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Abstract 

Flood has proven to be an incessant menace in Nigeria more threatening to riverine areas. The most recent flood ensued in 2022 as a 

result of heavy rainfall and the release of water from Lagdo Dam in Cameroon which became very devastating in many areas notably 

the Koton Karfe area in Kogi State, causing business shutdowns and the loss of lives and properties. In this work, Sentinel-1 Synthetic 

Aperture Radar (SAR) imagery was used for flood inundation mapping, and the accompanying damages were investigated using 

Landsat derived Land cover maps of Koton Karfe during the 2022 devastating flood. Overall, the results obtained in this study show 

that the regions that felt the impact of the flood the most were the southern and western areas, which must have experienced such an 

impact due to their proximity to the rivers Niger and Benue and also the water coming from the upper stream part of Cameroon. Further 

findings revealed that during the flood period on October 13, 2022, the total inundated area in Koton Karfe was estimated to be 198.255 

sq. km. In terms of damage assessment, the urban areas had reduced from 220.902 sq. km in May 2022 to 87.473 sq. km in November 

2022. This shows that over 133 sq. km of the urban settlement have been lost, indicating that lives must have been lost, properties too, 

and humans must have been displaced. This research will assist in the space of flood emergency response and disaster management. 
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Introduction 

Climate change is rapidly contributing to more threats 

and also emasculating human security and livelihoods of 

less adaptive and vulnerable communities in Africa and 

other parts of the world. Climate change can be an 

accelerant of instability that could exacerbate human 

security and undermine the livelihoods of vulnerable 

communities in fragile regions and hotspots where 

poverty, social insecurity, terrorism, and forced 

displacement are rampant (Scheffran et al., 2019).  

According to a report by United Nations Office for 

Disaster Risk Reduction, it was reported that floods 

account for more than 40% of all the globally recorded 

disasters which took place between 1998 and 2017 

(Nguyen et al., 2023). Although flood occurrence is 

difficult to prevent, predicting these catastrophic events 

requires appropriate methods and analysis (Cloke and 

Pappenberger 2009; Farina et al., 2018; Isiaka et al., 

2023; Mentes et al., 2019; Moazzam et al., 2018; Ozulu 

et al., 2021). The occurrence of floods can result in 

threats of changes that can influence the temporal and 

spatial configuration of human life, loss of property, as 

well as having effects on agriculture and the 

environment. The incidence of flooding has risen 

tremendously which calls for an effective and 

comprehensive analysis of flood impacts to enable an 

informed response and alleviate the catastrophic 

consequence (Mohammad et al., 2014). The spatial and 

temporal patterns of disaster can be influenced by 

human activities in developing countries, including the 

rapid growth of unplanned residential areas, major land-

use changes, and uncontrolled construction of buildings. 

In developing countries, many factors are responsible 

for flooding problems ranging from topography, 

poverty, land-use practice, urbanization, poor 

infrastructure, and climate change.  

The devastating impacts of flooding have been 

experienced for many years and continue to affect 

people’s lives and livelihoods, resulting in huge 

economic losses and social disruption (Mohammad et 

al., 2014).  According to (Gebeyehu 1989), flood is the 

most common natural disaster that undermines human 

lives and the surrounding environment. The occurrence 

of flooding is most pronounced in Asia and African 

countries followed by Europe and the Americas. 

Specific countries may have varying levels of flood 

occurrence due to their geography and climate. In 

Kerala, India, heavy rainfall during the southwest 

monsoon season has led to disastrous flooding. In the 

year 2018, about 445 people were reported dead, and 14 

missing cases. However, in 2019, the situation 
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worsened, with 121 casualties and 59 missing cases filed 

(Vishnu et al., 2019). In 2022, Nigeria experienced one 

of its worst flood disasters in recent occurrence. More 

than 26 of the 36 states including the Federal Capital 

Territory (F.C.T) were affected by floods, resulting in 

the death of hundreds of citizens and the destruction of 

houses. Also, expansive hectares of farmlands were 

ransacked, and roads and bridges were washed off 

leading to travelers sleeping on the roads for many 

weeks. Koton Karfe, a local government area (LGA) 

located in Kogi State, Nigeria, is one of the areas that 

experienced several devastating floods in recent years, 

which have affected the livelihoods of its residents.  

To find lasting solutions to these challenges, there is an 

increasing demand for real-time observation and the 

implementation of advanced technologies to enable 

accurate mapping of flood-inundated areas. According 

to (Dumitru et al., 2014), it was suggested that the rapid 

estimation of the spatial scope of floods over extensive 

regions provides essential datasets for evaluating risk 

and spatial planning purposes. After carrying out an in-

depth review of the existing literatures in the area of 

interest, it was observed that a significant dearth of 

studies specifically addressed the subject matter in 

Korton Karfe. The research gap allowed us to explore 

innovative approaches to fill the void and further 

develop the understanding of flood impact assessments 

in the area. In this research, we integrate Synthetic 

Aperture Radar (SAR) to evaluate the impact of floods. 

To our understanding, this is the first attempt to utilize 

SAR in assessing flood impacts in the Korton Karfe area 

of Kogi State, Nigeria. Highlighted by (Twele et al., 

2016) is that optical remote sensing has been used for 

dynamic flood observation based on the high reflectance 

in the blue/green bands and low reflectance of water in 

the infrared region of the electromagnetic spectrum. 

During severe weather conditions as a result of heavy 

rainfall with a rugged dark cloud cover in flood-affected 

regions, optical remote sensing is not suitable for 

attaining precise results. Unlike optical data, which is 

strongly influenced by weather, spaceborne Synthetic 

Aperture Radar (SAR) data is particularly appealing in 

disaster monitoring (Li et al., 2018). Synthetic Aperture 

Radar (SAR) has been identified as a very promising 

approach for accurate and near real-time flood 

monitoring (Bangira et al., 2021; Carreño et al., 2019; 

Perrou et al., 2018; Qiu et al., 2021). The privilege it has 

in penetrating any type of cloud contributes to its 

effective operation in any weather conditions. Similarly, 

Mason et al. (2012) opined that SAR actively emits 

electromagnetic waves that are uninterrupted by weather 

conditions, day or night time, this gives SAR a higher 

penetration rate through various medium and effectively 

identify flood occurrences both in vegetated and urban 

areas. To carry out a flood impact assessment in the 

Koton Karfe, this study utilizes Synthetic Aperture 

Radar (SAR) remote sensing techniques, and damage 

assessment was carried out using the land cover maps of 

the area before and after the flood period. The present 

research work has the objectives to understand the 

concept of microwave remote sensing and its 

application in flood management over the study area, 

estimate the damages caused by flood and create a flood 

extent map of the area from the sentinel-1 image and 

land cover classification map from Landsat imagery 

before and after the flood event. By doing so, we hope 

to provide a better understanding of the severity by 

delineating the extent of the damage caused by the flood 

on land cover classes. 

Study Area 

This study was carried out in Koton Karfe local 

government area (LGA) of Kogi state located between 

latitude 7° 40' 00" N- 8° 30' 00" N and longitude 6° 40' 

00" E - 7° 00' 00" E (Fig. 1) sharing close border with 

Lokoja LGA, the capital of Kogi state with its East and 

West borders formed along the tributaries of the Benue 

and Niger river, respectively. The people of this area are 

best known for their agrarian practices which range from 

fish farming to crop planting owing to the very 

accommodating climate system in the area as well as 

hunting. The area is recognized to often experience bi-

climate seasons; the dry season which spans from 

November to March and the wet season which begins 

from April to October. The area covers over 1500 sq. km 

with an average elevation between 19m and 400m above 

sea level. 

River Niger and Benue flow through its boundary and 

form a confluence in the state capital, this proximity 

between Lokoja and Koton Karfe has made the area as 

vulnerable to flooding as the state capital in any case of 

increased water level in the two rivers (Oyedele et al., 

2022). They have been concerns in the past as over 250 

lives have been lost, many people displaced and a host 

of businesses lost as a result of the cumulative effect of 

the devastating flood events of  1994, 2004, 2010, 2012, 

2017, 2018, 2019 and 2020 (Oyedele et al., 2022). Also, 

in the disturbing flood of 2018, several communities 

were affected in Koton Karfe LGA (Osayomi et al., 

2022) which wreaked havoc and threatened fishing 

activities in the area thus, aggravating the 

unemployment and poverty level of the people. The 

most recent devastating flood happened in the latter days 

of September 2022 and the water did not recede until 

after October nonetheless leading to interruption of 

travels, business shutdown, and loss of lives and 

properties. 
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Fig. 1. Case Study Area of Research 

Material and Methods 

Data Sources 

Sentinel-1 synthetic aperture radar (SAR) imagery was 

used to extract the flood extent map in this research. The 

sentinel-1 sensor was chosen because of its all-weather 

activeness and the short revisit time of 6 days between 

the two C- band equipped sentinel 1A and 1B satellites. 

The imagery can be acquired in different acquisition 

modes such as Strip map (SM), Extra wide swath (EW), 

Wave (WV), and Interferometric wide swath (IW). The 

data were acquired in IW acquisition mode as it default 

mode for land application (Benzougagh et al., 2021; 

Clement et al., 2018). The research is focused on 

extracting flood inundated areas thus data in the Ground 

Detected Radar (GRD) format and not the Single Look 

Complex (SLC) are acquired since the backscattering 

intensity information is the most required and not the 

additional phase information. Sentinel-1 imagery also 

has the advantage of providing free, well-timed data and 

was acquired from https://scihub.copernicus.eu/. Two 

Landsat imagery (one before the flood and another after 

the flood period) were acquired from 

https://earthexplorer.usgs.gov and used to ascertain the 

level of damage suffered from the flood. In further 

analysis of damage assessment, vector files of the 

villages and roads were integrated to determine the level 

of damage per community and road networks. 

Sentinel-1 Data Preprocessing 

The preprocessing steps identified in Fig. 2 were carried 

out and achieved through the use of Sentinel Application 

Platform 9.0 (SNAP) Desktop software. SNAP is an 

open-source tool whose operation has been augmented 

by several contributors. The tool has proven to be very 

useful in the processing of Sentinel-1 imagery and flood 

extent delineation using Sentinel-1 data. In the respect 

that this research covers Koton Karfe LGA, all the 

analysis on both Sentinel-1 and Landsat imagery had to 

be restricted to this area of interest. Three Sentinel-1 

images have been processed for the flood extent 

mapping; one as achieve data and the other two as the 

crisis data taken during the flood period. The Sentinel-1 

data are based on C-band synthetic aperture radar (SAR) 

and are best known not only for their all-weather 

capabilities but also for their strength in distinguishing 

land surface from water. Additionally, they have the 

edge of being cloud free over optical satellite data. The 

data also have a shorter revisit time compared to optical 

satellite imagery, a very useful characteristic in disaster 

management. In this research, the VV polarization was 

used and maintained for all three acquired SAR data, 

even though many researchers have adjudged SAR data 

with HH polarization best for flood detection (Henry et 

al., 2006; Psomiadis 2016) but so many other 

researchers have also considered using VV polarization 

for flood detection which also performed satisfactorily 

well (Twele et al., 2016; Ganji et al., 2019). 

All the Sentinel-1 imagery acquired for this work had to 

be reduced to only cover the area of interest i.e. Koton 

Karfe LGA. This was achieved by creating a rectangle 

that will cover the area of interest on the sentinel 

imagery and the coordinates of the four corners of this 

rectangle were used to set the extent of the subset data. 

Reducing the size of the Sentinel-1 data does not 

compromise the data quality but only reduces the 

processing run time. The next preprocessing step is 

applying the orbit file. The SNAP automatically 

Isiaka et al.,/ IJEGEO 10(4):064-076 (2023) 
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downloads the updated orbit file as the initial orbit file 

gotten after acquiring the imagery from the Copernicus 

hub is incorrect but is updated online after a few days of 

image release thus, updating the metadata of the 

Sentinel-1 data and orient the data in the appropriate 

satellite position. 

Table 1. Dataset 

Acquisition 

Date 

Flood 

Condition 

Satellite/Source Spatial 

Resolution/Pixel 

Spacing 

Pass Polarization 

26/08/2022 Pre flood Sentinel-1 20x22m/ 

10x10m 

Descending vv 

13/10/2022 During flood Sentinel-1 20x22m/ 

10x10m 

Descending vv 

25/10/2022 During flood Sentinel-1 20x22m/ 

10x10m 

Descending vv 

03/05/2022 Pre flood Landsat 30m - - 

19/11/2022 Post flood Landsat 30m - - 

- Road and

Village

shapefiles

OSM - - - 

Removal of thermal noise is the next SAR preprocessing 

step. The Sentinel-1 imagery is accustomed to the 

surrounding noise of the SAR receiver which can be 

reduced by normalizing the backscatter signal of the 

Sentinel-1 imagery using the Thermal Noise Removal 

Command on SNAP (Benzougagh et al., 2021). The 

next step is applying the radiometric calibration 

operation which converts the Sentinel-1 image data into 

meaningful physical radar backscatter digital numbers 

from which the water and non-water objects on the 

Sentinel-1 imagery can be distinguished. Here, only the 

sigma naught (𝜎0) was checked to be the output of the 

processing. Sentinel-1 imagery is often characterized by 

granular noise which is removed by applying the speckle 

filter command. This operation is as significant as the 

other steps in that if the granular noises are not removed 

the Sentinel-1 image could be wrongly interpreted. The 

single speckle filter was used with Lee Sigma as the 

filter, window size of 7 by 7 and sigma of 0.9 were also 

chosen. Lee filter was preferred because it makes the 

least compromises on the radiometric and spatial 

resolution of the Sentinel-1 data (Alvan et al., 2020). On 

adding the SAR data to SNAP, the imagery was inverted 

and not in its correct reference frame. Terrain correction 

was applied to fill this gap so that the imagery will be in 

sync with how they are projected in reality. Shuttle 

Radar Topography Mission (SRTM) DEM imagery of 3 

arc-second with bilinear interpolation technique (used 

for resampling the image and Digital Elevation Model, 

DEM) and coordinate system set as (UTM/WGS1984 

Geographic Projection) were used to run the terrain 

correction command which also addressed the errors 

due to terrain height. The final preprocessing step is the 

conversion of the radiometric pixel values of the 

resulting imagery from linear values to decibels (dB) 

which follows the equation (1).  

𝜎𝑑𝐵
0 = 10 log10 𝜎0 (Eq.1) 

Where:  𝜎𝑑𝐵
0  is backscatter image in dB and 𝜎0 is the

output of preprocessed image 

To optimize all the processing run time and for 

computerization, the entire preprocessing steps were put 

together and integrated using the graph builder tool, and 

the batch processing command was used to run the 

whole preprocessing workflow (Fig. 2).  

Fig. 2. The Methodological Workflow of the Sentinel-1 SAR Image Preprocessing 

Sentinel-1 Image Processing 

They are different methods of mapping flood water 

using SAR Sentinel-1 imagery which include; the 

binarization technique which uses a threshold value to 

detect the flood water; the change detection method by 

determining the ratio between SAR imagery before the 

flood and imagery after the flood and last is the use of 

RGB clustering technique. In this paper, the threshold 

technique was used to delineate flooded areas in Koton 

Karfe LGA. This technique requires the determination 

of a threshold value that distinguishes the water from 

non-water features. 

It is worth noting that the dB image distinguishes water 

features from non-water features by showing them in 

dark color i.e. they have low backscatter value in most 

cases they are the negative values and hence are always 

in the darkest shades whereas the non-water features are 

mostly dry and rough on the surface thus have high 

backscatter values and are the bright color features on 

the backscatter image in dB. Herein, the histogram of 

the transformed preprocessed Sentinel-1 imagery was 
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generated and several threshold values were tested. This 

was done by creating shapefiles that fall on the dark 

color features of the backscatter image in dB and the 

statistics of these shapefiles were analyzed to arrive at a 

correct choice of threshold. A threshold of -18 dB was 

the chosen threshold value to distinguish the water from 

non-water which also corresponds to the mean value of 

the backscatter of the overlaid shapefiles. The band 

math function was initiated and the expression “if 

sigma0_vv < -18 then 2 else NaN” run. This command 

creates a binary map where areas with backscatter 

values that agree with the expression are assigned the 

value 2 (with a color) while areas that do not agree with 

the expression are represented as NaN (with no color). 

This was done for all three Sentinel-1 SAR imagery. The 

resulting map was then exported in Geotiff format for 

further analysis. Pre-flood water bodies vectorized from 

Landsat images acquired before the flood period were 

classified to be perennial water bodies because there 

were no flood news reports at the time. The pre-flood 

water bodies were superimposed on top of the flood 

maps to separate the flood inundation area from 

permanent water bodies. Advance analysis on the flood 

impact assessment to determine the extent of flood and 

areas affected as well as other statistical analyses were 

carried out in ArcGIS Environment and Microsoft 

Excel. 

Land Use and Land Cover Classification Processing 

To achieve the aim of this paper, land use, and land 

cover maps were prepared for Koton Karfe LGA before 

the flood event and after the flood event. Landsat-8 and 

Landsat-9 imagery that corresponds to the 03/May/2022 

and 19/Nov/2022 respectively were obtained. All the 

geoprocessing steps to produce the LULC maps were 

carried-out using ENVI 5.3 and ArcGIS 10.7.1. Firstly, 

it was necessary to acquire cloud-free optical imagery 

between the period before the flood and after the flood 

event as well as important to carryout atmospheric and 

radiometric correction. In this research, geometric, 

radiometric and atmospheric corrections were carried-

out. To begin, image geometric rectification is a 

fundamental precondition that must be completed prior 

to using images in Geographic Information Systems 

(GIS). Second, radiometric correction seeks to eliminate 

radiometric inaccuracies or distortions, whereas 

geometric correction seeks to eliminate geometric 

distortion. Finally, atmospheric adjustment was utilized 

to eliminate the target, as well as absorbed or dispersed 

effects. Hence, these corrections were performed before 

further analysis of determining the damage extent per 

land cover class. The maximum likelihood supervised 

classification model in ENVI 5.3 was used to derive the 

land cover map for the pre and post-flooding periods 

because it is often the most used supervised 

classification which is based on the premise that the 

training data statistics in each band are normally 

distributed (Richards and Jia 2006). Although there are 

other sophisticated supervised classification techniques 

that have been used for land cover classification, such as 

neural networks and support vector machines (SVM), 

nevertheless researchers like Ali et al., (2018) employed 

maximum likelihood model in the land cover 

classification using Landsat imagery with a performance 

score of 91.34% and 0.89 as the overall accuracy score 

and Kappa coefficient, respectively. In a similar study 

of land cover mapping by Norovsuren et al., (2019) of 

Khandgait in Mongolia from 2000 to 2019, the model 

performed with over 80% overall accuracy. The 

maximum likelihood model have also been employed by 

Akinyemi (2005) to monitor land use patterns in the 

southwestern Nigeria and Ojigi (2006) also looked at 

various supervised classification techniques to monitor 

changes in the Abuja landscape. The results showed that 

the maximum likelihood algorithm performed better 

than other algorithms such as the minimum distance, 

parallelepiped, and fisher's classifications model. Thus, 

if data are obtained according to a normal distribution, 

the maximum likelihood model is still applicable and 

will continue to function properly. To facilitate this 

procedure and to achieve an accurate land cover map, 

Google Earth imagery of the area was acquired and used 

to aid in selecting and assigning different land cover 

classes to pixel values while developing the training 

samples for the model. The land cover map was 

classified into six land cover types (Urban, Water 

Bodies, Dense Vegetation, Less Dense Vegetation, 

Cropland, and Barren Land). Accuracy evaluation is one 

of the most crucial last steps in the classification 

process. The goal of accuracy evaluation is to quantify 

how well pixels were sampled into the correct land cover 

classes therefore; Sixty (60) random points were 

selected to determine the overall classification accuracy 

and its kappa coefficient of the LULC maps. The land 

cover maps derived from ENVI were exported to 

ArcGIS Environment where the damage assessment and 

other statistical summaries were derived after the 

extraction of the perennial water bodies. The percentage 

change (i.e. the loss or gain) for the land covers was 

computed from equation (2): 

% 𝐶ℎ𝑎𝑛𝑔𝑒 =  (
𝐴𝑃𝑇𝐹−𝐴𝑃𝑅𝐹

𝐴𝑃𝑅𝐹
) ∗ 100% (Eq.2) 

Where: 𝐴𝑃𝑅𝐹 is the area covered in the Pre-Flood LULC

Map and 𝐴𝑃𝑇𝐹 is the area covered in the Post-Flood

LULC Map.  

Result and Discussion 

Flood Inundation Mapping 

The need to develop a SAR remote sensing technique 

for flood damage assessment in Koton Karfe is a 

significant and valuable approach because the area has 

been experiencing recurring flooding, which has always 

led to severe environmental and socio-economic losses. 

The flood inundation map (Fig. 3) describes the 

progression and recession of the devastating flood of 

2022 in the Koton-Karfe region of Kogi State, Nigeria 

delineated from the Sentinel-1 SAR imagery. The 

applications of SAR data have been identified to be 

more effective and accurate for delineating flood 

inundation. Flood-inundated areas extracted from 

Sentinel-1 imagery of October 13, 2022, are shown in 
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orange while those from October 25, 2022, are shown in 

grey colors (Fig. 3). The water bodies extracted from the 

acquired Sentinel-1 imagery of August 26, 2022, 

represent the perennial water bodies (i.e. rivers) in 

Koton Karfe as the flood had not begun until the latter 

part of September. The resulting inundation map shows 

that the regions that felt the impact of the flood the most 

were the Southern and Western areas, which must have 

experienced such due to the proximity to rivers Niger 

and Benue and also the water coming from the upper 

stream part of Cameroon.  

Fig. 3. Flood Inundation Map of Koton Karfe LGA. 

The extracted water bodies from the Sentinel-1 imagery 

obtain for August 26th, 2022 represent the perennial 

water bodies and by removing its area covered from the 

total surface water covered by acquired data of the other 

dates, the inundated areas were ascertained. Before the 

flood had started, Koton Karfe had total permanent 

water covering 80.770 sq. km. In Nigeria and other West 

African countries, April to November marked the wet 

season. Moreover, heavy rainfall usually starts from 

early September to the middle of November. Severe 

rainfall that started in early September together with the 

release of water from the Lagdo dam in Cameroon, on 

the 13th of September 2022 contributes to this flooding 

in the area.  

The finding of this research shows that during the flood 

period, on October 13th, 2022, the total inundated area 

in Koton Karfe was estimated to be 198.255 sq. km. 

Further findings indicate that the water level on the 25th 

of October, 2022 had only receded by ~54.00 sq. km 

leaving the estimated inundated area at 144.250 sq. km. 

This could be a result of the area receiving less intense 

rainfall and/or the water coming from the Lagdo dam 

and upstream dams in Nigeria to have spread to the 

downstream part of the country. In the research 

conducted by (Mata et al., 2022), it was pointed out that 

spatial variability of flood extent can be attributed 

directly to several factors such as precipitation, land 

cover types, and topographic conditions. Results also 

showed that maximum flood inundation occurred during 

mid of October submerged ~200 sq. km area of the 

region and that there is about 3 times increase in the 

volume of the perennial water bodies in Koton Karfe 

(Fig. 4). Many research studies have highlighted the 

suitability of Sentinel-1 (SAR) in accurately mapping 

flood-affected regions, largely because of its ability to 

penetrate through cloud cover. The finding from the 

present study align with and support the conclusions of 

earlier research conducted by (Moharrami et al., 2021), 

which employed multi-temporal Sentinel 1 images to 

monitor flood events. 
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Fig. 4. Area Covered by Flood Water 

Damage Assessment Analysis 

The study aim to find the impact of the 2022 flood in 

Koton Karfe and it found that the flood had a widespread 

impact on Koton Karfe, affecting a variety of land use 

and land cover categories such as the urban areas, water 

bodies, dense vegetation, less dense vegetation, barren 

land, and croplands. The examination of the LULC 

maps both before and post the flood offered valuable 

insights into the magnitude of the flood damage in the 

study area. The flood damage has been assessed from 

the derived pre-flooding and post-flooding land use and 

land cover map (Fig. 5).  

Very noteworthy from Fig. 5 is the emphasis on the 

black circle which covers a sampled area in Koton Karfe 

showing the land cover before and after the flood event. 

The result shows that the area covered by the circle was 

initially characterized majorly by vegetation (Dense, 

less dense, and cropland) but five months later after the 

flood the same area has seen its land cover classes 

change to predominantly barren land and some little area 

of dense vegetation. The trend of these changes can be 

noticed throughout the land cover maps below.  

The data extracted from Landsat developed a technique 

for assessing the accompanying losses accrued as a 

result of the flood is shown in Table 2. The LULC 

classification accuracy and kappa coefficient of the pre-

flood map are 93.02% and 0.92, respectively while the 

overall accuracy for the post-flooding map is 94.25% 

and its kappa coefficient is 0.93. It became necessary to 

determine these accuracy values before any further 

analysis can be extracted from the LULC maps and 

herein, the values gotten are satiable. The trend of the 

land cover classes shows that between May 2022 and 

November 2022 which corresponds to the pre-flood and 

post-flood periods, respectively, the urban areas had 

reduced from 220.902 sq. km to 87.473 sq. km. This 

shows that over 133 sq. km of urban settlement have 

been lost which invariably means some lives were lost, 

properties lost and humans must have been displaced. 

The water bodies trends show that from 68.537 sq. km 

in May 2022 they have risen to 108.893 sq. km by the 

end of the flood period in November 2022. This 

excludes the perennial water bodies in Koton Karfe but 

rather the new and artificially created lakes and 

wetlands.   

The aftermath of the flood saw an increase amounting to 

40.356 sq. km of water bodies in Koton Karfe which 

must have influenced the urban settlement lost and some 

vegetation where the only green that can withstand such 

submerge is the dense vegetation (forest). This trend is 

seen as the densely vegetated areas increased by 

273.613 sq. km which is understandable as these areas 

are mostly forest zones with thick trees that will 

withstand such sink. However, the cropland area also 

increased from 195.831 sq. km before the flood to 

482.252 sq. km after the flood but this is most likely 

unwanted plants (weeds) because this much water will 

destroy the crops by either altering the areas to barren 

lands or increased the numbers of crop plants but with 

zero production from the crops (i.e. weeds). The former 

can be seen in the case of less dense vegetation as they 

have been reduced to 277.522 sq. km from 516.137 sq. 

km. During flooding the most vulnerable land cover are 

the bare/barren lands. The barren lands in Koton Karfe 

lost 91.747 sq. km from its initial 317.994 sq. km. All 

this data will be very pertinent in immediate damage 

response and in managing the flood disaster as they 

contain pointers to the areas that are most affected and 

the areas that saw improvements.  
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Fig. 5. Pre and post flooding LULC maps showing affected areas especially loss of croplands 

Table 2. Land use land cover analysis 

MAY AREA (Sq.Km) NOV AREA (Sq.Km) DIFFERENCE 

(Loss/Gain) 

Urban 220.902 87.473 -133.430

Water Bodies 68.537 108.893 40.356

Less Dense Vegetation 516.137 277.522 -238.615

Barren Land 317.994 226.247 -91.747

Dense Vegetation 208.639 482.252 273.613

Cropland 195.831 345.654 149.823

Overall Accuracy 93.02% 94.25% 

Kappa Coefficient 0.9162 0.9305 

Fig. 6 provides insight into the percentage change in 

land use and land cover resulting from the flood and 

these findings are consistent with the results of Table 3 

and provide further results as to how the land cover 

classes have increased from the initial extent before the 

flood. The cropland saw an increase of 76.51% of the 

initial areas cover before the flood period. The dense 

vegetation gained twice the area it covered before the 

flood period. This shows the level of water present in 

this area. Equally these areas are also characterized by 

wetlands where small ponds and rice farms are situated. 

Any flood occurrence will be accompanied by an 

increased water body and the result from this research 

shows that the water bodies in the area increased by 

58.88% of the initial water bodies. Barren land, less 

dense vegetation, and urban settlements resulted in the 

loss of 28.85%, 46.23%, and 60.40%, respectively. 

In totality (Fig. 6) highlights the significant percentage 

gain in dense vegetation and cropland and the significant 

percentage loss of urban areas, less dense vegetation, 

and barren land. These findings provide further evidence 

of the impact of the flood on land cover classes and show 

that the ecological balance of the affected area has been 

significantly altered. The loss of urban areas can have 

severe socio-economic impacts, including damage to 

infrastructure, loss of livelihoods, and displacement of 

people. In this study, the loss of urban areas may have 

led to severe economic losses, particularly for small and 

medium enterprises located very close to the river Niger 

and Benue banks. The loss of less dense vegetation and 

barren land can have significant environmental impacts, 

including soil erosion, loss of biodiversity, and 

reduction in the capacity to support agriculture. These 

impacts can have long-term consequences on the 

environment and the economy of the area and the state. 
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Fig. 6. Percent Change of Land Cover Classes 

Fig. 7. Final inundation map of the Koton Karfe 

The final inundation map of the Koton Karfe is shown 

in Fig. 7. The two tiles indicate the flood inundated areas 

on October 13, 2022, and October 25, 2022. The figure 

shows a flood-inundated map superimposed on the land 

cover map and the vector files of the roads as well as the 

villages in Koton Karfe. Further analysis from the flood 

inundation maps confirms that three different sections of 

the road (Three black circles) have been cut off by the 

flood water very notable is the bridge flying over River 

Niger (First circle from below) also known as the Jamata 

Bridge. This knowledge if integrated with the mass 

media could be leveraged by making a broadcast 

nationwide about the extent of the damage that has been 

caused on the road to possible commuters as this route 

is the popular route that connects the Northern part of 

Nigeria to its Southern part. It is also a major route for 
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transporting farm produces and other goods to and fro 

the northern and southern geopolitical zones of the 

country. This information will also be very useful to the 

humanitarian department and the emergency response 

team in appropriately managing the situation. Twelve 

days after the first inundation map show a very little 

decline from the initial water level noticed on 13 

October 2022. Also, a total of twenty (20) villages were 

submerged during the two instances of the overlaid 

flood inundated map. This is another very important 

input in disaster monitoring indicators.  

Conclusion 

Sentinel-1 SAR is a microwave remote sensing 

technique that has proven to be very effective in flood 

inundation mapping as well as in flood disaster 

monitoring because of its all-weather capability, 

night/day time data capturing, freely available data, and 

high strength to distinguish between water and land. 

This research integrates Sentinel-1 spaceborne SAR 

imagery and Landsat-derived land cover maps to 

delineate flood-inundated areas and the accompanied 

damage incurred in Koton Karfe LGA Kogi State during 

the devastating flood of 2022. In summary, we have 

demonstrated the usage of Sentinel-1 imagery to extract 

the flood-inundated areas by first, removing the 

perennial water bodies from the derived flood maps, and 

with the integration of land cover maps the land cover 

classification that has experience damages were 

identified. Also, the road infrastructures and the 

communities in this area were overlaid on the flood 

inundation maps to identify the impact of the flood on 

them. The resulting land cover maps were classified into 

urban areas, less dense vegetation, dense vegetation, 

cropland, and barren lands with urban areas suffering 

the most losses during the flood incident. The result also 

shows that twenty communities and a major bridge, all 

characterized to be very close to the river Niger and 

Benue, were also submerged.  

Based on our findings, this technique could be a very 

resourceful tool for assessing flood damage assessment 

in the hands of emergency response agencies and can be 

applied in other areas with similar floods happening. 

However, this could be improved by introducing cloud 

computing methods like using the Google Earth Engine 

because of the large data involved in this analysis. 

Overall, this research will be a very good addition to the 

field of environmental and flood management science. 

This study has illustrated how very helpful the 

integration of Sentinel-1 spaceborne Synthetic Aperture 

Radar (SAR) resulting flood extent maps and Landsat-

derived land cover maps can be in flood disaster 

management. In that respect, the following 

recommendations have been highlighted:  

1. The approach presented in this study can be

useful for preliminary planning for disaster

response using freely available radar data and

open-source software.

2. Development of a detailed flood risk map to

identify the most vulnerable areas, thereby

facilitating the implementation of effective

mitigation and adaptation measures.

3. Government should enforce strict regulations

to ensure that floodplain areas are used for

compatible land uses that do not increase the

risk of flooding

4. Land use planning, and proper construction

practices to avoid building in high-risk areas

should be given optimum attention.

5. This study's findings could be enhanced by

performing crop type and fisheries type

discrimination to assess the loss for specific

types of crops and seafood products.

6. Finally, floods in some cases cannot be

prevented but in such cases, adaptive measures

should be developed by the authority's in-order

to be able to withstand the changes that

accompany this disaster.
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