysis. Later, we analyze the qualitative behaviors of these
spring-mass systems, and give the sufficient conditions for
the existence and uniqueness of periodic solutions. Peri-
odicity provides information about behavior of solution
for the other intervals, with knowledge of the qualitative
behavior of the system in a particular interval. Therefore,
periodicity in a system is a desired feature, and a lot of
study about existence of periodic solutions are available
in the literature. Our examination is considerable since
it is obvious that periodicity is significiant in both theory
and practice. In the literature, differential equations with
deviating argument are generally studied by reducing into
discrete equations. We examine our models without re-
ducing them into discrete equations. It shows our work’s
novelty from the other studies in the literature.
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