
Anomaly Detection in Cyber Security with Graph-Based
LSTM in Log Analysis
Yusuf Alaca ID ∗,1, Yüksel Çelik ID α,2 and Sanjay Goel ID β,3

∗Osmancık Omer Derindere Vocational School, Hitit University, Corum, Turkiye, αDepartment of Computer Engineering, Karabuk University, Karabuk,Turkiye,
βUniversity at Albany, State University of New York BA 310b, 1400 Washington Ave. Albany, NY 12222, USA.

ABSTRACT Intrusion detection systems utilize the analysis of log data to effectively detect anomalies.
However, detecting anomalies quickly and effectively in large and heterogeneous log data can be challenging.
To address this difficulty, this study proposes the GLSTM (Graph-based Long Short-Term Memory) framework,
a graph-based deep learning model that analyzes log data to detect cyber-attacks rapidly and effectively. The
framework involves standardizing the complex and diverse log data, training this data on an artificial intelligence
model, and detecting anomalies. Initially, the complex and diverse log data is transformed into graph data
using Node2Vec, enabling efficient and rapid analysis on the artificial intelligence model. Subsequently, these
graph data are trained using LSTM (Long Short-Term Memory), Bi-LSTM, and GRU(Gated Recurrent Unit)
deep learning algorithms. The proposed framework is tested using Hadoop’s HDFS dataset, collected from
different systems and heterogeneous sources, as well as the BGL and IMDB datasets. Experimental results
on the selected datasets demonstrate high levels of success.

KEYWORDS

Anomaly detec-
tion
Graph
Node2Vec
Deep learning
Cyber security
HDFS

INTRODUCTION

Logging is the process of collecting numerical and textual data
that captures the behavior of software, including events like low
memory conditions or attempts to access files. The current focus
of logging practices primarily revolves around the storage and or-
ganization of logs (Wang et al. 2019). Logging mechanisms consist
of extensive datasets of log statements and their corresponding
activation codes, which are implemented either by developers or
specific software platforms.

In large internet networks, analyzing event and system-based
logs using a combination of multiple systems, software, and hard-
ware is crucial. Since log records are collected from devices and
software responsible for system security, they often contain traces
of attacks carried out by malicious actors during or after an attack.
Therefore, it is essential to analyze log records and detect anoma-
lies resulting from these traces in order to identify cyber-attacks
(Elbasani and Kim 2021).

Manuscript received: 23 August 2023,
Revised: 5 October 2023,
Accepted: 18 October 2023.

1yusufalaca@hitit.edu.tr (Corresponding author).
2yuksel.celik@karabuk.edu.tr
3goel@albany.edu

Numerous techniques have been developed to address the chal-
lenges associated with log analysis and anomaly detection. These
techniques include frequent pattern mining, heuristics, clustering,
evolutionary algorithms, and deep learning (He et al. 2020). How-
ever, it has been observed that these techniques are not as effective
and efficient in detecting log anomalies as our proposed method.

To overcome these challenges, comprehensive log data collected
from various devices and software in different structures needs to
be converted into a standardized format for analysis. Addition-
ally, it is necessary to analyze standardized data effectively and
efficiently in order to detect attacks (Li and Li 2020).

In this study, we propose a framework that converts diverse
log data into graphs and detects anomalies using deep learning
methods. Our framework utilizes the node2vec algorithm, which
is a semi-supervised and heuristic approach, to convert different
log data into graphs. By leveraging node2vec, we can scale fea-
ture learning and select adjacent nodes through a random walk
approach between nodes. This algorithm offers flexibility due to
its adjustable parameters (Grover and Leskovec 2016).

For the deep learning component of our framework, we employ
the LSTM algorithm, which is a type of recurrent neural network
(RNN). Unlike traditional RNNs, LSTM networks address issues
such as gradient weakening or gradient bursting that can occur in
redundant neural networks (Hochreiter and Schmidhuber 1997).

CHAOS Theory and Applications 188

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.5 / No.3 / 2023 / pp. 188-197
https:/ /doi .org/10.51537/chaos.1348302

https://orcid.org/0000-0002-4490-5384
https://orcid.org/0000-0002-7117-9736
https://orcid.org/0000-0001-7615-7045

LSTM networks also utilize feedback connections instead of solely
relying on feed-forward connections. In this study, the data is first
transformed using the node2vec algorithm and then inputted into
the LSTM algorithm. Our experiments have demonstrated that
this approach achieves high accuracy in detecting anomalies.

When examining the literature, four different methods have
been employed in studies on log anomaly detection. These meth-
ods are as follows: 1. Stencil removal, 2. Document management,
3. System monitoring, and 4. Learning-based anomaly detection.
Several studies have focused on template extraction within these
methods.

The template extraction method aims to extract word frequen-
cies from log files, identify abnormal words, and detect anoma-
lies. To be considered a template, terms must surpass a certain
threshold. IPLoM, for instance, is a study that employs this
method, recursively splitting log records assuming equal line
lengths (Makanju et al. 2009).

Another study utilizing the template extraction technique ap-
plies deep learning to sequentially stored log records, using natural
language processing to detect anomalies. Anomalies are detected
when the sequential order is disrupted or when log records deviate
from the expected flow. Meaningful words are extracted from log
records and organized into templates. These templates are then
converted into vectors, a method referred to as template2vector
(Meng et al. 2019a). LSTM, a deep learning algorithm, is utilized
in this study, with HDFS and BGL datasets employed for testing
purposes(Alaca and Çelik 2023).

Document management, particularly using the Word2Vec
method, is also prominent in log anomaly detection. Word groups
are created, dividing words into different categories such as sen-
tences and paragraphs based on the dataset size (Church 2017). In
another study employing this method, natural language process-
ing techniques are applied to detect anomalies in Thunderbird logs
and system log records. Word2Vec and TF-IDF feature extraction
algorithms are used, and the LSTM deep learning algorithm is
employed for classification analysis (Wang et al. 2018).

System monitoring is another method used for anomaly detec-
tion. Log records from various systems can be monitored, and an
exemplary tool in this context is Google’s Dapper tool. This tool
has demonstrated high success in complex, large-scale distributed
systems (Sigelman et al. 2010).

In the literature, numerous studies are based on learning ap-
proaches, utilizing various machine learning techniques. DeepLog
is a prominent study for log anomaly detection. The proposed
approach consists of two main parts: defining the log key and
establishing a workflow that includes anomaly parameters. The
anomaly parameters are converted into vectors based on the log
key, and the LSTM algorithm from artificial neural networks is
employed to detect anomalies corresponding to the log key. The
algorithm also incorporates manual feedback to improve accuracy
(Du et al. 2017).

In another study, the CNN algorithm, a deep learning tech-
nique, is employed for anomaly detection from log records (Lu
et al. 2018). This study identifies keywords in log records and de-
tects anomalies based on these keywords. The identified keywords
are digitized, normalized, and transformed into a 29x128 vector.
This method is referred to as logkey2vector.

Deep learning is further explored in a study where different
models are developed using datasets such as BGL (BlueGene/L),
Thunderbird, Openstack, and IMDB (Internet Movie Database).
The IMDB dataset is used to demonstrate the generalizability of
the proposed model for other text classification problems. Positive

and negative labeled data are fed into two distinct Autoencoders
to enhance understanding of the original data, and the output is
used as input for deep learning algorithms such as LSTM, BLSTM,
and GRU (Farzad and Gulliver 2019).

An alternative approach to log anomaly detection aims to detect
subsets of the original data space by making multiple passes over
the entire dataset using frequent pattern mining. This approach in-
volves three steps: summarizing the data by traversing the dataset,
generating cluster candidates through another pass, and selecting
suitable clusters from the candidates (Vaarandi 2003).

Graph structures have been employed in multiple studies for
anomaly detection from log records. In one study, authentication
logs are analyzed using graph structures to prevent unauthorized
access to the operating system. A graph clustering method is
developed specifically for forensic computing (Studiawan et al.
2017).

Another study utilizing graph structures detects anomalies
from log data using time series and kill chain mechanisms. This ad-
vanced method creates attack profiles and simulates daily attacks
on computer networks (Schindler 2017).

Graph structures have also been utilized in a study aiming to
detect software errors in cloud computing (Yan et al. 2015). This
method converts the complex relationships between log records
into a graph and assigns importance scores to each log. The log
anomaly detection method developed through this approach effec-
tively identifies software errors.

In conclusion, various methods have been explored in the liter-
ature for log anomaly detection. These methods include stencil re-
moval, document management, system monitoring, and learning-
based approaches. Template extraction, deep learning algorithms
like LSTM and CNN, as well as graph structures, have been uti-
lized to detect anomalies in log records. Each method has its
strengths and limitations, and further research is needed to en-
hance the accuracy and efficiency of log anomaly detection tech-
niques.

It is crucial to continue advancing the field of log anomaly detec-
tion as it plays a vital role in ensuring the security and reliability of
systems and networks. By detecting anomalies and potential cyber-
attacks, these techniques contribute to early threat identification
and mitigation. Future research should focus on refining exist-
ing methods, exploring new algorithms, and leveraging emerging
technologies to improve the effectiveness and scalability of log
anomaly detection systems.

The aim of this study is to transform raw log data into mean-
ingful and analyzable information that can effectively identify
log anomalies. We achieve this by combining the node2vec and
LSTM algorithms and applying them to the Hadoop HDFS dataset
collected from multiple sources.

MATERIALS AND METHODS

The architecture of this study is based on the use of two algorithms
together. First, the data converted to templates was vectorized
using the Node2Vec algorithm to analyze it in deep learning algo-
rithms. Then, this vectorial data was given as input to the LSTM
algorithm, and models were created for anomaly detection; thus,
anomaly detection was performed.

There are three types of anomalies in anomaly detection from
log data. The first of these anomalies is the point anomaly. A
point anomaly is data that deviates significantly from the mean
or normal distribution of the remaining data (Gogoi et al. 2011).
The second is the contextual anomaly. Contextual abnormality is
an abnormal behavior confined to a specific context and standard

CHAOS Theory and Applications 189

in other contexts (Ahmed et al. 2016). The third is the collective
anomaly. Unlike contextual and point anomalies, aggregate anoma-
lies appear in the data as abnormal values. Aggregate anomalies
are the abnormal behavior of a collection of data samples relative
to the entire dataset (Li et al. 2015).

Log anomaly detection identifies abnormal system patterns in
log data that do not conform to expected behavior. This section
discusses our work based on the algorithms adopted here. The
outline of our study is shown in Fig. 1. First, raw log data were
taken from different log groups and made meaningful by removing
unnecessary and noisy data. Templates were created from this log
data and given input to the Node2Vec algorithm to generate the
feature vector. Model training was done with the LSTM algorithm,
and anomaly detection was made with these trained models.

Figure 1 Flow chart of the proposed model algorithm.

Log parsing
Analysis of log data takes numerical and categorical data as in-
put. This requires cleaning, sorting, and normalizing the raw log
data. Log records consist of two main parts. Head part and text
part. The head part usually consists of several features such as
timestamps, hostnames, and severity of events. The developers
manually predefine text message input. This can vary significantly
between systems, even within one. These messages also consist of
two parts: fixed messages and variable messages.

Each raw log data consists of two parts. One of them is the
timestamp, and the other is the log complement part. The times-
tamp records the time of each log occurrence. Timestamps in
different formats can be easily extracted from raw log data during
log parsing, as they are regular expressions. A log identifier is a
token that identifies multiple processes or message exchanges of
the system(Du et al. 2017).

Log data X1,X2,X3,X4. . . .Xn let be created. These log data are
T1,T2,T3,T4. . . .Tn corresponds to log templates. TK is log parsing
method, date(t), time(z), pid(p), type(r), component(b), content(i),
templateid(j), template(l), and anomaly(k) performs the separation
process.

t, z, p, r, b, i, j, l, k = TK(X) (1)

As a result of the log parsing method;

k =

0 Normal

1 Abnormal

 (2)

After creating the log templates in Eq.(1), they are transferred
to the Node2Vec algorithm. With the embedding vector resulting
from this algorithm, training and test data are created from the
labeled abnormal data in Eq.(2).

As seen in Table 1, the first part is seen as a timestamp, the other
part as a log complement. Thus, some of the log data contains
numerical data, and the other part contains verbal data. Each

word in the log data can be used as a log keyword or parameter.
Log parameters usually consist of IP addresses, MAC information,
or user information. Log anomaly detection is generally detecting
that the log data is not abnormal. The presence of "INFO" in the
log data does not mean that the log data is normal. It is unknown
if parsing log data for this is abnormal or not. The purpose of log
parsing is to extract meaningful data from raw log data. Thus,
using these data, analyzes are made, and models are created.

To automatically analyze the logs, it is necessary to convert
them into appropriate formats that can fit textual and machine
learning algorithms. To analyze the log data, its unique parts
must be determined. As shown in Fig. 2, unique templates were
produced by labeling the parts with different similarity ratios in
the log records.

Figure 2 Log parsing steps for each log row.

Logs are preprocessed during log parsing. The values in the
timestamp in Table 2 are also separated as date, time, and PID.
Since each log template is different from the other, each template
is labeled as TemplateID. Component and content parts were also
subjected to separation under a different column.

Architecture of the Proposed Model Algorithm
It is challenging to detect anomalies in log analysis. Because log
data consists of both numerical and categorical data. To be able
to analyze these data, certain preprocesses are required. Different
preprocessing techniques are applied to each study dataset men-
tioned in Section 2. Thus, the feature is extracted from the data set
and made into a vector. Later, this vectorial data set was analyzed
with deep learning algorithms, and anomaly detection was made.

In this study, the GLSTM algorithm is proposed. This algorithm
consists of two stages. In the first stage, the data was transferred to
a graph after converting the data into templates without making
attributes from the data set. For this study, the Node2Vec algorithm,
one of the graph algorithms, was used. Because it is the most
effective algorithm for obtaining a vectorial data set for analyzing
data. Experimental tests have proven that this algorithm is suitable
and adequate for this study. The second stage is the analysis and
classification process. At this stage, LSTM, one of the deep learning
algorithms, was used. This algorithm is an iterative deep learning
algorithm. It is one of the most preferred algorithms for detecting
anomalies in log analysis. As a result of the experimental tests,
a high success rate was obtained using Node2Vec and LSTM in
anomaly detection.

The structure of the GLSTM architecture is shown in Fig. 3.
When the structure is examined, log data from multiple heteroge-
neous sources is taken, and templates are created. Since the graph

190 | Alaca et al. CHAOS Theory and Applications

■ Table 1 Raw log data structure.

Raw Log Data

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_38865049064139660 terminating

081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:50010 is added to
blk_7128370237687728475 size 67108864

081109 214529 2747 WARN dfs.DataNode$DataXceiver: 10.251.123.132:50010: Got exception while serving blk_3763728533434719668 to
/10.251.38.214:

081109 220032 3137 WARN dfs.DataNode$DataXceiver: 10.250.14.196:50010: Got exception while serving blk_-305633040016166849 to
/10.251.38.53:

■ Table 2 Assigning log preprocessing parameters.

NoID 1,2,3,.

Date 081109 , 081110,

Time 203615, 203807, 204005

PID 148, 222, 35, 308, 329,

Level INFO, WARN

Component dfs.DataNodePacketResponder, d f s.FSNamesystem, d f s.DataNodeDataXceiver

Figure 3 Proposed Model Architecture structure.

algorithm accepts the data set as numerical, the categorical part
of the data set of these templates was digitized. Digitization was
done by two methods used in the literature. One of them is Label
Encoding, and the other is One Hot Encoding. The graph struc-
ture was created by giving the digitized data set to the Node2Vec
algorithm as an edge and a node. A vectorial result was obtained
from this graph structure. By providing this result as an input to
the LSTM algorithm, log anomaly detection was made.

Exporting data to graph

The Node2Vec algorithm, one of the graph algorithms, has been
developed as an alternative to the word2vec algorithm, a natural
language processing algorithm. Although it was designed with
natural language processing in mind, this algorithm has been used
in more than one area. The approach of this algorithm uses proba-
bility to maximize the neighborhood of each node in the network
in a d-dimensional feature space. A random walk approach is used
to obtain the network neighborhood of the nodes.

The classical search algorithms in the graph are shown in Fig. 4.
One of these algorithms is Breadth Priority Sampling (BFS), and the
other is Depth Priority Sampling (DFS). It seems that BFS can detect
close quarters, whereas DFS can detect distant neighborhoods.
With its flexible structure, Node2Vec uses these two approaches
together. Probability was used to find neighborhoods by taking
a random walk. Semi-supervised operation in unweighted and
undirected networks achieved better results than classical search
approaches BFS and DFS(Grover and Leskovec 2016).

The structure of the Node2Vec algorithm differs from other
algorithms. This algorithm takes four parameters. These are p,
q, random walk, and walk length parameters. It is an algorithm
that works as a semi-control as optimum results are obtained by

CHAOS Theory and Applications 191

Figure 4 Classical search graph algorithms(Grover and Leskovec
2016)

changing these parameters. Of these parameters, p is the return
parameter. It reduces the probability of sampling the previously
visited node. The other parameter q is the input-output parameter.
With this parameter, previously unvisited nodes are visited. If
q > 1, the random walk is performed around the more visited
node. In this respect, it is similar to the BFS algorithm. If q < 1, the
random walk visits previously unvisited nodes. In this respect, it
is similar to the DFS algorithm.

To get vector data from the Node2Vec algorithm, it needs to be
exported to a Graf. In this study, StellarGraph was used because
machine learning and deep learning structures are easy to use
(CSIRO’s Data61 2018). The main reasons for using this graphic
structure are; 1. It can be used for visualization and various ma-
chine learning, 2. Ability to extract features from nodes and edges,
3. Applicable in big data, 4. Classification of nodes, It can perform
many operations, such as easy and applicable. Multiple studies
have been conducted on deep learning and machine learning using
this graph structure(Rong 2014; Demeester et al. 2016; Kipf and
Welling 2016).

The following procedure was followed for transferring the data
to Graph. Graphs are made up of edges and nodes. Nodes, on the
other hand, need to go from a specific source to the destination.
TemplateID, which is different for each template, was chosen as
the source, and anomaly or normal column was chosen for the
target. The remaining columns are used for nodes. In Fig. 5, the
edges and nodes of the data transferred to the Graph are shown.

Figure 5 Data exported to graph.

Anomaly Detection

LSTMs are members of repetitive RNNs. RNNs are self-repetitive
models, taking sequential data one item at a time. Compared to
Markov models, although state-space sets increase, they give better
results in the long run due to dependency(Specht 1990; Werbos
1988). LSTMs were developed to eliminate the disadvantages of
RNNs. LSTMs work recursively like RNNs, the difference being
that they run on different cells with their hidden display.

Fig. 6 shows the use of the LSTM algorithm in this study. Input
data is used HDFS verse which Hadoop collects from multiple
sources. These data were digitized with 1-hot encoding and label
encoding methods. Then, these data are given to the Node2Vec al-
gorithm as an input parameter, and an embedding vector is created
as an output. Anomalous log data labeled with this embedding
vector is provided as input parameters to the LSTM algorithm.
Thus, models that detect abnormal values are created.

Figure 6 Anomaly detection in the proposed model.

RESULTS AND DISCUSSION

This study proposes a model to analyze log records to detect
cyberattacks and to detect the anomalies created by the traces
left by the attackers in the log records. HDFS dataset was used
to test this model. The HDFS log dataset consists of 11,175,629
logs collected from more than 200 Amazon heterogeneous sources.
HDFS log data records operations such as allocation, duplication,
and deletion in a specific block using block_id. This dataset com-
prises 575,061 log blocks and has been labeled 16,838 abnormal by
Hadoop’s experts. Table 3 gives information about the HDFS data
set.

The BGL dataset consists of a comprehensive collection of
4,747,963 logs, meticulously labeled as either anomalous or normal.
Among these logs, 348,460 instances have been classified as anoma-
lous. The BGL dataset was obtained from the Blue Gene/L super-
computer, a highly sophisticated computing system employed at
Lawrence Livermore National Laboratory (LLNL). With its exten-
sive infrastructure consisting of 128K processors, the Blue Gene/L
supercomputer has played a crucial role in generating the BGL
dataset for research and academic endeavors (Guo et al. 2021).

The IMDb dataset is a collection of film reviews. It comprises
50,000 reviews written by users on the IMDb website for various
movies. The dataset includes reviews that have been labeled as
positive or negative. The reviews are rated using a rating scale
ranging from 1 to 10. Ratings between 1 and 4 are labeled as
negative, while ratings between 7 and 10 are labeled as positive.
Ratings of 5 and 6 are not included in the dataset. Each film has
a maximum of 30 reviews. The IMDb dataset consists of 25,000
positive and 25,000 negative reviews (Tripathi et al. 2020).

192 | Alaca et al. CHAOS Theory and Applications

■ Table 3 Detail of the datasets.

Dataset Time Log Line Anomaly

HDFS 38,7 hours 11,175,629 16,838(block)

BGL 7 months 4,447,963 348,460(logs)

IMDB - 50,000 25,000(negative)

Research Questions
Logging collects numerical and textual data of software behavior,
such as low memory conditions or attempts to access a file. Log
anomaly in modern software engineering is still challenging for
three main reasons.

The main reasons for this are;
• Great effort is required for large volumes of logs and thus

manual regular expression generation,
• The complexity of the software and, therefore, the variety of

event templates,
• Frequency of software updates and hence frequent updating

of logging statements.
In this study, templates were created for each row of log records,

and these large-volume logs were made regularly by reducing
their size using templates. Then, the embedding vector was cre-
ated by establishing a relationship between these templates with
the Node2Vec algorithm. The model was trained with LSTM, and
anomaly detection was performed in the newly created log tem-
plate.

Evaluation Metrics
A confusion matrix was used for the performance evaluation of
experimental studies conducted to classify HDFS, BGL and IMDB
datasets. In these experimental studies, the data was randomly
partitioned into training, validation, and test sets, with 70% of
the dataset allocated for training and 15% each for testing and
validation. This data splitting strategy was employed to ensure
reliable outcomes in the experiments. Performance metrics such
as accuracy, sensitivity, specificity, precision, and F-score of the
model were calculated using the confusion matrix. The calculation
of these metrics is given in Eq. 3, 4, 5 and 6 mathematically.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(6)

In the experimental studies, in the first stage, large volumes of
log data were transformed into templates to reduce their size and
make them regular. The Node2Vec algorithm was used to establish
a relationship between these templates and to train the model with
the deep learning algorithm. Then, model training was performed
with the LSTM algorithm for anomaly detection. In the model
created with this dataset, the LSTM input layer consists of 128, the
hidden layer 64, and the output layer consists of 1 neuron to obtain
the normal or abnormal result. As a result of the experimental

study, an accuracy rate of 97.01% was obtained with the proposed
model.

The performance results obtained with the proposed model
are given in Table 4. The results vary depending on the datasets.
In the tests conducted on the HDFS dataset, the LSTM method
achieved an accuracy rate of 97.01%. The Bi-LSTM method fol-
lowed closely with an accuracy rate of 96.98%. The GRU method
demonstrated the highest performance with an accuracy rate of
98.15%. In the tests conducted on the BGL dataset, the LSTM
method had an accuracy rate of 81.56%. The Bi-LSTM method
performed slightly better with an accuracy rate of 84.21%. The
GRU method exhibited the best performance with an accuracy rate
of 86.44%. In the tests conducted on the IMDB dataset, the LSTM
method achieved an accuracy rate of 97.40%, while the Bi-LSTM
method outperformed with an accuracy rate of 98.54%. The GRU
method showed the highest performance with an accuracy rate of
98.89%. Based on these experimental results, it can be observed
that the GRU, Bi-LSTM, and LSTM methods perform differently
on different datasets.

The Fig. 7 illustrates the progression of accuracy rates during
the training and validation processes. The training accuracy curve
represents the accuracy rate achieved on the training dataset, while
the validation accuracy curve reflects the accuracy rate on the
validation dataset. At the beginning of the graph, both the training
and validation accuracy rates are low. However, as the training
process progresses, the accuracy rates increase and eventually
converge. This indicates that the model performs well on the
training dataset and also provides good results on the validation
dataset. Analyzing this graph is important to evaluate the model’s
performance during the training process and demonstrate the
absence of issues such as overfitting or underfitting.

Figure 7 Training and Validation Accuracy Performance Curves.

CHAOS Theory and Applications 193

■ Table 4 Performance results of the proposed model.

Datasets Algorithm Accuracy Precision Recall F1_score Average train time (second)

HDFS LSTM 97.01 97.23 96.06 84.25 6.60

Bi-LSTM 96.98 97.40 97.18 86.89

GRU 98.15 98.10 98.55 88.42

BGL LSTM 81.56 81.76 88.31 81.54 5.46

Bi-LSTM 84.21 86.89 85.18 85.79

GRU 86.44 87.34 88.29 91.52

IMDB LSTM 97.40 95.99 98.18 95.89 7.21

Bi-LSTM 98.54 97.44 97.39 96.22

GRU 98.89 97.49 98.28 97.36

Fig. 8 illustrates the changes in training loss and validation loss
during the training process. The training loss curve represents
the loss on the training dataset, while the validation loss curve
reflects the loss on the validation dataset. The graph shows that
the training loss decreases over time, indicating that the model is
learning and improving its performance. Initially, the validation
loss also decreases, but at a certain point, it starts to increase again.
This situation indicates that the model is not overfitting to the
training data.

Figure 8 Training and Validation Loss Performance Curves.

The Confusion Matrix is given in Fig. 9, which shows the suc-
cess status due to the tests performed in this study. This graph
calculates the efficiency of the actual and predicted values. The
important thing is that the estimated values obtained after training
our model were compared with the actual values, and their accu-
racy was determined. This graph shows how many anomalies the
actual anomaly detected after the model was trained. Thus, this
graph shows that our model has achieved high success.

Two useful tools, AUC curves, are used to measure the outcome
of experiments performed accurately. These curves are used to

Figure 9 The confusion matrix of the experimental results of the
proposed model.

Figure 10 The graph of the AUC Curve.

194 | Alaca et al. CHAOS Theory and Applications

eliminate two different errors. One of them is HPs. This error gives
results as if there is an event when there is no event. The other is
FN. This error also produces erroneous results because it does not
detect the event when there is an event. Due to these two errors,
the results of the experiments are not clearly understood. To avoid
this, AUC curves are used.

TruePositiveRate =
TP

TP + FN
(7)

TrueNegativeRate =
TN

FN + TN
(8)

Two important ratios are calculated in the AUC curve. One
of them is the True Positive Ratio shown in Eq. 7. The other is
the True Negative Ratio shown in Eq. 8. Fig. 10 shows the graph
of the AUC Curve. Smaller values on the graph’s x-axis indicate
lower false positives and higher true negatives. The graph’s y-axis
also shows larger values, i.e., higher true positives and lower false
negatives. This shows that a good model shows a value higher
than 0.5; the part is shown with dashed lines in the graph, that is,
the threshold value. This shows that the model gives good results.

Another graph that measures the model accurately is the Pre-
cision – Accuracy graph. These curves are also called Sensitive
Recall Curves. The precision shows how well the positive part of
the model predicts, as shown in Eq. 8. The accuracy is shown in
Eq. 3. This allows for a more accurate estimation of true positives.
Fig. 11 shows the Precision vs. Accuracy graph. The integral of
the area under the curve shows how accurately and accurately the
model works.

Figure 11 Precision-Accuracy Plot of the proposed model.

Competing Models
This study was carried out according to the method used, the
dataset used, and the comparisons’ accuracy with the previous
run. Considering these criteria, comparisons for this use with other
businesses are given in Table 5. LogAnomaly (Rodriguez et al. 1999)
uses the same dataset as our proposed study and the same deep
learning methods in the developed method. With LogAnomaly,
primarily synonyms and antonyms were detected in the log data
with Word2Vec. One sample for each log information is incorrect.
These templates were then transferred to a vector and analyzed
with LSTM. LogAnomaly faces significant challenges as log records
consist of numeric and textual structures. Since the method we pro-
pose converts both numeric and textual data into graphs, it turned

out to be in the size of such dimensions, and in fact, a better result
was obtained than LogAnomay. DeepLog (Du et al. 2017) generates
a key for each log information with a natural language processing
method, and a vector result is obtained with the corresponding
key. Anomaly data were made using this vectored LSTM. This
method has difficulties analyzing numerical parts of log data at a
certain level. Since the method we proposed analyzes using each
feature of the whole data set, it achieved a more successful result
despite using the same dataset and using this method. To reduce
log anomaly, Bi-LSTM and PCA retentions (Meng et al. 2019b) were
used with a dataset similar to our proposed work. With this work,
the dataset was first separated and then made into templates. Then,
it was converted into vectorial form with digitization and normal-
ization processes. Although the examples we suggested used the
same dataset, the model we did not particularly recommend was
more successful than the results obtained with PCA. As a result,
our proposed method has obtained more successful results than
many previously applied models and evaluates that it can be used
more effectively in daily anomalies.

In this study, graph structure was used instead of the NLP tech-
nique used in many studies. Node2vec from the graph algorithm is
used. This algorithm was developed as an alternative to word2vec
algorithms. In this study, it has been shown by tests that it achieves
a better result than other algorithms in terms of decomposing logs
and feature extraction.

To train deep learning network models and achieve high success
in log anomaly detection, it should be brought to the level to be
given as input to the model, especially after the log parsing process.
In this study, the node2vec output vector was given to LSTM as
input data, and 97.01% success was achieved. A better result was
obtained than the methods using the NLP technique.

CONCLUSION

This study aims to make a large number of logs obtained from
different sources in complex networks and uniformly contain dif-
ferent features and detect anomalies from them. The fact that
the logs consist of huge and different data makes detecting fast
and effective anomalies very difficult. For this reason, to process
these different log data effectively and quickly, in this study, logs
in different structures were turned into a template and then con-
verted into a graph structure to obtain the relationships between
these templates. Node2Vec, a graph algorithm, was used for graph
transformation. The embedding vector of the log templates is ob-
tained from this transformation. The obtained data containing
these vector anomaly tags are divided into 70% training and 30%
test data for the deep learning algorithm. These data were trained
and tested using the LSTM algorithm, one of the deep learning
methods. As a result of the tests, our Graf-based LSTM model,
which we recommend, has achieved successful results with an
accuracy of 97.01%.

Intrusion detection systems utilize the analysis of log data
to effectively detect anomalies. However, detecting anomalies
quickly and effectively in large and heterogeneous log data can
be challenging. To address this difficulty, this study proposes the
GLSTM (Graph-based Long Short-Term Memory) framework, a
graph-based deep learning model that analyzes log data to detect
cyber-attacks rapidly and effectively. The framework involves
standardizing the complex and diverse log data, training this data
on an artificial intelligence model, and detecting anomalies. Ini-
tially, the complex and diverse log data is transformed into graph
data using Node2Vec, enabling efficient and rapid analysis on the
artificial intelligence model. Subsequently, these graph data are

CHAOS Theory and Applications 195

■ Table 5 Comparison of the proposed model with other payments.

Authors Method Datasets Acc(%)

2019, Weibin Meng et al.(Rodriguez et al. 1999) LSTM,Word2Vec BGL,HDFS 96.00

2017,Min Du et al. (Du et al. 2017) LSTM,tamplate2Vec BGL,HDFS 92.00

2022, Zhang Yue et al.(Meng et al. 2019b) Bi-LSTM,PCA HDFS 95.60

2023, Proposed Method LSTM,BGL,IMDB,Node2Vec HDFS 97.01

trained using LSTM (Long Short-Term Memory), Bi-LSTM, and
GRU (Gated Recurrent Unit) deep learning algorithms. The pro-
posed framework is tested using Hadoop’s HDFS dataset, collected
from different systems and heterogeneous sources, as well as the
BGL and IMDB datasets. Experimental results on the selected
datasets demonstrate high levels of success.

Limitations of this study should be considered:
Data Diversity: Although this study was tested with Hadoop’s

HDFS dataset, its ability to generalize to datasets with greater
diversity from various networks and systems may be limited. Spe-
cific anomalies based on different data types or sources could pose
challenges. Data Size: Working with large datasets can be lim-
ited by computational resources and memory requirements. This
study may provide limited insights into handling larger datasets.
Feature Engineering: Data transformations and representation
may pose challenges in feature engineering. Ensuring that data is
accurately and meaningfully represented may not always be guar-
anteed. Training Data: The success of this study may be dependent
on the specific datasets used and the training data. Results may
vary with different datasets or data splitting strategies. Model
Selection: This study employed specific deep learning algorithms
like LSTM, Bi-LSTM, and GRU. The impact of these algorithms on
model performance should be taken into account. Exploration of
other deep learning methods may be warranted. Real-World Ap-
plications: The extent to which the study’s results can be applied to
real-world applications, generalize to specific network structures
or systems, may require further investigation. These limitations
should be considered for a better understanding of the study’s
findings and the real-world applicability of the model.

Availability of data and material
Not applicable.

Conflicts of interest
The authors declare that there is no conflict of interest regarding
the publication of this paper.

Ethical standard
The authors have no relevant financial or non-financial interests to
disclose.

LITERATURE CITED

Ahmed, M., A. N. Mahmood, and M. R. Islam, 2016 A survey
of anomaly detection techniques in financial domain. Future
Generation Computer Systems 55: 278–288.

Alaca, Y. and Y. Çelik, 2023 Cyber attack detection with qr code
images using lightweight deep learning models. Computers &
Security 126: 103065.

Church, K. W., 2017 Word2Vec. Natural Language Engineering 23:
155–162.

CSIRO’s Data61, 2018 StellarGraph Machine Learning Library.
Demeester, T., T. Rocktäschel, and S. Riedel, 2016 Lifted rule in-

jection for relation embeddings. EMNLP 2016 - Conference on
Empirical Methods in Natural Language Processing, Proceed-
ings pp. 1389–1399.

Du, M., F. Li, G. Zheng, and V. Srikumar, 2017 DeepLog: Anomaly
detection and diagnosis from system logs through deep learning.
Proceedings of the ACM Conference on Computer and Commu-
nications Security pp. 1285–1298.

Elbasani, E. and J. D. Kim, 2021 LLAD: Life-Log Anomaly De-
tection Based on Recurrent Neural Network LSTM. Journal of
Healthcare Engineering 2021.

Farzad, A. and T. A. Gulliver, 2019 Log Message Anomaly Detec-
tion and Classification Using Auto-B/LSTM and Auto-GRU pp.
1–28.

Gogoi, P., D. K. Bhattacharyya, B. Borah, and J. K. Kalita, 2011 A
survey of outlier detection methods in network anomaly identi-
fication. The Computer Journal 54: 570–588.

Grover, A. and J. Leskovec, 2016 node2vec: Scalable Feature Learn-
ing for Networks .

Guo, H., S. Yuan, and X. Wu, 2021 Logbert: Log anomaly detection
via bert. In 2021 international joint conference on neural networks
(IJCNN), pp. 1–8, IEEE.

He, S., P. He, Z. Chen, T. Yang, Y. Su, et al., 2020 A Survey on Auto-
mated Log Analysis for Reliability Engineering. arXiv preprint
arXiv:2009.07237 .

Hochreiter, S. and J. Schmidhuber, 1997 Long Short-Term Memory.
Neural Computation 9: 1735–1780.

Kipf, T. N. and M. Welling, 2016 SEMI-SUPERVISED CLASSI-
FICATION WITH GRAPH CONVOLUTIONAL NETWORKS.
Technical report.

Li, H. and Y. Li, 2020 LogSpy: System Log Anomaly Detection
for Distributed Systems. Proceedings - 2020 International Con-
ference on Artificial Intelligence and Computer Engineering,
ICAICE 2020 pp. 347–352.

Li, Y., Y. Zheng, H. Zhang, and L. Chen, 2015 Traffic prediction
in a bike-sharing system. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, pp. 1–10.

Lu, S., X. Wei, Y. Li, and L. Wang, 2018 Detecting anomaly in
big data system logs using convolutional neural network. Pro-
ceedings - IEEE 16th International Conference on Dependable,
Autonomic and Secure Computing, IEEE 16th International Con-
ference on Pervasive Intelligence and Computing, IEEE 4th In-
ternational Conference on Big Data Intelligence and Computing
and IEEE 3 pp. 159–165.

Makanju, A. A. O., A. N. Zincir-Heywood, and E. E. Milios, 2009

196 | Alaca et al. CHAOS Theory and Applications

Clustering event logs using iterative partitioning. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1255–1264.

Meng, W., Y. Liu, Y. Zhu, S. Zhang, D. Pei, et al., 2019a Loganomaly:
Unsupervised detection of sequential and quantitative anoma-
lies in unstructured logs. IJCAI International Joint Conference
on Artificial Intelligence 2019-Augus: 4739–4745.

Meng, W., Y. Liu, Y. Zhu, S. Zhang, D. Pei, et al., 2019b Loganomaly:
Unsupervised detection of sequential and quantitative anoma-
lies in unstructured logs. IJCAI International Joint Conference
on Artificial Intelligence 2019-Augus: 4739–4745.

Rodriguez, P., J. Wiles, and J. L. Elman, 1999 A recurrent neural
network that learns to count. Connection Science 11: 5–40.

Rong, X., 2014 word2vec Parameter Learning Explained pp. 1–21.
Schindler, T., 2017 Anomaly Detection in Log Data using Graph

Databases and Machine Learning to Defend Advanced Persis-
tent Threats. Technical report.

Sigelman, B. H., L. Andr, M. Burrows, P. Stephenson, M. Plakal,
et al., 2010 Dapper , a Large-Scale Distributed Systems Tracing
Infrastructure. Google Research p. 14.

Specht, D. F., 1990 Probabilistic neural networks. Neural networks
3: 109–118.

Studiawan, H., C. Payne, and F. Sohel, 2017 Graph clustering and
anomaly detection of access control log for forensic purposes.
Digital Investigation 21: 76–87.

Tripathi, S., R. Mehrotra, V. Bansal, and S. Upadhyay, 2020 Ana-
lyzing sentiment using imdb dataset. In 2020 12th International
Conference on Computational Intelligence and Communication Net-
works (CICN), pp. 30–33, IEEE.

Vaarandi, R., 2003 A data clustering algorithm for mining patterns
from event logs. In Proceedings of the 3rd IEEE Workshop on IP
Operations Management (IPOM 2003)(IEEE Cat. No. 03EX764), pp.
119–126, Ieee.

Wang, M., L. Xu, and L. Guo, 2018 Anomaly detection of system
logs based on natural language processing and deep learning.
2018 4th International Conference on Frontiers of Signal Process-
ing, ICFSP 2018 pp. 140–144.

Wang, X., D. Wang, Y. Zhang, L. Jin, and M. Song, 2019 Unsu-
pervised learning for log data analysis based on behavior and
attribute features. In Proceedings of the 2019 International Confer-
ence on Artificial Intelligence and Computer Science, pp. 510–518.

Werbos, P. J., 1988 Generalization of backpropagation with ap-
plication to a recurrent gas market model. Neural networks 1:
339–356.

Yan, X., W. Zhou, Y. Gao, Z. Zhang, J. Han, et al., 2015 PADM:
Page rank-based anomaly detection method of log sequences by
graph computing. Proceedings of the International Conference
on Cloud Computing Technology and Science, CloudCom 2015-
Febru: 700–703.

How to cite this article: Alaca, Y., Celik, Y., and Goel, S. Anomaly
Detection in Cyber Security with Graph-Based LSTM in Log Anal-
ysis. Chaos Theory and Applications, 5(3), 188-197, 2023.

Licensing Policy: The published articles in Chaos Theory and
Applications are licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

CHAOS Theory and Applications 197

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

