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Abstract  

In this work, the mapping diversity technique, applied to enhance the bit/symbol error rate performance in wireless fading channels, 

is designed using deep learning based autoencoder. Specifically, the multiple signal constellations required in mapping diversity 

technique are obtained using autoencoder structure. In this framework, the multiple signal constellations, obtained by assuming 

multiple channel use in autoencoder structure, are used in mapping diversity and the performance of this proposed system is 

compared with classical repetitive transmission technique. Design and simulations are repeated for different modulation types and 

thereby, the performance of the proposed system is investigated for various data rates under fading channel conditions. 

Consequently, supported with simulation results, the proposed deep learning based mapping diversity technique is shown to attain 

better performance than classical repetitive transmission technique. 
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1. Introduction 

 

Transmitting the same information through multiple independent paths has the potential to improve the bit/symbol error rate of a 

wireless communication link degraded by channel conditions. Instead of simply retransmitting multiple copies of the original data, 

rearranging the constellation diagram and employing a modified constellation diagram can achieve diversity gain. This technique is 

generally referred to as mapping diversity in the literature. In the seminal work in this field by Metzner (1977), an additional 

performance improvement was achieved by using a second transmission block derived from the first block, in combination with 

multilevel amplitude and phase modulation for non-binary block codes. In the Automatic Repeat Request (ARQ) protocol, the 

transmitter is requested to resend the packets identified as received erroneously. Retransmission continues until the erroneously sent 

packet is correctly received or the predefined maximum number of transmissions is reached. In this context, the ARQ technique is a 

natural application area for the implementation of mapping diversity. In the work by Benelli (1992) the Euclidean distance was 

increased by using two different mappings, resulting in an overall performance improvement in the ARQ system. In another study by 

Samra et.al (2005), different symbol mappings optimized to minimize the bit error rate for each packet transmission were employed 

for non-binary modulation schemes.  

 

In the Hybrid ARQ  method, which is a natural extension of the ARQ technique, the channel coding block is incorporated into the ARQ 

structure and has been standardized within third-generation cellular communication systems through high-speed downlink packet 

access technique (Wengerter et al., 2002). In this work, constellation rearrangement (an alternative term for mapping diversity) is 

employed using a total of four different mappings to equalize the reliabilities of different bits within the same symbol. In the case of 

using the same symbol set for repeated transmissions of the same symbol, the difference in reliabilities between different bit positions 

naturally increases, making such equalization necessary. In the same study, (Wengerter et al., 2002), a total of four different mappings 

were used for the 16-Quadrature Amplitude Modulation (QAM) modulation scheme in an additive white Gaussian noise (AWGN) 

channel, and the likelihood ratios of all bits were equalized. A review of the literature reveals that the constellation rearrangement 

technique has been implemented using two different methods. In the first method, the bit-to-symbol mapping rule remains the same 

for all transmissions, while the positions of the signals in the constellation set can be altered. In the second method, the same 

constellation set is used for all transmissions, while the bit-to-symbol mappings can be varied. 

 

Artificial intelligence has recently become a research topic of increasing interest and finds application across all layers of wireless 

communication systems, including the physical layer. A review of the literature reveals that the studies are fundamentally divided into 

two categories: machine learning-based and deep learning-based. In the review study on machine learning in wireless communication 

systems by Chen (2019), the application areas of artificial neural network-based machine learning in wireless networks are provided. 

In this work, these areas are identified as prediction, interference, big data analytics, and self-organizing networks. In another significant 

study (Simeone, 2018), the applications are categorized under two main headings: applications at the edge and in the cloud of the 

wireless network, separately for supervised and unsupervised learning. When we consider the applications of deep learning techniques, 

which can be described as an advanced form of machine learning, in wireless communication systems, the study by Dai et al. (2020) 

addresses transmitter and receiver design under the heading of deep learning-based architecture design for wireless communication, 

and channel estimation, decoding, and optimization solutions. In studies focused on the physical layer (Wang et al., 2017; Qin et al., 

2019; Kim et al., 2020), deep learning has been utilized to provide solutions for modulation recognition, channel coding and decoding, 

and detection/estimation in wireless communication systems. 

 

In classical communication systems, operations such as source coding, channel coding, modulation, demodulation, and channel 

estimation in the physical layer are typically performed by corresponding independent blocks. In this structure, since each block is 

optimized separately, the best possible end-to-end performance may not be achieved (O’Shea & Hoydis, 2017). On the other hand, in 

an artificial intelligence-based communication system, particularly one leveraging deep learning, transmitter, receiver, and channel can 

be jointly optimized as a single end-to-end block without the need for separate blocks (O’Shea&Hoydis, 2017; O’Shea vd., 2016). This 

approach is expected to achieve objectives such as lower bit error rates, higher bandwidth efficiency, and reduced energy consumption. 

 

Autoencoder (AE) is basically a feedforward neural network which forms the foundation of deep learning (Goodfellow et al., 2016). 

An autoencoder is essentially a feedforward neural network that tries to reconstruct its input signal at the output using an unsupervised 

method. Traditionally, autoencoders have been used for dimensionality reduction and feature learning. By design, an autoencoder 

learns how to ignore noise in the data, thereby reducing data dimensions. The autoencoder neural network is adjusted to ensure that the 

target values at the output are equal to the input values with minimal loss. Communication systems can be characterized as autoencoders 

in which the transmitted message is reconstructed at the receiver with minimal error. In this study, the idea of implementing 

constellation optimization using an autoencoder was adopted. A deep learning-based autoencoder was trained, and the resulting 

constellation sets were utilized in the mapping diversity technique. The performance of the designed autoencoder-based mapping 

diversity technique was analyzed for fading channel, and the system performance was compared with the classical retransmission 

method for different modulation schemes. The organization of the study is as follows: After presenting the general system structure in 

the second section, the simulation results are given in the third section. The study concludes with the fourth section, which presents the 

results. 
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Symbols and Abbreviations 

 

ARQ Automatic Repeat Request 

QAM Quadrature Amplitude Modulation 

PSK 

AWGN 

Phase Shift Keying 

Additive white Gaussian Noise 

AE Autoencoder 

Eb Energy per bit 

Es 

N0 

Energy per symbol 

noise power spectral density 

R information rate 

 

2. System Structure 

 

As stated in the introduction, the aim of this study is to implement the mapping diversity technique using a deep learning-based 

autoencoder. Therefore, while explaining the system structure, the design of a typical communication system using an autoencoder will 

first be presented, followed by the explanation of the mapping diversity technique. As shown in Figure 1, the autoencoder consists of 

five components: input, encoder, bottleneck, decoder, and output. The input section consists of the data to be encoded and fed into the 

system. In the encoder section, the model learns how to reduce the input dimensions and compress the input data into an encoded 

representation. The bottleneck section contains the compressed representation of the input data. The data in this section is the most 

compact form of the input data. In the decoder section, the autoencoder learns how to reconstruct the data from the encoded 

representation to be as close as possible to the original input. In the final section, the output, the loss of the system is reviewed through 

reconstruction, and the performance of the decoder is evaluated by measuring how close the output is to the original input. 

Consequently, the data closest to the input is generated. To achieve an output identical to the input, the described processes are 

performed sequentially, and the neural network is trained. 

 

It is possible to learn and implement a communication system in an end-to-end manner using a deep learning-based autoencoder. In 

the basic block diagram of a classical communication system, the transmitter, channel, and receiver can be optimized within a single 

structure using an autoencoder. As shown in Figure 2, the channel coding, source coding, and modulation processes performed at the 

transmitter are carried out in the encoder section, while the decoding and demodulation processes performed at the receiver are handled 

in the decoder section. In this way, inputs are first compressed in a nonlinear manner and then reconstructed (O’Shea & Hoydis, 2017). 

The main idea here is to represent the transmitter, channel, and receiver as a deep neural network that can be trained with an autoencoder 

(O’Shea & Hoydis, 2017). In short, an autoencoder is a deep neural network that consists of an encoder, which encodes the data coming 

from the transmitter, and a decoder, which reconstructs the inputs using the encoded data (Erpek et al., 2020). 

 

Figure 1. Components of Autoencoder. 

The structure referenced in the design of the deep learning-based communication system is shown in Figure 2.  The main goal is to 

transmit the information signal m∈𝕄, which is an element of the message set 𝕄={1,2,..M}, from the transmitter to the receiver over 

the communication channel without error. Each information signal consists of k =log2M  bits. The message signal, m, selected from the 

information signal set with a total of M elements, is transmitted to the receiver using the channel a total of n times. 
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Figure 2. Block diagram of deep learning-based communication system 

If we denote the vector x, transmitted from the transmitter and consisting of a total of n complex symbols, as x =[x1, x2,…, xn], where 

each ix symbol consists of k bits, the information rate R is calculated as R=k/n [bits/channel use]. Before transmission, the vector x is 

subjected to a power constraint of the form ‖x‖2
2 ≤ n or an average energy constraint of the form E[xi

2]≤1,  ∀i . Here ‖x‖2
2  value shows 

the Euclidean norm of vector x. ℂn denoting the set of n-dimensional complex numbers, the noisy and distorted version of the 

transmitted signal x ∈ ℂn, represented as y ∈ ℂn, is observed at the receiver, and  the estimate, m̂∈𝕄, of the original message signal s 

is obtained. Accordingly, Pr (.) denoting the probability value; the symbol error rate in the system is given as: 

Pe = 
1

M
∑ 𝑃𝑟𝑚 (m̂≠m|m)                   (1) 

Under the assumption of a noisy channel, given the general diagram in Fig.2, the structure of the communication system redesigned 

with an autoencoder is shown in Fig. 3. In this design, the transmitter section is modeled as a multilayer artificial neural network, with 

the input of this network being the information signal to be transmitted to the receiver. The information signal at the input of the 

artificial neural network is defined as an M-dimensional vector, where the m-th element is 1, and all other M-1 elements are 0. 

Mathematically, this vector can be represented as  1m∈ℝM, where ℝM denotes the set of M-dimensional real numbers. The transmitter 

block consists of multiple dense layers and a final normalization layer. With the help of this structure, operations such as source coding, 

channel coding, and modulation, which are traditionally designed as separate blocks in the classical communication block diagram, 

can be optimized simultaneously and in a synchronized manner. As the final operation in the transmitter block, the signal to be 

transmitted is passed through the normalization layer. In the channel block, the transmitted signal is affected by a multiplicative fading 

coefficient, followed by the addition of an AWGN noise component (Proakis, 2008). When the energy per bit (Eb) to noise power 

spectral density (N0) ratio is denoted as Eb/N0 and the information rate as R, the channel variance is found as N0/2REb . 

The receiver section is designed similarly as a feedforward neural network consisting of a single or multiple dense layers followed by 

a softmax activation layer. In classical communication systems, the functions performed by blocks such as demodulation, channel 

decoder, and source decoder in the receiver are carried out in this structure by the deep learning layers. Finally, the output signal is 

passed to the softmax layer. The softmax layer, also known as the classification layer, provides the probability of the input belonging 

to a specific class, ranging from a minimum of 0 to a maximum of 1. Consequently, at the output of the neural network in the receiver, 

an M-dimensional probability vector p(0,1)M  is obtained, containing the probability values for all possible messages. The index of 

the highest probability element in the p vector determines the estimated message, m̂. 

 

Table 1 lists the activation function types and output dimensions for each layer in the model configuration, which is constructed by 

combining the layers in the sequence specified in the table. The first to fourth layers constitute the transmitter side of the system. The 

fifth layer represents the noisy channel layer between the transmitter and the receiver. The sixth and seventh layers form the receiver 

side of the system. The estimated message is obtained from the output of the Softmax layer in this structure. 
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Figure 3. The structure of a communication system designed with an autoencoder 

Table 1. The architecture of autoencoder model 

Layers Output Size 

Input M 

Dense + ReLU M 

Dense + Linear 2n 

Normalization 2n 

Channel 2n 

Dense + ReLU M 

Dense + Softmax M 

 

The geometric arrangement of symbols in the constellation set, defined as the set encompassing all possible symbols to be transmitted 

from the information source, affects the symbol error rate of the entire system. For a constellation set where each symbol consists of 

2log=k M  bits, there are a total of M elements. The mapping diversity technique is based on the principle of using different 

constellation sets to reduce the bit/symbol error rate, rather than using the same constellation set for multiple transmissions of the same 

symbol. In the mapping diversity technique, the signal space is designed by taking the bit error rate as the optimization target function, 

aiming to obtain a signal set that minimizes this value. In this study, it is assumed that the same symbol is transmitted twice (N=2), and 

therefore two different constellation sets are used in the mapping diversity technique. In the deep learning-based mapping diversity 

technique designed in this study, two different constellation sets were obtained within the signal autoencoder structure by setting the 

channel usage value to  n=2. For comparison purposes, in the reference system used in the simulations, the same symbol was transmitted 

twice, but the same classical constellation set corresponding to the modulation type was used for both transmissions. 

 

3.  Simulation Results 

As stated in the second section, the performance of the mapping diversity technique designed using a deep learning-based autoencoder 

was compared with a reference system where mapping diversity was not applied; in other words, the same classical constellation sets 

were used for both transmissions. As can be observed in the literature, mapping diversity is applied to high-order modulation schemes 

due to the design flexibility it provides and achieves higher performance improvements, particularly in square QAM modulation 

schemes such as 16-QAM and 64-QAM. For these reasons, the simulations were conducted for the 8-PSK (Phase Shift Keying), 16-

QAM, and 64-QAM modulation schemes. 

 

Accordingly, since the channel usage value is n = 2, the information rates are 3/2 bits/channel use for 8-PSK,  2 bits/channel use for 

16-QAM, and 3 bits/channel use for 64-QAM. During the training of the autoencoder, the Adam optimization algorithm was applied. 

Two different training dataset sizes (100 and 1000) and two different learning rates (0.001 and 0.0001) were used during training. The 

number of iterations for all training phases was set to 1000. Furthermore, different symbol energy-to-noise ratios (Es/N0) were tested 

during training, and it was found that the optimal training Es/N0 value was 7 dB. The validation dataset size used after training was 

10,000, and the Es/N0 value for validation was also set to 7 dB, as in the training phase. 

 

As an example, the classical constellation for 16-QAM modulation and the constellations obtained using the autoencoder are shown in 

Figures 4 and 5, respectively. When these constellation sets are examined, it is observed that, unlike the symmetrical symbol placements 

in the classical 16-QAM constellation set, the two constellation sets derived using the autoencoder have an asymmetric structure, and 

all symbols have different energy levels. In the mapping diversity technique, the combined effect of the constellation sets used in two 

consecutive transmissions influences the bit/symbol error rate. Accordingly, the combined minimum Hamming distance of the two 

different sets used in mapping diversity, as shown in Fig. 5, is higher than the minimum Hamming distance of two consecutive standard 

16-QAM constellation sets without mapping diversity. 
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Figure 4. Classical constellation for 16-QAM  

                      
Figure 5. Constellations used in mapping diversity for 16-QAM 

For 64-QAM modulation, another modulation type used in the simulations, the classical constellation set, and the constellation sets 

obtained using the autoencoder are shown in Figures 6 and 7, respectively. Similarly, it is observed that the constellation sets obtained 

using the autoencoder do not have a symmetrical structure, and all symbols have different energy levels. Simulations were conducted 

to evaluate the symbol error rate performance of the designed systems with respect to the Es/N0 value. In the simulations, all channels 

were assumed to have Rayleigh flat fading. The channel fading coefficient was modeled as a complex Gaussian random variable with 

a mean value of zero and a variance of 0.5 per dimension. It was also assumed in all simulations that the receivers had perfect channel 

state information, meaning the channel coefficient values were known without error. The simulations were first conducted for the 8-

PSK modulation technique, where each symbol consists of three bits, and the results are presented in Fig. 8. When the graphs in Figure 

8 are examined, it is observed that the system designed with the mapping diversity technique using AE provides significant gains 

compared to the system without mapping diversity at all Es/N0 levels. For instance, this gain is observed as 2 dB at a symbol error rate 

of  10-3. An additional point to note here is that since the channel usage value is two in both systems, the diversity gain remains two 

regardless of whether mapping diversity is applied. The mapping diversity technique increases the minimum Hamming distance, and 

similar to coding gain, it reduces the symbol error rate. 
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Figure 6. Classical constellation for 64-QAM  

                    
Figure 7. Constellations used in mapping diversity for 64-QAM  

 

  
Figure 8. Simulation results for 8-PSK 

 

Simulations were also conducted for the 16-QAM and 64-QAM modulation schemes, which have higher modulation levels. The results 

obtained for the 16-QAM modulation technique are presented in Fig. 9. Similarly, it is observed that the system designed with mapping 



IJERAD, (2025) 17(1), 1-10, Türer & Yılmaz 

8 

diversity using AE provides better performance at all Es/N0 levels compared to the case where mapping diversity is not applied. 

Specifically, for a symbol error rate of 10-3, a gain of 2 dB is observed, similar to the results for 8-PSK modulation. 

 

 
Figure 9. Simulation results for 16-QAM  

Finally, all simulations were repeated for the 64-QAM modulation scheme, and the results are presented in Fig. 10. Similar to the 

previous simulations, it is observed that the system designed with mapping diversity using AE outperforms the system without mapping 

diversity. Specifically, for 64-QAM, an even higher performance improvement is observed compared to the previous two modulation 

techniques (8-PSK and 16-QAM), with a gain of 3 dB at a symbol error rate of 10-3. Lastly, for a comprehensive comparison, the 

symbol error rates at different Es/N0 levels for all three modulation schemes are numerically presented in Table 2. 

 

 
Figure 10. Simulation results for 64-QAM  
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Table 2. Symbol error rates at different Es/N0 values according to modulation types.  

 Modulation Type 

(Es/N0) 
8-PSK 16-QAM 64-QAM 

Classical 

system 

Deep learning 

based system 

Classical 

system 

Deep learning 

based system 

Classical 

system 

Deep learning 

based system 

5 dB 0,38 0,30 0,41 0,28 0,74 0,55 

10 dB 0,16 0,10 0,157 0,081 0,54 0,27 

15 dB 0,04 0,02 0,035 0,015 0,23 0,07 

20 dB 0,0057 0,0026 0,0046 0,002 0,058 0,013 

 

4. Conclusion 

 

Mapping diversity aims to correct erroneous information by transmitting multiple copies of the original data block, either identical or 

processed through certain operations. While the transmitted copies from the transmitter share the same modulation type and level, 

diversity gain is achieved by altering the positions of the signals within the constellation set. In this study, the classical mapping 

diversity method has been implemented using a deep learning-based design with an autoencoder. The performance of the designed 

system was evaluated under fading channel conditions for different modulation schemes and compared with the conventional repeated 

transmission method, which uses the same classical constellation set. According to the results, the autoencoder-based mapping diversity 

method provided significant gains over the conventional system without mapping diversity across all signal-to-noise ratio levels and 

modulation techniques. Notably, the gain was highest for 64-QAM modulation, where the modulation level is the highest. 
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