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Practical Radial Distribution Feeder for Techno Economic in DERs 

based on ANN and Chameleon Optimization Algorithms 

       Highlights 

❖ This study uses artificial neural networks and the Chameleon Optimization Algorithm to analyze the best 

integration of renewable energy sources and electric vehicles in distribution feeders. 

❖ The proposed method reduced the power loss, regulate voltage levels, and decrease the cost and emissions 

under unpredictable load demand. 

❖  In this study, the generated output power of the models is compared to solar photovoltaic generation systems 

and wind turbine generation systems.  

 

Graphical Abstract 

ANN and COA are used in this study to determine the optimal parameters of the objective function and EV installation 

tasks simultaneously to lower power loss and overall costs. The summary of this study is shown in following figure. 

 

Figure. Flowchart of the proposed method 

Aim 

The main aim of this study is uses artificial neural networks and the Chameleon Optimization Algorithm to analyze 

the best integration of renewable energy sources and electric vehicles in distribution feeders to reduce power loss, 

regulate voltage levels, and decrease the cost and emissions under unpredictable load demand. 

Design & Methodology 

The 28-bus rural distribution network in feeders is used to test the suggested methodology. 

Originality 

A fitness function with several objectives has been developed to reduce total active power loss while also reducing 

total cost and emissions generation. The study took into account the influence of EV charging/discharging behavior 

on the distribution system. 

Findings 

Final analysis of the numerical results showed that the Artificial Neural Network and Chameleon Optimization 

Algorithms outperformed in terms of power loss (440.94 kw) and average purchase of real power (2224 kw), but these 

parameters do not favor the other optimization algorithms. 

Conclusion  

This study evaluates whether DER integration into the distribution system is technologically, economically, and 

ecologically feasible. In order to solve this issue with distribution system planning, the ideal placements and sizes of 

PVGS, WTGS, and EVs were determined for 28 bus networks using the ANN and COA. 

Declaration of Ethical Standards 

The authors of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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 YSA ve Bukalemun Optimizasyon Algoritmalarına 

Dayalı DER'lerde Tekno Ekonomik için Pratik Radyal 

Dağıtım Besleyicisi 
Araştırma Makalesi / Research Article 

Jemaa BOJOD*, Bilgehan ERKAL 

Department of Electrical and Electronics Engineering, Karabuk University, Karabuk  

(Geliş/Received : 23.08.2023 ; Kabul/Accepted : 15.09.2023 ; Erken Görünüm/Early View : 21.09.2023) 

 ÖZ 

Dağıtılmış enerji kaynakları (DER'ler), yük merkezlerine yakın yük talebini karşılamak için daha iyi bir seçimdir. Optimum DER 

yerleşimi ve DER değerleri, güç kaybının azaltılmasına, voltaj profilinin iyileştirilmesine, çevre dostu olmasına, güvenilirliğe ve 

sistem değişikliklerinin ertelenmesine yol açar. Bu çalışma, güç kaybını azaltmak, voltaj seviyelerini düzenlemek ve 

öngörülemeyen yük talebi altında maliyet ve emisyonları azaltmak amacıyla yenilenebilir enerji kaynaklarının ve elektrikli 

araçların dağıtım besleyicilerindeki en iyi entegrasyonunu analiz etmek için yapay sinir ağlarını ve Bukalemun Optimizasyon 

Algoritmasını kullanmaktadır. Bu çalışmada modellerin üretilen çıkış güçleri güneş fotovoltaik üretim sistemleri ve rüzgar türbini 

üretim sistemleri ile karşılaştırılmıştır. Sonuç olarak, toplam aktif güç kaybını azaltırken aynı zamanda toplam maliyeti ve emisyon 

üretimini de azaltmak için çeşitli hedefleri olan bir uygunluk fonksiyonu geliştirilmiştir. Çalışma, EV şarj/deşarj davranışının 

dağıtım sistemi üzerindeki etkisini dikkate aldı. Önerilen metodolojiyi test etmek için fiderlerdeki 28 otobüslü kırsal dağıtım ağı 

kullanılmıştır. Sayısal sonuçların son analizi, Yapay Sinir Ağı ve Bukalemun Optimizasyon Algoritmalarının güç kaybı (440,94 

kw) ve ortalama gerçek güç alımı (2224 kw) açısından daha iyi performans gösterdiğini ancak bu parametrelerin diğer optimizasyon 

algoritmalarını desteklemediğini gösterdi. Bu, önerilen stratejinin hem uygulanabilir hem de etkili olduğunu gösterdi.   

Anahtar Kelimeler: Pratik radyal dağıtım besleyici, tekno-ekonomik, dağıtılmış enerji kaynakları, yapay sinir ağı, 

bukalemun optimizasyon algoritması. 

Practical Radial Distribution Feeder for Techno 

Economic in DERs based on ANN and Chameleon 

Optimization Algorithms 

ABSTRACT 

Distributed energy resources (DERs) are a better choice to meet load demand close to load centers. Optimal DER placement and 

DER ratings lead to power loss reduction, voltage profile improvement, environmental friendliness, dependability, and 

postponement of system changes. This study uses artificial neural networks and the Chameleon Optimization Algorithm to analyze 

the best integration of renewable energy sources and electric vehicles in distribution feeders to reduce power loss, regulate voltage 

levels, and decrease the cost and emissions under unpredictable load demand. In this study, the generated output power of the 

models is compared to solar photovoltaic generation systems and wind turbine generation systems. As a result, a fitness function 

with several objectives has been developed to reduce total active power loss while also reducing total cost and emissions generation. 

The study took into account the influence of EV charging/discharging behavior on the distribution system. The 28-bus rural 

distribution network in feeders is used to test the suggested methodology. Final analysis of the numerical results showed that the 

Artificial Neural Network and Chameleon Optimization Algorithms outperformed in terms of power loss (440.94 kw) and average 

purchase of real power (2224 kw), but these parameters do not favor the other optimization algorithms. This showed that the 

proposed strategy is both viable and effective. 

Keywords: Practical radial distribution feeder, techno-economic, distributed energy resources, artificial neural network, 

chameleon optimization algorithm.

1. INTRODUCTION 

The integration of photovoltaic systems into distribution 

networks is rapidly expanding as a result of the 

continually rising electrical energy demand, even though 

it has a substantial impact on the power quality of the 

network [1][2]. In order to increase system efficiency, 

lower noise pollution, minimize carbon emissions, and 

lessen reliance on foreign energy sources, more and more 

nations are turning to RESs, which are popular examples 

of microturbine, biomass, wind, and solar power [3]. 

Recent years have seen an increase in demand for RESs 

due to their benefits [4][5][6]. One of the frequently 

recommended sources of electricity is Electric vehicles 

(EVs) that can lower oil consumption and emissions, 

even during system peak times. Gridable automobiles are 
*Sorumlu yazar(Corresponding Author) 
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expected to have a successful future due to their greater 

power and environmental characteristics [7][8]. 

The literature has conducted various studies on the 

mentioned title that can be divided into two types: 

general and specialized. The integration problem is 

resolved in the first instance using a single objective 

function, while the integration problem for DER is 

resolved in the second instance using a multi-objective 

framework [7][8]. 

By considering power losses, Rau and Wan proposed the 

idea of optimal power distribution in sub- and 

distribution-level transmission networks. According to 

the literature [9][10], there are different strategies to deal 

with DER integration issues with a single aim. Among 

the methodologies used are genetic algorithms (GA), 

improved learning-based optimization (ILBO), and 

vaccine-enhanced AI systems (Vaccine-AIS), as well as 

evolutionary programming (EP), mixed integer nonlinear 

programming (MINLP), analytical-based approaches, 

and artificial intelligence techniques like MINLP, ILBO, 

and Vaccine-AIS [11][12]. Literature data points to the 

presence of numerous studies that make various attempts 

to tackle the multi-objective problem of DER integration. 

Analytically based methods are used in AI techniques 

including PSO, MOABC, MOPSO, GA, and non-

dominated swarm optimization (NSO) [13][14]. 

A few recent publications on DER integration-based 

distribution systems are also mentioned here. When an 

on-load tap changer (OLTC) transformer is present, shunt 

capacitances and dispatchable DGs can be built to 

minimize annual energy losses and voltage fluctuations 

[15][16]. The moth search optimization (MSO) algorithm 

was updated by Singh et al. to solve the issue of 

determining the best placement of the two 

simultaneously [17][18]. 

Elephant herding optimization and multicriteria decision-

making were used to solve the optimal DERs in corporate 

problems in a multi-objective framework by [19]. DERs 

and shunt capacitors may be placed in the most efficient 

locations and sizes for both economic and environmental 

reasons using an updated PSO algorithm [20][21]. Using 

a multi-objective index and an analytical approach, the 

DER integration issue was resolved by taking into 

account a demand-response program to lessen both active 

and reactive power losses. According to [22][23], a best 

placements and sizes of renewable-based DGs were 

assessed using a newly developed voltage stability and 

quick PSO algorithm. Network reconfiguration and RESs 

integration problems were solved concurrently by 

Hesaroor and Das [24]. Tie-switch positions, as well as 

DG locations and sizes, have been optimized 

simultaneously to reduce yearly energy loss and benefit 

from cost savings [25][26]. 

In researches [27][28] demonstrates that many authors 

have discussed the topic of installing DER distribution 

networks to reduce power loss and benefit financially. To 

choose where and how big to make their DERs, they 

employed a number of techniques. Scientists are quite 

concerned about this issue because it has received so little 

attention. Due to the availability of renewable energy 

sources and electric vehicles, it has been determined that 

the majority of scholars overlooked the fact that each bus 

has a 24-hour need. The combination of power loss, 

overall cost, and emissions creation is a research gap in 

the literature needs further investigations [29][30][31]. 

This is why a multi-objective fitness function addressed 

by Artificial Neural Network (ANN) and Chameleon 

Optimization Algorithm (COA) with the existence of 

RESs and charging/discharging of EVs with unknown 

load requirements over 24 hours that has been adopted. 

This optimization strategy has been effectively applied in 

past applications for economic load dispatch, unit 

commitment, and transmission network expansion 

planning. This enables the authors to address a 

distribution system planning challenge of this scale by 

putting their theories into practice. The honeybee's innate 

propensity to search for food served as inspiration for the 

usage of this meta-heuristic technique. With a 

compounded convergent rate and quick convergence, it 

can solve nonlinear limited problems. It also has a 

reduced number of configurable controllers. This 

strategy is regarded as the preferable method of resolving 

this issue because of these advantages. Its most important 

contributions include the following: 

1. Installation of diverse RESs with changing power 

factors and time-varying load demands under 

probabilistic power generation is made easier with a 

new multi-objective fitness function. 

2. Aside from that, this research considers the influence 

of EV charging and discharging on the distribution 

network, as well as varying customer load demand. 

Among other things, the author addresses the following 

topics: 

1. Use of the ANN and COA to discover the best 

possible locations and appraisals for RESs and EVs 

in the distribution feeder. 

2. Calculating the likelihood of wind speed and solar 

irradiation by using a mathematical model for each. 

As a result, it is possible to calculate the anticipated 

output power. the concept of recharging and 

discharging EVs is taken into account. 

3. Analysis of different costs, including active power 

purchase cost, WTGS, PVGS installation, and O&M 

costs. 

4. Following grid integration of RESs and electric 

vehicles, total network cost. 

The methodology provided in this paper is applied to the 

following networks: A 28-bus practicable distribution 

network and a techno-socioeconomic study have been 

conducted to represent the practicality of the 

suggested approach. For better exemplification, the 

following highlights the innovation of the paper: 

• To determine the current, voltage, and power loss of 

the distribution network, a backward/forward load 

flow method was created. 

• An unknown daily load requirement for each bus is 

taken into account to make the problem seem more 

real. 
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• The development of mathematical models for the 

production of solar and wind energy, as well as the 

notion of EV charging and discharging. 

The COA is used in this paper to determine the best 

allocations and number of DERs to connect to the 

distribution system while accounting for the 

unpredictability of load. 

This is a novel meta-heuristic optimization strategy and 

was inspired by chameleons' foraging behavior. The 

method has several goals, including overall active power 

loss, total cost, and minimizing grid emissions under 

unpredictable loads. 

The COA has a few controllable parameters. It is 

impressive at resolving composite non-linear constraint 

issues as demonstrated by its rapid rate of convergence. 

These benefits have led to its selection as a favored 

approach to solving these issues. 

The rest of this manuscript is arranged as follows: In 

section 2, the mathematical problem formulation is 

provided as a multiobjective function with operational 

constraints. Section 3 of this research shows RESs and 

the charging/discharging feature of EVs during 24 hours. 

It is explained in detail in Section 4 in terms of how to 

use the COA and ANN to achieve the optimal parameters 

used in the fitness function to be decreased, as well as the 

fitness value and the cos function in power systems. 

Section 5 discusses the simulation's results while Section 

6 concludes the study. Finally, the conclusion summary 

is closing the article followed by list of recent references. 

 

2. MATERIAL and METHOD 

This section explains the formulation of the objective 

function for the optimization of exploited components 

(PV, wind, and EV) along with the concept of ANN and 

the COA. 

2.1. Proposed Mathematical Problem Formulation 

An effort has been made to incorporate a variety of power 

sources into the feeders for distribution due to the erratic 

nature of demand. To determine the ideal locations and 

sizes of different power sources (cost, loss of electricity, 

and pollutant generation are the main goals), a fitness 

function that combines many objectives into one fitness 

function has been developed. The weighting factor rule 

is used to simultaneously decrease the number of critical 

objectives. Using Equation. (1), the stochastic multi-

objective optimization problem can be modeled [22]: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹 = 𝑤1 ×

(
𝐶𝑝 + 𝑃𝑉−𝑖𝑛𝑠𝑡𝑡 + 𝑃𝑉−𝑂𝑀 +𝑊−𝑖𝑛𝑠𝑡𝑡 +𝑊−𝑂𝑀

+∑ 𝐶𝐸𝑉(𝑡)
24
𝑡=1

)
⏟                              

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

+

𝑤2 × ∑ 𝑃𝑇𝐿𝑜𝑠𝑠(𝑡)
24
𝑡=1 + 𝑤3 × ∑ 𝐸𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡)

24
𝑡=1         (1) 

While, the actual cost of purchasing power (Cp) from the 

grid is used to calculate the fitness function's first term 

using Equation (2) [22]. 

𝐶𝑝 = ∑ 𝑃𝑊𝑦 × 365 × ∑ 𝜌𝐸(𝑡)
24
𝑡=1

𝑦𝑟
𝑦=1 × 𝑃𝑟𝑒𝑎𝑙(𝑡)          (2) 

Present worth (PW) can be determined as PW = (1 + 

infR) / (1 + intR), where 𝑦𝑟 denotes the number of years 

(20 years). 

The PVGS installation cost (𝑃𝑉−𝑖𝑛𝑠𝑡𝑡) is represented by 

the fitness function's second term, which is evaluated by 

Equation. (3).  

𝑃𝑉−𝑖𝑛𝑠𝑡𝑡 = 𝑃𝑉𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 + 𝑃𝑉𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 =

𝑃𝑉𝑜𝑢𝑡 × 𝐶𝑃𝑃𝑉 + 0.5 ∗ (𝑃𝑉𝑜𝑢𝑡 × 𝐶𝑃𝑃𝑉)                       (3) 

Equation (4) is used to calculate the operation and 

maintenance costs for the PVGS. 

𝑃𝑉−𝑂&𝑀 = ∑ 𝑃𝑊𝑦𝑦𝑟
𝑦=1 × 0.02 × 𝑃𝑉−𝑖𝑛𝑠𝑡𝑡              (4) 

The fourth part of the main fitness function, the WTGS 

installation cost (W_instt), is calculated using (5).  

𝑊−𝑖𝑛𝑠𝑡𝑡 = 𝑊𝑇𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 +𝑊𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑒𝑒  

𝑊−𝑖𝑛𝑠𝑡𝑡 = 𝑃𝑤 × 𝐶𝑃𝑤 + 0.25 ∗ (𝑃𝑤 × 𝐶𝑃𝑤)              (5) 

Calculating 𝑊−𝑂&𝑀, also known as WTGS operation 

and maintenance costs (WTGS O&M), can be done using 

Equation (6). 

𝑊−𝑂&𝑀 = ∑ 𝑃𝑊𝑦𝑦𝑟
𝑦=1 × 0.05 ×𝑊−𝑖𝑛𝑠𝑡𝑡                  (6) 

The sixth part of the main fitness function shows the cost 

of charging and discharging an electric vehicle. Car 

owners must choose how to charge and discharge their 

vehicles in order to get the most out of them. It follows 

its typical to declare energy one day in advance when 

living in an area with a deregulated electricity market. As 

a result, it might be called: 

𝐶𝐸𝑉(𝑡) = 𝜌𝐸(𝑡)[𝜂𝑑𝑐ℎ𝑃𝑑𝑐ℎ(𝑡) − 𝜂𝑐ℎ𝑃𝑐ℎ(𝑡)]                (7) 

The seventh term is a representation of the total active 

power losses (P_TLoss) over a 24-hour period for each 

distribution system segment. Consider Equation (8) 

instead, to put it another way as mathemativally 

expressed. 

𝑃𝑇𝐿𝑜𝑠𝑠 = ∑ 𝑃𝐿𝑜𝑠𝑠(𝑖, 𝑗)
𝑗
𝑖=1
𝑖≠𝑗

                                              (8) 

The distribution segment i-j with series resistance is 

termed Rij, whereas the distribution segment i-j with 

reactance is Xij. Figure 1 depicts a power radial 

distribution feeder branch that is functionally 

comparable.  

 
Figure 1. Diagram of an equivalent radial distribution feeder 

branch 

 

Emissions during 24 hours are calculated using 

the following formula (9). 

𝐸𝐸𝑀𝑆𝑁 = ∑ 𝑃𝑟𝑒𝑎𝑙(𝑡)
24
𝑡=1 × (𝐶𝑂2̂ +𝑁𝑂�̂� + 𝑆𝑂2̂)          (9) 

 

 The active and reactive power flow is evaluated from 

branch I to branch j using Equations (10) and (11).  
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𝑃𝑖𝑗 = 𝑃𝑗
𝐹 + 𝑃𝑗𝐿 − 𝑃𝑗

𝑊𝑇 − 𝑃𝑗
𝑃𝑉 − 𝑃𝑗

𝑉2𝐺 + 𝑃𝑗
𝐺2𝑉 +

𝑅𝑖𝑗

𝑉𝑖
2 (𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )                              (10) 

𝑄𝑖𝑗 = 𝑄𝑗
𝐹 + 𝑄𝑗𝐿 +

𝑋𝑖𝑗

𝑉𝑖
2 (𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 )                              (11) 

As an added bonus, the voltage on the jth bus may be 

calculated using Equations (12). These equations are 

generated based on Kirchhoff’s law. 

𝑉𝑗
2 = 𝑉𝑖

2 − 2(𝑃𝑖𝑗𝑅𝑖𝑗 + 𝑄𝑖𝑗𝑋𝑖𝑗) +
𝑅𝑖𝑗
2+𝑋𝑖𝑗

2

𝑉𝑖
2 (𝑃𝑖𝑗

2 + 𝑄𝑖𝑗
2 ) (12) 

The active and reactive power flow across the i-j section 

is represented by Pij and Qij. Beyond the jth bus, active 

and reactive power is represented by PF and QF. PWT, 

PPV, PV2, and PG2V, correspondingly, reflect the actual 

power. The current flow between the ith and jth bus can 

be calculated using Equation (13). 

𝐼𝑖𝑗 = √
𝑃𝑖𝑗
2+𝑄𝑖𝑗

2

𝑉𝑖
2                                                               (13) 

Serially, Equations (14) and (15) are used to analyze the 

i-j segment's active and reactive power losses.  

𝑃Loss (𝑖, 𝑗) = 𝐼𝑖𝑗
2𝑅𝑖𝑗                                                      (14) 

𝑄𝐿𝑜𝑠𝑠(𝑖, 𝑗) = 𝐼𝑖𝑗
2𝑋𝑖𝑗                                                         (15) 

The total power loss (𝑃TLoss ) of the system may be 

calculated by summing up the power losses of each 

distribution segment of the feeder using Equation (16). 

𝑃TLoss = ∑  𝑛−1
𝑖=0
𝑖≠𝑗

𝑃Loss (𝑖, 𝑗)                                           (16) 

In order to meet the demand specified in Equation (17), 

sufficient electricity from thermal generators, solar 

systems, wind farms, and electric vehicles must be 

developed.  

∑ 𝑃𝑟𝑒𝑎𝑙(𝑡)
24
𝑡=1 +∑ 𝑃𝑊𝑇𝐺𝑆(𝑡)

24
𝑡=1 + ∑ 𝑃𝑃𝑉𝐺𝑆(𝑡)

24
𝑡=1 +

∑ 𝑃𝑑𝑐ℎ(𝑡)
24
𝑡=1 −∑ 𝑃𝑐ℎ(𝑡)

24
𝑡=1 − ∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)

24
𝑡=1 −

∑ 𝑃𝑇𝐿𝑜𝑠𝑠(𝑡)
24
𝑡=1 =  0                                     (17) 

Each bus' voltage must be contained within a set 

tolerance range considering Equation (18). 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥𝑖 ∈ 𝑁𝐵                                         (18) 

 To maintain network dependability, the rated thermal 

loading of each distribution segment needs to be lower 

than that value that can be mathematically expressed in 

Equation (19). 

𝐼𝑖𝑗 ≤ 𝐼Th
rated                                                                    (19) 

In order to maintain system stability, a predefined 

number of grid-capable vehicles come each hour for 

charging and discharging by using Equation (20). 

∑  24
𝑡=1 EV(𝑡) ≤ 𝑁EV                                                     (20) 

The battery capacity of grid-connected vehicles is 

anticipated to be able to store up to 90% of that capacity 

and release up to 20% of it. 

It will be assumed for the purposes of this study that 

charging and discharging automobiles are not done 

simultaneously. Many assumptions were made when 

trying to integrate RESs with EVs as follows: 

1. The system under consideration is evaluated as 

harmonics-free and balanced. 

2. The voltage magnitude on bus number one is taken as 

one p.u. and regarded as a slack bus. 

3. Shunt conductance and susceptibility of each 

distribution segment are overlooked. 

For power attribute analysis, the bus voltage magnitude 

deviation is the most important indicator. Significant 

disruptions in the voltage profile indicate a poor image of 

the system. Equation (21) is used to determine the 24-

hour average voltage deviation for each bus. 

𝑉deviation = ∑  24
𝑡=1 ∑  NB

𝑖=1
|𝑉rated −𝑉𝑖|

𝑉rated 
                                 (21) 

2.2. Disseminated Sources of Energy 

DERs must be considered in the design of the distribution 

system, both in terms of generation and operation. These 

people are the network's director generals (DG). EVs are 

sometimes referred to as "gridable" vehicles because they 

may help the grid with its electrical needs[32][33]. 

Electric vehicle (EV) batteries are charged and 

discharged up to the designated maximum and minimum 

ranges when the network is not in use. By incorporating 

electric vehicles, thermal plant emissions can be reduced 

and system dependability increased [34][35]. 

There have been considerations for both renewable and 

nonrenewable DERs to communicate information with 

the distribution control centre in this study (DCC) [36]. 

If the aggregators' data is correct, DCC will transport 

electrical power as seen in Figure 2. The WTGS and 

PVGS aggregators collect data on the system's electricity 

generation. Owners of gridable cars must first register 

their vehicles with the EV aggregator to use them. They 

can then make use of the charging and discharging 

options [37]. Vehicle owners are notified by the car 

aggregator to charge or discharge their vehicle depending 

on the grid's current loading circumstances [38][39]; 

then, the owner of an electric vehicle can reply as he 

deems fit. This act is thought to be a smart distribution 

system that might permit reliable operation and proper 

exploitation of DERs for the benefit of all parties 

involved [40]. This section also details the mathematical 

model for various DERs. 

 
Figure 2.  The suggested layout of the distribution 

management system 

A PV module's output power is mostly determined by the 

concentration of solar radiation that hits it. A binomial 

distribution is typical for studying the behaviour of solar 

radiation at a certain moment in time [41]. This paradigm 

is related to the two straight unimodal relations; the beta 

probability density function (PDF), which is defined as 

follows, is used in both unimodal models: 
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𝑓𝑏(𝑠) =

{

Γ(𝛼+𝛽)

Γ(𝛼)+Γ(𝛽)
× 𝑠(𝛼−1)(1 − 𝑠)(𝛽−1)   for    0 ≤ 𝑠 ≤ 1,

𝛼 ≥ 0, 𝛽 ≥ 0
0                                          otherwise 

   (22) 

The letter s stands for solar radiation (in kW/m2). The two 

parameters of the beta distribution function fb(s), denoted 

by the letters α and β, respectively, can be determined 

using equations (23) and (24). 

𝛽 = (1 − 𝜇𝑠) × (
𝜇𝑠×(1+𝜇𝑠)

𝜎𝑠
2 − 1)                                  (23) 

𝛼 =
𝜇𝑠×𝛽

1−𝜇𝑠
                                                                     (24) 

In order to calculate probabilities, the day is divided into 

24 equal-sized hours, with each hour having a variable 

probability depending on the amount of solar radiation 

present at that precise instant. To determine how long 

each hour will last, the historical data is revisited to 

determine the number of days. Theoretically, there are 20 

states of 𝑠, each hour with a step size of 0.05 kW/m2. To 

calculate the probabilities for each of the day's 20 states 

using the time values of s (and s is represented in 

Equation (22), the PVGS output power (PVout ) for that 

given hour is calculated as a result using equation   (25). 

PVout (𝑠) = 𝑁 × 𝐹𝐹 × 𝑉𝑦 × 𝐼𝑦                                     (25)                              

𝑉𝑦 = 𝑉oc − 𝑉k × 𝑇cy                                                    (26)   

𝐼𝑦 = 𝑠[𝐼sc + 𝐼𝑘(𝑇cy − 25)]                                         (27)                  

𝐹𝐹 =
𝑉MPT×𝐼MPT

𝑉oc×𝐼sc
                                                           (28) 

𝑇cy = 𝑇𝐴 + 𝑠 (
𝑁OT−20

0.8
)                                                (29) 

where 𝑉𝑦 and 𝐼𝑦  illustrate the voltage and current of each 

panel. 

 

 
Figure 3. Irradiance data 

 
Figure 4. Power Production of Solar PV 

 

PVGS's total anticipated output power (EOP) may be 

calculated at any point in time t using the formula (30). 

EOPPV (𝑡) = ∫  
1

0
PVout (𝑠) × 𝑓𝑏(𝑠)𝑑𝑠                         (30) 

The Irradiance data is shown in Figure 3 while the 

corresponding PVGS's hourly production power is seen 

in Figure 4. 

For each predicted period, the Rayleigh probability 

distribution function is used to characterize the 

randomness of wind velocity. This method is used in the 

popular Weibull probability distribution function [42]. 

𝑓𝑤(𝑣) = (
2𝑣

𝑐2
) exp [− (

𝑣

𝑐
)
2

]                                        (31) 

The scaling factor c can be calculated using Equation 

(32) as an average wind speed (vm) that mathematically 

expressed in Equation (33). 

𝑣𝑚 = ∫  
𝛼

0
𝑣𝑓𝑤𝑑𝑣 =

∫  
𝛼

0
(
2𝑣2

𝑐2
) exp [− (

𝑣

𝑐
)
2

] 𝑑𝑣 =
√𝜋

2
𝑐                  (32) 

𝑐 = 1.128𝑣𝑚                                                                (33) 

A 24-hour time period is used to construct the PDF, with 

the probability assigned to each hour based on the wind 

speed. On the basis of past data, we can calculate the 

day's hourly µw and w. There are 24 levels of wind 

speed every hour, each increasing by 1 m/s. With 24 

states, the probability values are calculated for each hour 

of the day from the w values as mentioned in Equation 

(31). Accordingly, the wind turbine's output power for 

that hour is calculated using Equation (34). 

𝑃𝑤(𝑣) =

{
 
 

 
 
0,     0 ≤ 𝑣aw ≤ 𝑣cin

𝑃rated ×
𝑣aw−𝑣cin

𝑣rt−𝑣cin
,     𝑣cin ≤ 𝑣aw ≤ 𝑣rt

𝑃rated ,     𝑣rt ≤ 𝑣aw ≤ 𝑣cof
0,     𝑣cof ≤ 𝑣aw

      (34)      

At each given time (t), the EOPWT may be calculated 

using Equation (35). 

EOPWT(𝑡) = ∫  
1

0
𝑃𝑤(𝑣) × 𝑓𝑤(𝑣)𝑑𝑣                              (35) 

The EOP of a wind turbine may be calculated using 

Equations (31)- (35). Each hour is shown in Figure 5 by 

the wind speed for 24 hours, and Figure 6 depicts the 

WTGS's hourly produced output power. 
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Figure 5. Wind speed at 50 meters 

 
Figure 6. Power Production of Wind Turbine Generator 

 

In this study, grid-capable vehicles are viewed as load 

during off-peak times when a system needs to charge EV 

batteries, but during peak times, they provide power back 

to the grid to satisfy load requirements (seemingly 

behaving like a DG). The deregulation of the power 

supply now controls the price of electricity on the market. 

EV owners can set up the charging and discharging of 

their vehicles in a way that maximizes earnings. In 

conclusion, the hourly charging and discharging power 

of EVs is calculated using formulas in Equations (36) and 

(37), respectively.  

𝑃dch(𝑡) = 𝜇vcap[𝜑pre − 𝜑𝑚𝑖𝑛]𝑁Ev(𝑑𝑐ℎ)(𝑡)              (36) 

𝑃ch(𝑡) = 𝜇vcap[𝜑dep − 𝜑pre]𝑁Ev(ch)(𝑡)                  (37) 

For charging and discharging ratings, a minimum and 

maximum range (min/max) should be kept. The 

battery life of electric vehicles (EVs) can be increased 

using this technique. 

2.3. Minimization of Power Loss, Costs, and 

Emissions Generation 

The implementation of an optimization algorithm is 

necessary to discover a suitable solution to the problem 

of distribution system planning. If all of the restrictions 

are met, then, this optimum solution may be found by 

picking the relevant decision variables. It is essential to 

use DERs to reduce power loss, overall cost, and 

pollution creation to a substantial degree (DERs are 

crucial). No power source may be used unless the exact 

position and size are known. ANNs and COA are used 

because of their power and capacity to predict the best 

possible results. The appropriate placements and power 

ratings of various power sources are determined under 

unpredictable load and power source conditions. So, in 

this distribution system planning problem, the locations 

and sizes are selected as choice factors. In this regard, it 

is clear that this method is acceptable and effective for 

addressing this common nonlinear optimization problem 

and achieving superior results. 

 

2.3.1 .  Overview of  Chameleon 

Optimizat ion Algorithm & 

Arti f ic ial  Neural Network  

Braik suggested COA in 2021, making it one of the most 

recent metaheuristics. Using this technique, you may 

simulate the chameleon's hunting and food-finding 

process. As chameleons can change colour to blend in 

with their surroundings, they are a highly specialized 

species. Because they can adapt to a variety of 

environments, chameleons can exist in a variety of 

habitats including lowlands, mountains, deserts, and 

semi-deserts. Tracking prey, following prey, and striking 

prey are all phases in their food-hunting process. Step-

by-step instructions for this method may be found in the 

ensuing sub-sections [43]. 

 To begin the optimization process, COA produces an 

initial population that is generated at random. 

Chameleons of the species' size n are created in an 

optimization problem, where each member of the 

population represents an alternative. Using Equation 

(38), the chameleon's location in the search area (𝑦𝑡
𝑖) is 

determined. 

𝑦𝑡
𝑖 = [𝑦𝑡,1

𝑖 , 𝑦𝑡,2
𝑖 , … . 𝑦𝑡,𝑑

𝑖 ]                                            (38)              

The d indicates the location of the chameleon in i= 1,2... 

t iterations. 

The number of chameleons in the search space and the 

problem dimension is used to produce the starting 

population. 

𝑦𝑖 = 𝑙𝑗 + 𝑟(𝑢𝑗 − 𝑙𝑗)                                                  (39) 

A random number, ranging from 0 to 1, is used to 

randomize the initial vector of the ith chameleon's search 

space, uj, and lj, correspondingly. The quality of the 

solution is evaluated at each new position using the 

objective function. 

It is possible to classify chameleon movement patterns 

while searching based on the approach of position 

update, as shown in Equation (40). 

𝑦𝑡+1
𝑖,𝑗
=

{
𝑦𝑡
𝑖,𝑗
+ 𝑃1(𝑃𝑡

𝑖,𝑗
− 𝐺𝑡

𝑗
)𝑟2 + 𝑃2(𝐺𝑡

𝑗
− 𝑦𝑡

𝑖,𝑗
)𝑟1

𝑦𝑡
𝑖,𝑗
+ 𝜇(𝑢𝑗 − 𝑙𝑖)𝑟3 + 𝑙𝑏

𝑗
sign ( rand − 0.5)𝑟1 < 𝑃𝑝

𝑟1 ≥

𝑃𝑝                                         (40)           

In this example, the tth iteration is represented by the 

value t. The ith chameleon in the jth dimension is 

represented by i and j. The chameleon's present and new 

locations are denoted by yijt and yijt+1, correspondingly. 
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The chameleon's best and global best locations are 

denoted by the prefixes 𝑃𝑡
𝑖,𝑗

 and 𝐺𝑡
𝑗
. 

A person's exploratory prowess is determined by two 

positive integers called 𝑃1 and 𝑃2. Randomly generated 

integers 𝑟1, 𝑟2, and 𝑟3 range from 0 to 1. It's possible to 

generate any random integer between 0 and 1 by using 

the index i. The likelihood of a chameleon detecting prey 

is given by the parameter 𝑃𝑝. sign ( rand − 0.5) can be 

either 0 or 1, depending on the influence it has on the 

direction of exploitation and exploration. Chameleons 

can rotate their eyes to see where their prey is hiding. 

They are able to see the prey in all directions thanks to 

this spinning characteristic. The following are the steps 

that follow: 

The location of the prey is determined by a rotation 

matrix, and the situation of the chameleon is updated 

using the rotation matrix at the center of gravity. Then, 

they are returned to where they were when they first 

appeared. 

When their victim gets too close, chameleons attack. 

Chameleons that are closest to their prey are considered 

to be the greatest. This chameleon uses its tongue to 

attack the prey. Chameleons benefit from their ability to 

double the length of their tongue. Because of this ability, 

the chameleon may take full advantage of the hunting 

space and capture prey. Equation (41) is used to 

determine the chameleon's speed. 

𝑣𝑡+1
𝑖,𝑗

= 𝑤𝑣𝑡
𝑖,𝑗
+ 𝑐1(𝐺𝑡

𝑗
− 𝑦𝑡

𝑖,𝑗
) + 𝑐2(𝑃𝑡

𝑖,𝑗
− 𝑦𝑡

𝑖,𝑗
)𝑟2    (41)                  

which shows the ith chameleon's new velocity in iteration 

t+1's jth dimension, and which shows the ith chameleon's 

current velocity in that dimension, as 𝑣𝑡+1
𝑖,𝑗

. 

 

2.3.2 .  Use of  Arti f ic ia l  Neural  Network  

The ANN in this study is made up of one input layer, one 

hidden layer, and one output layer. Each layer is given a 

specific amount of weight [44]. Figure 7 depicts the ANN 

(configuration diagram). 

 
Figure 7. Structure of ANN 

 

The output layer receives the signal from the hidden layer 

and sends it there. Each layer's output value is now 

determined by its weighted connections. Adjusting the 

weight value is necessary to produce the best output 

possible from the input signal (this is the training phase). 

The ANN's weights are trained via backpropagation in 

the suggested method. The size of the PV panel, wind 

turbine, and battery are among the input data for the 

ANN. The ANN sends out the best possible solution from 

the COA test results to reduce cost, emissions, and power 

loss. 

ANN and COA are used in this study to determine the 

optimal parameters of the objective function and EV 

installation tasks simultaneously to lower power loss and 

overall costs; this includes the price of active electricity 

purchased, the price of installing and maintaining 

WTGS, the price of installing and maintaining PVGS, 

and the price of charging and discharging electric 

vehicles (EVs). The summary of this study is shown in 

Figure 8.
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Figure 8. Flowchart of the proposed work. 

3. RESULTS AND DISCUSSION 

Naturally, the effects of PVGS, WTGS, and EVs on a 28-

bus realistic rural distribution feeder have been evaluated 

in this section. At various load buses, these networks 

serve three distinct client types: residential, business, and 

industrial. The integrated method has been used to reduce 

the overall power loss, cost, and emissions on test 

systems. The spot energy market price is announced one 

day in advance in the deregulated electricity market. 

MATLAB R2022a is used for all of the simulation work, 

which is available on an Intel Core(i7) CPU 1.80GHz. It 

is mandated by IEEE 1547 standard that RESs must run 

at a fixed power factor that is closer in value than unity 

to the electrical power network. It has been agreed that 

renewable sources of energy can run at a maximum of 

0.95 percent capacity. 

 
Figure 9. Uncertainty Load Power demand for 24 Hours 

 

This 11 kV, 100 MVA system has 28 buses, 27 branches, 

and a main feeder with five laterals. Figure 9 depicts the 
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24-hour load demand uncertainty for each bus. The 

convergence graph for the ANN and COA is shown in 

Figure 10. 

 
Figure 10. Convergence Graph of ANN and COA 

 

The ANN and COA reach the global optimum value at 

the 11th iteration and the obtained global optimum value 

is 304150.16. The PV panel size is 800 with a single 

panel rating of 250 W and the number of wind size is 4 

with a single wind generator rating of 50kW; the battery 

size is 12000 with a rating of 200 Ah, 12V.  

This technique has been used to determine the optimal 

allocations, as well as the ideal number of DERs under 

conditions of load and EV uncertainty. 

Figure 11 shows the power of the PV, wind, EV, and grid 

for 24 hours using ANN and COA. 

 
Figure 11. Power of PV, Wind, EV, and grid for 24 hours with 

ANN and COA 

 

By using ANN and COA, the energy was 

effectively balanced based on load demand (EV 

demand). The variation of the state of charge of the EV 

is shown in Figure 12.  

 
Figure 12. State of charge of the EV for 24 hours 

 

Figure 13 shows the vehicle-to-grid and grid-to-vehicle 

details of the EV battery.  

 
Figure 13. Grid-to-vehicle and vehicle-to-grid details of the EV 

battery 

 

The EV battery supplies power to the grid from 0 to 6 

hours, 13 to 16 hours, and 22 to 24 hours. However, the 

EV battery is charged from the grid for 6 to 12 hours and 

17 to 18 hours. From 19 to 21 hours, the EV battery was 

idol. 

The IEEE 1547 states that for renewable energy sources 

to operate efficiently with respect to the power grid, their 

fixed power factor must be closer to unity. Numerous 

electrical power companies and independent power 

providers claim that renewable energy sources can 

already operate at a maximum mode of 0.95. The power 

factor is altered to examine the effects of renewable 

energy sources; for this case, many cases have been taken 

into consideration. The cost requirements for WTGS and 

PVGS were obtained from [25] for this work. Technical 

information about WTGS, PVGS, and EVs was retrieved 

from [45][46][47], respectively. The following case-by-

case analyses of the simulation findings are discussed: 
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Case 1: Without any DERs integration (base case) 

Case 2: Optimal WTGS, PVGS, and EV integration into 

the distribution system; WTGS and PVGS operate with a 

0.95 leading power factor.  

Case 3: Optimal WTGS, PVGS, and EV integration into 

the distribution system. WTGS and PVGS operate at a 

unity power factor. 

Case 4: Optimal WTGS, PVGS, and EV integration into 

the distribution system. WTGS and PVGS 

Operates at a 0.95 lagging power factor. 

Case 1: No DER is linked to the network in this instance. 

This is the network's true base case. The overall real and 

reactive power losses of the network are 371.87 kVAr 

and 554.55 kW, respectively. The cost to purchase grid-

supplied active power is US $3012.32. In a 24-hour 

period, the grid generated 92,254.18 lb/MWh of 

emissions. 

Case 2: For ongoing instance, the ideal number of WT 

units are installed at the ideal bus position and the bus 

number is 5. Reactive and real power losses increased to 

279.45 kVar and 419.70 kW respectively after the 

introduction of these WT units. Active power purchase 

from the grid costs US$1772.06, WT installation costs 

US$29.310.937.50, and O&M costs US$415.029.36, 

respectively. The total emission of a full 24 hours 

operation is 10.786.20 lb/MWh. 

Case 3: The WT and PV arrays can be concurrently 

inserted into the distribution grid at ideal locations. This 

bus's ideal bus position is 5, while the ideal WT unit 

count is 36. Similar to this, bus numbers 14 and 7 are 

connected at the ideal location and quantity of PV 

modules correspondingly choose to each bus. Following 

inclusion, the total real and reactive power losses are 

348.57 kW and 228.85 kVar, respectively. The price of 

active power acquired through the network was 

significantly reduced to USD1196.23, which is a 

fantastic quantity. The costs for installing and 

maintaining the WT are USD58.621.875.00 and 

USD356.058.72, respectively. In this instance, the 

distribution network has optimally positioned all DERs. 

Bus numbers 28 and 16 are the best locations for WT and 

PV respectively, and their respective installation and 

O&M costs are USD4.555.960.00 and USD316.451.87, 

respectively. There is a significant reduction in the 

influence of the 24-hour emission production. 

 

Case 4: In this instance, the distribution network has 

optimally positioned all DERs. The buses with the best 

placements for WT and PV are 28 and 14, respectively, 

with the corresponding units linked to the mentioned 

buses being 26 and 8, respectively. Bus number 24 

receives EVs arriving for charging and discharging 

throughout the day. EVs can charge or discharge at a 

given moment, but not both at once. The notion of 

vehicles is created at random once each hour, with a 

maximum of one hundred. Once DERs are taken into 

account, real and reactive power losses are 225.81 kW 

and 148.90 kVar, respectively. The cost of purchasing 

active power from the network is USD 2727.88. The 

installation, operation, and maintenance costs for the WT 

are USD 57.720.000.00 and USD778.273.20, 

respectively. In a similar vein, the price of installing a PV 

system and maintaining it is USD 4.891.520.00 and USD 

442.821.78, respectively. When compared to alternative 

combinations, the addition of WT, PV, and EVs 

significantly reduced the system's overall cost (cases). 

The amount of emissions created over a 24-hour period 

is higher than in Case 3 since the system took more active 

power from the grid to charge the EVs. The net financial 

gain for the car owner with EVs is USD 162.22. 

 

The detailed numerical results for each scenario, 

including their unique comparison, are shown in Table 1. 

The table presents the impact of adding DERs on real 

power loss, reactive power loss, pollution created, and 

the cost of active electricity purchased from the network 

over a 24-hour period.  

 
 

Table 1. Numerical results for each scenario, including their unique comparison 

Cases 
∑ Ploss 

(kW) 

% Ploss 

Reduction 

∑ Qloss 

(kVAr) 

∑ Purchased 

real Power cost 

($) 

WT installation 

cost ($) 

WT O&M 

cost ($) 

PV installation 

cost ($) 

PV O&M 

cost ($) 

∑Emission 

(lb/kWh) 

Case 1 

(CSA) 
554.55 - 371.87 3706.20 - - - - 20.952.00 

Case 1 

(ACO) 
525.26 - 343.25 3402.34 - - - - 18.478.00 

Case 2 

(CSA) 
419.70 24.32 279.45 1772.06 29.310.937.50 415.029.36 7.361.640.00 172.018.07 10.786.20 

Case 2 

(ACO) 
398.23 23.44 246.76 1657.22 30.429.660.00 435.120.26 7.998.840.00 182.148.00 9.666.00 

Case 3 

(CSA) 
348.57 37.14 228.85 1196.23 58.621.875.00 356.058.72 4.555.960.00 316.451.87 7.030.67 

Case 3 

(ACO) 
375.34 38.24 244.25 1226.45 59.421.673.00 378.150.00 4.789.230.00 333.852.24 6.120.67 

Case 4 

(CSA) 
225.81 59.28 148.90 2727.88 57.720.000.00 778.273.20 4.891.520.00 442.821.78 4.884.50 

Case 4 

(ACO) 
246.23 57.24 132.23 3677.33 58.340.050.00 784.262.20 4.991.950.00 463.995.00 4.286.00 
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The results were compared with the ant colony 

optimization (ACO) [5] method and the results showed 

that CSA performed better than the ACO method. 

For Case 1, the maximum real power loss was around 

554.55 kW, the maximum reactive power loss was 

around 371.87 kVAR, and the maximum purchased 

active cost was around $ 3706.20. The voltage deviation 

maximum was around 0.07 pu. From the simulation, the 

proposed ANN and COA are well suited for optimizing 

the power loss, generation cost, and emission cost in the 

28-bus system. 

 

Stakeholders in the energy industry can benefit from the 

use of a Practical Radial Distribution Feeder for Techno-

Economic in Distributed Energy Resources (DERs) 

based on ANN and the COA in the following ways: 

• Improved power loss reduction: The table details the 

total power loss (Ploss) and the percentage reduction 

in power loss (% Ploss Reduction) for different cases. 

By using the Practical Radial Distribution Feeder 

with ANN and the COA, stakeholders can achieve 

significant reductions in power loss, leading to 

improved system efficiency and cost savings. 

• Enhanced cost-effectiveness: The table also includes 

the total cost of purchased real power for each case. 

By optimizing the DERs using the proposed 

approach, stakeholders can reduce their reliance on 

purchased real power, resulting in cost savings. The 

algorithm takes into account techno-economic factors 

to optimize the system and minimize expenses 

associated with power purchases. 

• Reduced environmental impact: The table presents 

the total emissions (lb/kWh) for each case. By 

utilizing the Practical Radial Distribution Feeder with 

ANN and the COA, stakeholders can achieve lower 

emissions through better utilization of DERs. This 

contributes to environmental sustainability and aligns 

with the industry's efforts to reduce carbon footprint 

and promote clean energy. 

• Efficient utilization of DERs: The optimization 

approach leverages ANN and the COA to maximize 

the utilization of DERs, such as wind turbines (WT) 

and photovoltaic (PV) systems [48]. The algorithm 

determines the optimal installation and operation of 

these resources, considering factors like installation 

cost, operation and maintenance (O&M) cost, and 

overall system performance. This enables 

stakeholders to extract the maximum benefits from 

their DER investments. 

• Techno-economic analysis: The use of ANN and the 

COA allows for comprehensive techno-economic 

analysis, as reflected in the table. Stakeholders can 

make informed decisions based on cost parameters 

such as installation cost, O&M cost, and overall 

system performance. This analysis facilitates better 

planning, optimization, and resource allocation, 

ultimately leading to improved profitability and 

project success. 

In summary, the utilization of a Practical Radial 

Distribution Feeder for Techno-Economic in DERs based 

on ANN and the COA offers stakeholders in the energy 

industry significant advantages, including reduced power 

loss, improved cost-effectiveness, lower environmental 

impact, efficient DER utilization, and comprehensive 

techno-economic analysis. These benefits contribute to a 

more sustainable and optimized energy system. 

 

4.  CONCLUSION  

This study evaluates whether DER integration into the 

distribution system is technologically, economically, and 

ecologically feasible. In order to solve this issue with 

distribution system planning, the ideal placements and 

sizes of PVGS, WTGS, and EVs were determined for 28 

bus networks using the ANN and COA. The purchase 

cost of EV active power, voltage variation, minimum 

system voltage, emission level, and energy cost were all 

dramatically decreased after RESs and EVs were 

integrated. Charging/discharging a vehicle's battery for 

economic benefit is a common practice among EV 

owners. As a result, the grid's off-peak period will see an 

increase in system demand. For the most common 

optimization problems, the ANN and COA simulation 

results were satisfactory. In Case 1, CSA and ACO had 

similar results for Ploss, Qloss, purchased real power 

cost, and emissions. However, in Case 2 and beyond, 

CSA showed better performance with a decrease in Ploss 

(419.70 kW), Qloss (279.45), and emissions 

(10.786.20lb/kWh) compared to ACO, along with 

reduced costs for WT installation, WT O&M, PV 

installation, and PV O&M. As the cases progress, CSA 

consistently exhibit superior outcomes in terms of Ploss 

reduction, Qloss reduction, emission reduction, and cost 

savings, making it a favorable approach for optimizing 

the system. The method has also been shown to be 

effective at finding the optimal outcome with less 

iterations. The behavior of PEV owners who charge and 

discharge their vehicles towards getting financial 

advantages may lead to a rise in the demand for load 

during off-peak network hours. Emissions, total costs, 

and power loss are all significantly reduced when the 

distribution network's combined effects of DERs are 

considered. 
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